首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The olfactory epithelium (OE) of zebrafish is populated with ciliated and microvillar olfactory sensory neurons (OSNs). Whether distinct classes of odorants specifically activate either of these unique populations of OSNs is unknown. Previously we demonstrated that zebrafish OSNs could be labeled in an activity-dependent fashion by amino acid but not bile acid odorants. To determine which sensory neuron type was stimulated by amino acid odorants, we labeled OSNs using the ion channel permeant probe agmatine (AGB) and analyzed its distribution with conventional light- and electron-microscope immunocytochemical techniques. Approximately 7% of the sensory epithelium was labeled by AGB exposure alone. Following stimulation with one of the eight amino acids tested, the proportion of labeled epithelium increased from 9% for histidine to 19% for alanine; amino acid stimulated increases in labeling of 2-12% over control labeling. Only histidine failed to stimulate a significant increase in the proportion of labeled OSNs compared to control preparations. Most amino acid sensitive OSNs were located superficially in the epithelium and immuno-electron microscopy demonstrated that the labeled OSNs were predominantly microvillar. Large numbers of nanogold particles (20-60 per 1.5 microm(2)) were associated with microvillar olfactory sensory neurons (MSNs), while few such particles (<15 per 1.5 microm(2)) were observed over ciliated olfactory sensory neurons (CSNs), supporting cells (SCs) and areas without tissue, such as the lumen above the OE. Collectively, these findings indicate that microvillar sensory neurons are capable of detecting amino acid odorants.  相似文献   

2.
Olfactory receptor neurons (ORNs) employ a cyclic nucleotide-gated (CNG) channel to generate a receptor current in response to an odorant-induced rise in cAMP. This channel contains three types of subunits, the principal CNGA2 subunit and two modulatory subunits (CNGA4 and CNGB1b). Here, we have analyzed the functional relevance of CNGB1 for olfaction by gene targeting in mice. Electro-olfactogram responses of CNGB1-deficient (CNGB1-/-) mice displayed a reduced maximal amplitude and decelerated onset and recovery kinetics compared with wild-type mice. In a behavioral test, CNGB1-/- mice exhibited a profoundly decreased olfactory performance. Electrophysiological recordings revealed that ORNs of CNGB1-/- mice weakly expressed a CNG current with decreased cAMP sensitivity, very rapid flicker-gating behavior and no fast modulation by Ca2+-calmodulin. Co-immunoprecipitation confirmed the presence of a CNGA2/CNGA4 channel in the olfactory epithelium of CNGB1-/- mice. This CNGA2/CNGA4 channel was targeted to the plasma membrane of olfactory knobs, but failed to be trafficked into olfactory cilia. Interestingly, we observed a similar trafficking defect in mice deficient for the CNGA4 subunit. In conclusion, these results demonstrate that CNGB1 has a dual function in vivo. First, it endows the olfactory CNG channel with a variety of biophysical properties tailored to the specific requirements of olfactory transduction. Second, together with the CNGA4 subunit, CNGB1 is needed for ciliary targeting of the olfactory CNG channel.  相似文献   

3.
Animals sample the odorous environment around them through the chemosensory systems located in the nasal cavity. Chemosensory signals affect complex behaviors such as food choice, predator, conspecific and mate recognition and other socially relevant cues. Olfactory receptor neurons (ORNs) are located in the dorsal part of the nasal cavity embedded in the olfactory epithelium. These bipolar neurons send an axon to the olfactory bulb (see Fig. 1, Reisert & Zhao, originally published in the Journal of General Physiology) and extend a single dendrite to the epithelial border from where cilia radiate into the mucus that covers the olfactory epithelium. The cilia contain the signal transduction machinery that ultimately leads to excitatory current influx through the ciliary transduction channels, a cyclic nucleotide-gated (CNG) channel and a Ca(2+)-activated Cl(-) channel (Fig. 1). The ensuing depolarization triggers action potential generation at the cell body. In this video we describe the use of the "suction pipette technique" to record odorant-induced responses from ORNs. This method was originally developed to record from rod photoreceptors and a variant of this method can be found at jove.com modified to record from mouse cone photoreceptors. The suction pipette technique was later adapted to also record from ORNs. Briefly, following dissociation of the olfactory epithelium and cell isolation, the entire cell body of an ORN is sucked into the tip of a recording pipette. The dendrite and the cilia remain exposed to the bath solution and thus accessible to solution changes to enable e.g. odorant or pharmacological blocker application. In this configuration, no access to the intracellular environment is gained (no whole-cell voltage clamp) and the intracellular voltage remains free to vary. This allows the simultaneous recording of the slow receptor current that originates at the cilia and fast action potentials fired by the cell body. The difference in kinetics between these two signals allows them to be separated using different filter settings. This technique can be used on any wild type or knockout mouse or to record selectively from ORNs that also express GFP to label specific subsets of ORNs, e.g. expressing a given odorant receptor or ion channel.  相似文献   

4.
Although multiple pathways are involved in the olfactory transduction mechanism, cAMP-dependent pathway has been considered to contribute mainly to the transduction. We examined the degree of contribution of cAMP-independent pathway to the turtle olfactory response by recording inward currents from isolated cells, nerve impulses from cilia and olfactory bulbar responses. The results obtained by the three recordings were essentially consistent with each other, but detail studies were carried out by recording the bulbar response to obtain quantitative data. Application of an odorant cocktail to the isolated olfactory neuron after injection of 1 mM cAMP from the patch pipette elicited a large inward current. Mean amplitude of inward currents evoked by the cocktail with 1 mM cAMP in the patch pipette was similar to that without cAMP in the pipette. Application of the cocktail after the response to 50 microM forskolin was adapted also induced a large inward current. Application of the odorant cocktail to the olfactory epithelium, after the response to 50 microM forskolin was adapted, brought about an appreciable increase in the impulse frequency. The bulbar response to forskolin alone reached a saturation level around 10 microM. After the response to 50 microM forskolin was adapted, 11 species of odorants were applied to the olfactory epithelium. The magnitudes of responses to the odorants after forskolin were 45-80% of those of the control responses. There was no essential difference in the degree of the suppression by forskolin between cAMP- and IP3- producing odorants classified in the rat, suggesting that certain part of the forskolin-suppressive component was brought about by nonspecific action of forskolin. Application of a membrane permeant cAMP analogue, cpt-cAMP elicited a large response, and 0.1 mM citralva after 3 mM cpt- cAMP elicited 51% of the control response which was close to the response to citralva after 50 microM forskolin. A membrane permeant cGMP analogue, db-cGMP elicited a small response and the response to 0.1 mM citralva was unaffected by db-cGMP. It was concluded that cAMP- independent (probably IP3-independent) pathway greatly contributes to the turtle olfactory transduction.  相似文献   

5.
K Sato  N Suzuki 《Chemical senses》2001,26(9):1145-1156
Olfactory lamellae of teleosts contain two morphologically different types of olfactory receptor neurons (ORNs): ciliated ORNs (cORNs) and microvillous ORNs (mORNs). However, little is known about the functional difference between these two types of ORNs in fish olfaction. We isolated cORNs and mORNs using a Ca(2+)-free solution method from olfactory organs of the rainbow trout and examined their response characteristics to various odorants including fish pheromone candidates by whole-cell voltage-clamp techniques. Quadruple mixture of amino acids, single amino acids, steroids (analogues of DHP; 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one and ECG; etiocholan-3 alpha-ol-17-one glucuronide), prostaglandins (PGFs) and urine samples collected from immature and mature female fish were applied focally to olfactory cilia or microvilli using a multi-barreled stimulation pipette with a pressure ejection system. Inward current responses to odorants were recorded from both cORNs and mORNs at a holding potential of -60 mV. cORNs responded to the amino acid mixture, single amino acids, urine samples and ECG, whereas mORNs responded specifically either to the amino acid mixture or single amino acids. The response profiles of both cORNs and mORNs to various odorants varied widely. None of cORNs and mORNs responded to fish pheromone candidates, PGFs and DHPs. Androgen treatment of immature fish did not influence olfactory sensitivity of both cORNs and mORNs to the amino acid mixture and both urine samples. Amino acid and bile acid analyses by HPLC showed that both urine samples contained 35 amino acids (1-40 mM) and trace amounts of taurocholic acid and glycoursodeoxycholic acid. Our results suggest that cORNs are 'generalists' that respond to a wide variety of odorants, including pheromones, whereas mORNs are 'specialists', specific to amino acids, and also suggest that PGFs and DHPs are not pheromones for the rainbow trout.  相似文献   

6.
Reisert J  Lai J  Yau KW  Bradley J 《Neuron》2005,45(4):553-561
In vertebrate olfactory receptor neurons (ORNs), the odorant-triggered receptor current flows through two distinct ion channels on the sensory cilia: Ca2+ influx through a cyclic nucleotide-gated (CNG) channel followed by Cl- efflux through a Ca2+-activated anion channel. The excitatory Cl- current amplifies the small CNG current and crucially depends on a high intracellular Cl- concentration. We show here that a (Na+)-(K+)-(2Cl-) cotransporter, NKCC1, is required for this Cl- current, in that ORNs deficient in Nkcc1 or incubated with an NKCC blocker (bumetanide) lack the Cl- current. Surprisingly, immunocytochemistry indicates that NKCC1 is located on the somata and dendrites of ORNs rather than the cilia, where transduction occurs. This topography is remarkably similar to the situation in secretory epithelial cells, where basolateral Cl- uptake and apical Cl- efflux facilitate transepithelial fluid movement. Thus, a single functional architecture serves two entirely different purposes, probably underscoring the epithelial origin of the ORNs.  相似文献   

7.
R H Kramer  S A Siegelbaum 《Neuron》1992,9(5):897-906
In olfactory receptor neurons, odorants stimulate production of cAMP, which directly activates cyclic nucleotide-gated (CNG) channels. Olfactory adaptation is thought to result from a rise in intracellular Ca2+. To determine whether inhibition of CNG channels plays a role in adaptation, we have investigated the action of Ca2+ on these channels in inside-out "macro" patches from the dendrite and cilia of catfish olfactory neurons. Internal Ca2+, with a K1/2 of 3 microM, profoundly inhibits CNG channels by shifting the dose-response relationship to higher cAMP levels without altering the maximal response. The inhibition does not appear to result from a direct interaction of Ca2+ with the CNG channel. Thus, the inhibition washes out after excision of the inside-out patch, and Ca2+ does not inhibit the cloned catfish CNG channel expressed in Xenopus oocytes. Hence we propose that a regulatory Ca(2+)-binding protein, distinct from the CNG channel, controls the gain of signal transduction and contributes to olfactory adaptation by decreasing the sensitivity of the CNG channel to cAMP.  相似文献   

8.
This study investigated whether contact with the olfactory bulb was necessary for developing and renewing olfactory receptor neurons (ORNs) to attain normal odorant responsiveness, and whether the anatomical and functional recoveries of the olfactory epithelium were similar in both bulbectomized (BE) and bilaterally axotomized (AX) preparations. In vivo electrophysiological recordings were obtained in response to amino acids, a bile acid [taurolithocholic acid sulfate(TLCS)] and a pheromonal odorant [17α, 20β,-dihydroxy-4-pregnen-3-one (17,20P)] from sexually immature goldfish. Both transmission and scanning electron microscopy indicated that the olfactory epithelium degenerated in BE and AX goldfish. Within 1–2 weeks subsequent to the respective surgeries, responses to high concentrations (>0.1 mmol · l−1) of the more stimulatory amino acids remained, whereas responses were no longer obtainable to TLCS and 17,20P. At 4 weeks, responses to amino acid stimuli recovered to control levels, while responses to TLCS and 17,20P were minimal. By 7 weeks post bilateral axotomy, the olfactory epithelium recovered to a condition similar to control sensory epithelium; however, the rate of degeneration and proliferation of receptor neurons in BE preparations appeared to remain in balance, thus blocking further recovery of the olfactory epithelium. At 7 weeks post surgery, odorant responses of AX and BE goldfish to TLCS and 17,20P were still recovering. Accepted: 14 June 1997  相似文献   

9.
Recent data suggest that the 3-phosphoinositides can modulate cyclic nucleotide signaling in rat olfactory receptor neurons (ORNs). Given the ability of diverse lipids to modulate ion channels, we asked whether phosphatidylinositol 3,4,5-trisphosphate (PIP3) can regulate the olfactory cyclic nucleotide-gated (CNG) channel as a possible mechanism for this modulation. We show that applying PIP3 to the intracellular side of inside-out patches from rat ORNs inhibits activation of the olfactory CNG channel by cAMP. The effect of PIP3 is immediate and partially reversible, and reflects an increase in the EC50 of cAMP, not a reduction in the single-channel current amplitude. The effect of PIP3 is significantly stronger than that of PIP2; other phospholipids tested have no appreciable effect on channel activity. PIP3 similarly inhibits the recombinant heteromeric (A2/A4) and homomeric (A2) olfactory CNG channel expressed in HEK293 cells, suggesting that PIP3 acts directly on the channel. These findings indicate that 3-phosphoinositides can be functionally important regulators of CNG channels.  相似文献   

10.
Pifferi S  Boccaccio A  Menini A 《FEBS letters》2006,580(12):2853-2859
Cyclic nucleotide-gated (CNG) channels, directly activated by the binding of cyclic nucleotides, were first discovered in retinal rods, cones and olfactory sensory neurons. In the visual and olfactory systems, CNG channels mediate sensory transduction by conducting cationic currents carried primarily by sodium and calcium ions. In olfactory transduction, calcium in combination with calmodulin exerts a negative feedback on CNG channels that is the main molecular mechanism responsible for fast adaptation in olfactory sensory neurons. Six mammalian CNG channel genes are known and some human visual disorders are caused by mutations in retinal rod or cone CNG genes.  相似文献   

11.
Neural oscillatory activities triggered by odorant stimulation have been often reported at various levels of olfactory nervous systems in vertebrates. To elucidate the origin of neural oscillations, we studied first the oscillatory properties of current responses of isolated olfactory receptor neurons (ORNs) of the rainbow trout to amino acid odorants, using a whole-cell voltage-clamp technique and found that the damped current oscillations were intrinsic in both ciliated and microvillous ORNs and occurred when ORNs were stimulated by odorants at high intensities. Continuous wavelet analysis using the Gabor function revealed that the dominant frequency of oscillations was 1.89 +/- 0.50 Hz (mean +/- SD, n = 92). There was no significant difference in oscillation frequency between the two types of ORNs and between different perfusion conditions with standard and Na(+)-free (choline) Ringer's solutions, but there was a slight difference in oscillation frequency between different holding potential conditions of negative and positive potentials. We then performed a computer simulation of the current responses with a cAMP olfactory transduction model. The model was based on the assumption that the current responses of ORNs were linearly related to the sum of concentrations of active cyclic-nucleotide-gated channels and Ca(2+)-activated Cl(-) channels, and was expressed by 12 differential equations with 44 different parameters. The simulation revealed that the oscillations of current responses of ORNs were mainly due to the oscillatory properties of intracellular cAMP and Ca(2+) concentrations. The necessary reaction component for the oscillations in the transduction model was direct inhibition of adenylate cyclase activity by Ca(2+). High Ca(2+) efflux by the Na(+)-Ca(2+) exchanger and cAMP-phosphodiesterase activity were most influential on the oscillations. The simulation completely represented the characteristics of current responses of ORNs: odorant-intensity-dependent response, intensity-dependent latency and adaptation. Thus, the simulation is generally applicable to current and voltage responses of ORNs equipped with cAMP olfactory transduction pathway in other vertebrate species. The simulation programs for Macintosh (cAMP 9.2.7 and 9.2.8 for MacOS 8.1 or later) and cAMP JAVA applet versions based on cAMP 9.2.8 have been published on the world wide web (http://bio2.sci.hokudai.ac.jp/bio/chinou1/noriyo_home.html).  相似文献   

12.
Amino acids reliably evoke strong responses in fish olfactory system. The molecular olfactory receptors (ORs) are located in the membrane of cilia and microvilli of the olfactory receptor neurons (ORNs). Axons of ORNs converge on specific olfactory bulb (OB) glomeruli and the neural responses of ORNs expressing single Ors activate glomerular activity patterns typical for each amino acid. Chemically similar amino acids activate more similar glomerular activity patterns then chemically different amino acids. Differential glomerular activity patterns are the structural basis for amino acid perception and discrimination. We studied olfactory discrimination in zebrafish Danio rerio (Hamilton 1822) by conditioning them to respond to each of the following amino acids: L-Ala, L-Val, L-Leu, L-Arg, and L-Phe. Subsequently, zebrafish were tested for food searching activities with 18 nonconditioned amino acids. The food searching activity during 90 s of the test period was significantly greater after stimulation with the conditioned stimulus than with the nonconditioned amino acid. Zebrafish were able to discriminate all the tested amino acids except L-Ile from L-Val and L-Phe from L-Tyr. We conclude that zebrafish have difficulties discriminating amino acid odorants that evoke highly similar chemotopic patterns of activity in the OB.  相似文献   

13.
This study tested whether differences in sensitivity between the upper and lower olfactory epithelia of Solea senegalensis are associated with different odorant receptors and transduction pathways, using the electro‐olfactogram. Receptor mechanisms were assessed by cross‐adaptation with amino acids (L‐cysteine, L‐phenylalanine and 1‐methyl‐L‐tryptophan) and bile acids (taurocholic acid and cholic acid). This suggested that relatively specific receptors exist for 1‐methyl‐L‐tryptophan and L‐phenylalanine (food‐related odorants) in the lower epithelium, and for taurocholic acid (conspecific‐derived odorant) in the upper. Inhibition by U73122 [a phospholipase C (PLC) inhibitor] suggested that olfactory responses to amino acids were mediated mostly, but not entirely, by PLC‐mediated transduction (IC50; 15–55 nM), whereas bile acid responses were mediated by both PLC and adenylate cyclase–cyclic adenosine monophosphate (AC–cAMP) (using SQ‐22536; an AC inhibitor). Simultaneous application of both drugs rarely inhibited responses completely, suggesting possible involvement of non‐PLC and non‐AC mediated mechanisms. For aromatic amino acids and bile acids, there were differences in the contribution of each transduction pathway (PLC, AC and non‐PLC and non‐AC) between the two epithelia. These results suggest that differences in sensitivity of the two epithelia are associated with differences in odorant receptors and transduction mechanisms.  相似文献   

14.
Vertebrate olfactory sensory neurons rapidly adapt to repetitive odorant stimuli. Previous studies have shown that the principal molecular mechanisms for odorant adaptation take place after the odorant-induced production of cAMP, and that one important mechanism is the negative feedback modulation by Ca2+-calmodulin (Ca2+-CaM) of the cyclic nucleotide-gated (CNG) channel. However, the physiological role of the Ca2+-dependent activity of phosphodiesterase (PDE) in adaptation has not been investigated yet. We used the whole-cell voltage-clamp technique to record currents in mouse olfactory sensory neurons elicited by photorelease of 8-Br-cAMP, an analogue of cAMP commonly used as a hydrolysis-resistant compound and known to be a potent agonist of the olfactory CNG channel. We measured currents in response to repetitive photoreleases of cAMP or of 8-Br-cAMP and we observed similar adaptation in response to the second stimulus. Control experiments were conducted in the presence of the PDE inhibitor IBMX, confirming that an increase in PDE activity was not involved in the response decrease. Since the total current activated by 8-Br-cAMP, as well as that physiologically induced by odorants, is composed not only of current carried by Na+ and Ca2+ through CNG channels, but also by a Ca2+-activated Cl- current, we performed control experiments in which the reversal potential of Cl- was set, by ion substitution, at the same value of the holding potential, -50 mV. Adaptation was measured also in these conditions of diminished Ca2+-activated Cl- current. Furthermore, by producing repetitive increases of ciliary's Ca2+ with flash photolysis of caged Ca2+, we showed that Ca2+-activated Cl- channels do not adapt and that there is no Cl- depletion in the cilia. All together, these results indicate that the activity of ciliary PDE is not required for fast adaptation to repetitive stimuli in mouse olfactory sensory neurons.  相似文献   

15.
Odorants activate sensory transduction in olfactory receptor neurons (ORNs) via a cAMP-signaling cascade, which results in the opening of nonselective, cyclic nucleotide-gated (CNG) channels. The consequent Ca2+ influx through CNG channels activates Cl channels, which serve to amplify the transduction signal. We investigate here some general properties of this Ca-activated Cl channel in rat, as well as its functional interplay with the CNG channel, by using inside-out membrane patches excised from ORN dendritic knobs/cilia. At physiological concentrations of external divalent cations, the maximally activated Cl current was approximately 30 times as large as the CNG current. The Cl channels on an excised patch could be activated by Ca2+ flux through the CNG channels opened by cAMP. The magnitude of the Cl current depended on the strength of Ca buffering in the bath solution, suggesting that the CNG and Cl channels were probably not organized as constituents of a local transducisome complex. Likewise, Cl channels and the Na/Ca exchanger, which extrudes Ca2+, appear to be spatially segregated. Based on the theory of buffered Ca2+ diffusion, we determined the Ca2+ diffusion coefficient and calculated that the CNG and Cl channel densities on the membrane were approximately 8 and 62 micro m-2, respectively. These densities, together with the Ca2+ diffusion coefficient, demonstrate that a given Cl channel is activated by Ca2+ originating from multiple CNG channels, thus allowing low-noise amplification of the olfactory receptor current.  相似文献   

16.
Organotypic cultures of the mouse olfactory epithelium connected to the olfactory bulb were obtained with the roller tube technique from postnatal mice aged between 13 and 66 days. To test the functionality of the cultures, we measured electroolfactograms (EOGs) at different days in vitro (DIV), up to 7 DIV, and we compared them with EOGs from identical acute preparations (0 DIV). Average amplitudes of EOG responses to 2 mixtures of various odorants at concentrations of 1 mM or 100 microM decreased in cultures between 2 and 5 DIV compared with 0 DIV. The percentage of responsive cultures was 57%. We also used the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) to trigger the olfactory transduction cascade bypassing odorant receptor activation. Average amplitudes of EOG responses to 500 microM IBMX were not significantly different in cultures up to 6 DIV or 0 DIV, and the average percentage of responsive cultures between 2 and 5 DIV was 72%. The dose-response curve to IBMX measured in cultures up to 7 DIV was similar to that at 0 DIV. Moreover, the percentage of EOG response to IBMX blocked by niflumic acid, a blocker of Ca-activated Cl channels, was not significantly different in cultured or acute preparations.  相似文献   

17.
Odorant stimulation of olfactory receptor neurons (ORNs) leads to the activation of a Ca2+ permeable cyclic nucleotide-gated (CNG) channel followed by opening of an excitatory Ca2+-activated Cl channel, which carries about 70% of the odorant-induced receptor current. This requires ORNs to have a [Cl]i above the electrochemical equilibrium to render this anionic current excitatory. In mammalian ORNs, the Na+-K+-2Cl co-transporter 1 (NKCC1) has been characterized as the principal mechanism by which these neurons actively accumulate Cl. To determine if NKCC activity is needed in amphibian olfactory transduction, and to characterize its cellular location, we used the suction pipette technique to record from Rana pipiens ORNs. Application of bumetanide, an NKCC blocker, produced a 50% decrease of the odorant-induced current. Similar effects were observed when [Cl]i was decreased by bathing ORNs in low Cl solution. Both manipulations reduced only the Cl component of the current. Application of bumetanide only to the ORN cell body and not to the cilia decreased the current by again about 50%. The results show that NKCC is required for amphibian olfactory transduction, and suggest that the co-transporter is located basolaterally at the cell body although its presence at the cilia could not be discarded.  相似文献   

18.
A major sensory organ for the detection of pheromones by animals is the vomeronasal organ (VNO). Although pheromones control the behaviors of various species, the effect of pheromones on human behavior has been controversial because the VNO is not functional in adults. However, recent genetic, biochemical, and electrophysiological data suggest that some pheromone-based behaviors, including male sexual behavior in mice, are mediated through the main olfactory epithelium (MOE) and are coupled to the type 3 adenylyl cyclase (AC3) and a cyclic nucleotide-gated (CNG) ion channel. These recent discoveries suggest the provocative hypothesis that human pheromones may signal through the MOE.  相似文献   

19.
A Baumann  S Frings  M Godde  R Seifert    U B Kaupp 《The EMBO journal》1994,13(21):5040-5050
Cyclic nucleotide-gated (CNG) ion channels serve as downstream targets of signalling pathways in vertebrate photoreceptors and olfactory sensory neurons. Whether CNG channels subserve similar functions in invertebrate photoreception and olfaction is unknown. We have cloned genomic DNA and cDNA encoding a cGMP-gated channel from Drosophila. The gene contains at least seven exons. Heterologous expression of cloned cDNA in both Xenopus oocytes and HEK 293 cells gives rise to functional ion channels. The Drosophila CNG channel is approximately 50-fold more sensitive to cGMP than to cAMP. The voltage dependence of blockage by divalent cations is different compared with the CNG channel of rod photoreceptors, and the Ca2+ permeability is much larger. The channel mRNA is expressed in antennae and the visual system of Drosophila. It is proposed that CNG channels are involved in transduction cascades of both invertebrate photoreceptors and olfactory sensillae.  相似文献   

20.
Recent evidence has revived interest in the idea that phosphoinositides (PIs) may play a role in signal transduction in mammalian olfactory receptor neurons (ORNs). To provide direct evidence that odorants indeed activate PI signaling in ORNs, we used adenoviral vectors carrying two different fluorescently tagged probes, the pleckstrin homology (PH) domains of phospholipase Cδ1 (PLCδ1) and the general receptor of phosphoinositides (GRP1), to monitor PI activity in the dendritic knobs of ORNs in vivo. Odorants mobilized PI(4,5)P2/IP3 and PI(3,4,5)P3, the substrates and products of PLC and PI3K. We then measured odorant activation of PLC and PI3K in olfactory ciliary-enriched membranes in vitro using a phospholipid overlay assay and ELISAs. Odorants activated both PLC and PI3K in the olfactory cilia within 2 s of odorant stimulation. Odorant-dependent activation of PLC and PI3K in the olfactory epithelium could be blocked by enzyme-specific inhibitors. Odorants activated PLC and PI3K with partially overlapping specificity. These results provide direct evidence that odorants indeed activate PI signaling in mammalian ORNs in a manner that is consistent with the idea that PI signaling plays a role in olfactory transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号