首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supply of lipids from the mother is essential for fetal growth and development. In mice, disruption of yolk sac cell secretion of apolipoprotein (apo) B-containing lipoproteins results in embryonic lethality. In humans, the yolk sac is vestigial. Nutritional functions are instead established very early during pregnancy in the placenta. To examine whether the human placenta produces lipoproteins, we examined apoB and microsomal triglyceride transfer protein (MTP) mRNA expression in placental biopsies. ApoB and MTP are mandatory for assembly and secretion of apoB-containing lipoproteins. Both genes were expressed in placenta and microsomal extracts from human placenta contained triglyceride transfer activity, indicating expression of bioactive MTP. To detect lipoprotein secretion, biopsies from term placentas were placed in medium with [(35)S]methionine and [(35)S]cysteine for 3-24 h. Upon sucrose gradient ultracentrifugation of the labeled medium, fractions were analyzed by apoB-immunoprecipitation. (35)S-labeled apoB-100 was recovered in d approximately 1.02-1.04 g/ml particles (i.e. similar to the density of plasma low density lipoproteins). Electron microscopy of negatively stained lipoproteins secreted from placental tissue showed spherical particles with a diameter of 47 +/- 10 nm. These results demonstrate that human placenta expresses both apoB and MTP and consequently synthesize and secrete apoB-100-containing lipoproteins. Placental lipoprotein formation constitutes a novel pathway of lipid transfer from the mother to the developing fetus.  相似文献   

2.
To examine the role of apolipoprotein A-IV (apoA-IV) in the intracellular trafficking and secretion of apoB, COS cells were cotransfected with microsomal triglyceride transfer protein (MTP), apoB-41 (amino terminal 41% of apoB), and either native apoA-IV or apoA-IV modified with the carboxy-terminal endoplasmic reticulum (ER) retention signal, KDEL (apoA-IV-KDEL). As expected, apoA-IV-KDEL was inefficiently secreted relative to native apoA-IV. Coexpression of apoB-41 with apoA-IV-KDEL reduced the secretion of apoB-41 by approximately 80%. The apoA-IV-KDEL effect was specific, as neither KDEL-modified forms of human serum albumin or apoA-I affected apoB-41 secretion. Similar results were observed in McA-RH7777 rat hepatoma cells, which express endogenous MTP. The full inhibitory effect of apoA-IV-KDEL on apoB secretion was observed only for forms of apoB containing a minimum of the amino-terminal 25% of the protein (apoB-25). However, apoA-IV-KDEL inhibited the secretion of both lipid-associated and lipid-poor forms of apoB-25. Dual-label immunofluorescence microscopy of cells transfected with native apoA-IV and apoB-25 revealed that both apolipoproteins were localized to the ER and Golgi, as expected. However, when apoA-IV-KDEL was cotransfected with apoB-25, both proteins localized primarily to the ER. These data suggest that apoA-IV may physically interact with apoB in the secretory pathway, perhaps reflecting a role in modulating the process of triglyceride-rich lipoprotein assembly and secretion.  相似文献   

3.
Due to the absence of microsomal triglyceride transfer protein (MTP), Chinese hamster ovary (CHO) cells lack the ability to translocate apoB into the lumen of the endoplasmic reticulum, causing apoB to be rapidly degraded by an N-acetyl-leucyl-leucyl-norleucinal-inhibitable process. The goal of this study was to examine if expression of MTP, whose genetic deletion is responsible for the human recessive disorder abetalipoproteinemia, would recapitulate the lipoprotein assembly pathway in CHO cells. Unexpectedly, expression of MTP mRNA and protein in CHO cells did not allow apoB-containing lipoproteins to be assembled and secreted by CHO cells expressing apoB53. Although expression of MTP in cells allowed apoB to completely enter the endoplasmic reticulum, it was degraded by a proteolytic process that was inhibited by dithiothreitol (1 mM) and chloroquine (100 microM), but resistant to N-acetyl-leucyl-leucyl-norleucinal. In marked contrast, coexpression of the liver-specific gene product cholesterol 7alpha-hydroxylase with MTP resulted in levels of MTP lipid transfer activity that were similar to those in mouse liver and allowed intact apoB53 to be secreted as a lipoprotein particle. These data suggest that, although MTP-facilitated lipid transport is not required for apoB translocation, it is required for the secretion of apoB-containing lipoproteins. We propose that, in CHO cells, MTP plays two roles in the assembly and secretion of apoB-containing lipoproteins: 1) it acts as a chaperone that facilitates apoB53 translocation, and 2) its lipid transfer activity allows apoB-containing lipoproteins to be assembled and secreted. Our results suggest that the phenotype of the cell (e.g. expression of cholesterol 7alpha-hydroxylase by the liver) may profoundly influence the metabolic relationships determining how apoB is processed into lipoproteins and/or degraded.  相似文献   

4.
Apolipoprotein (apo) B-100, an essential protein for the assembly and secretion of very low density lipoproteins depends on lipid binding (lipidation) for its secretion. Seven of its 8 disulfides are clustered within the N-terminal 21%. The role of these disulfides in the secretion of lipidated or unlipidated truncated forms of apoB was studied in C127 cells expressing apoB-17, apoB-29, or apoB-41. These cells do not express microsomal triglyceride transfer protein yet secrete apoB-41 on triacylglycerol-rich lipoproteins while apoB-29 and apoB-17 are secreted with little or no lipid, respectively. Dithiothreitol utilized in pulse-chase studies prevented the cotranslational formation of disulfides and when added posttranslationally reduced native disulfides. As a result, the secretion of reduced apoB forms was blocked and they were retained in the cells. Reduced apoB polypeptides were rescued following removal of dithiothreitol, as they underwent post-translational disulfide bonding, attained their mature form, and were subsequently secreted. Together the data suggest that in C127 cells the formation of native disulfides is critical for the folding and secretion of apoB independent of its length, its requirement for lipidation or microsomal triglyceride transfer protein expression. Therefore, these cells provide an appropriate model to study the folding of apoB in great detail.  相似文献   

5.
Despite a complete lack of microsomal triglyceride transfer protein (MTP), L35 rat hepatoma cells secrete triglyceride-containing lipoproteins, albeit at a rate 25% of that of parental FAO hepatoma cells, which express high levels of MTP. The inability to express MTP was associated with a complete block in the secretion of both apolipoprotein (apo)B-100 and apoB-48. Stable expression of a MTP transgene restored the secretion of both apoB-100 and apoB-48 in L35 cells, indicating that MTP is essential for the secretion of both forms of apoB. Treatment with the MTP inhibitor BMS-200150 reduced the secretion of triglyceride by 70% in FAO cells, whereas the inhibitor did not affect the secretion of triglycerides by L35 cells. Thus, in the presence of the MTP inhibitor, both cell types secreted triglycerides at similar rates. Essentially, all of the triglycerides secreted by L35 cells were associated with HDL containing apoA-IV and apoE but devoid of apoB-100 or apoB-48. These results suggest that these triglyceride-containing lipoproteins are assembled and secreted via a pathway that is independent of both apoB and MTP. Our findings support the concept that apoB and MTP co-evolved and provided a means to augment the secretion of triglyceride through the formation of lipoproteins containing large hydrophobic cores enriched with triglycerides.  相似文献   

6.
Microsomal triglyceride transfer protein (MTP) is required for the assembly and secretion of apolipoprotein (apo) B-containing lipoproteins. Previously, we demonstrated that the N-terminal 1,000 residues of apoB (apoB:1000) are necessary for the initiation of apoB-containing lipoprotein assembly in rat hepatoma McA-RH7777 cells and that these particles are phospholipid (PL) rich. To determine if the PL transfer activity of MTP is sufficient for the assembly and secretion of primordial apoB:1000-containing lipoproteins, we employed microRNA-based short hairpin RNAs (miR-shRNAs) to silence Mttp gene expression in parental and apoB:1000-expressing McA-RH7777 cells. This approach led to 98% reduction in MTP protein levels in both cell types. Metabolic labeling studies demonstrated a drastic 90–95% decrease in the secretion of rat endogenous apoB100-containing lipoproteins in MTP-deficient McA-RH7777 cells compared with cells transfected with negative control miR-shRNA. A similar reduction was observed in the secretion of rat endogenous apoB48 under the experimental conditions employed. In contrast, MTP absence had no significant effect on the synthesis, lipidation, and secretion of human apoB:1000-containing particles. These results provide strong evidence in support of the concept that in McA-RH7777 cells, acquisition of PL by apoB:1000 and initiation of apoB-containing lipoprotein assembly, a process distinct from the conventional first-step assembly of HDL-sized apoB-containing particles, do not require MTP. This study indicates that, in hepatocytes, a factor(s) other than MTP mediates the formation of the PL-rich primordial apoB:1000-containing initiation complex.  相似文献   

7.
In vitro studies have shown that the binding site for microsomal triglyceride transfer protein (MTP) is within the first 17% of apoB (apoB-17). Expression of apoB-48 in McArdle cells decreases endogenous lipoprotein production; however, overexpression of human apoB in transgenic mice does not decrease endogenous mouse apoB expression. To assess this inconsistency, adenoviruses expressing human apoB-17 (AdB17) or apoB-17-beta (which contains apoB-17 plus a small lipid-binding beta-sheet region of apoB, AdB-17beta) were produced. Hepatoma cells were infected with AdB17 or AdB17-beta with AdLacZ, an adenovirus expressing beta-galactosidase, as a control. Overexpression of apoB-17 and apoB-17-beta in hepatoma cells to levels 2- to 3-fold greater than that of endogenous apoB did not alter endogenous apoB production. This was also true in the presence of oleic acid and N-acetyl-leucyl-leucyl-norleucinal. High levels of apoB-17 or beta-galactosidase expression reduced apoB-100 production; however, control protein production was also reduced. To assess the effects of apoB-17 expression in vivo, mice of three different strains were injected with AdB17. Two days after injection, plasma apoB-17 was approximately 24 times the amount of endogenous apoB in the C57BL/6 mice, 2 times the apoB-100 in human apoB transgenic mice, and 4 times the apoB-48 in apoE knockout mice. Overexpression of apoB-17 did not decrease apoB-100 or apoB-48 concentrations in mouse plasma as assessed by Western blot analysis. These results demonstrate that although the apoB-17 binds to MTP in vitro, it does not alter endogenous apoB expression in mice or in hepatoma cells.  相似文献   

8.
Microsomal triglyceride transfer protein (MTP) is an intraluminal protein in the endoplasmic reticulum (ER) that is essential for the assembly of apolipoprotein B (apoB)-containing lipoproteins. In this study, we examine how the livers of mice respond to two distinct methods of blocking MTP function: Cre-mediated disruption of the gene for MTP and chemical inhibition of MTP activity. Blocking MTP significantly reduced plasma levels of triglycerides, cholesterol, and apoB-containing lipoproteins in both wild-type C57BL/6 and LDL receptor-deficient mice. While treating LDL receptor-deficient mice with an MTP inhibitor for 7 days lowered plasma lipids to control levels, liver triglyceride levels were increased by only 4-fold. Plasma levels of apoB-100 and apoB-48 fell by >90% and 65%, respectively, but neither apoB isoform accumulated in hepatic microsomes. Surprisingly, loss of MTP expression was associated with a nearly complete absence of apoB-100 in hepatic microsomes. Levels of microsomal luminal chaperone proteins [e.g., protein disulfide isomerase, glucose-regulated protein 78 (GRP78), and GRP94] and cytosolic heat shock proteins (HSPs) (e.g., HSP60, HSC, HSP70, and HSP90) were unaffected by MTP inhibition. These findings show that the liver responds rapidly to inhibition of MTP by degrading apoB and preventing its accumulation in the ER. The rapid degradation of secretion-incompetent apoB in the ER may block the induction of proteins associated with unfolded protein and heat shock responses.  相似文献   

9.
Cellular apoB in primary rat hepatocyte cultures was pulse-labeled with [(35)S]methionine for 1 h. Cells were then chased with excess unlabeled methionine for periods of up to 16 h in the presence or absence of BMS-200150, an inhibitor of microsomal triglyceride transfer protein (MTP). The secretion of apoB-48-VLDL was more sensitive to MTP inhibition than was apoB-100-VLDL. Inhibition of MTP had no inhibitory effect on the secretion of denser particles (apoB-48 HDL and apoB-100 HDL). BMS-200150 delayed the net removal of newly synthesized apoB-48 and apoB-100 from the microsomal and Golgi membranes, but not from the corresponding lumenal compartments. Only minor proportions of the microsomal lumen apoB-48 and apoB-100 (12-16% and 17-19%, respectively) were present as VLDL irrespective of whether MTP was inactivated or not. The HDL fraction contained most of the lumenal apoB-48 (67-73%) and a somewhat smaller proportion of apoB-100 (44-47%). The remainder of the lumenal apoB was associated with the IDL/LDL fraction. These proportions were unaffected by MTP inactivation. Excess labeled apoB which accumulated in the membranes in the presence of BMS-200150 was degraded. Inhibition of MTP prevented the removal of pre-synthesized triacylglycerol (TAG) from the hepatocytes as apoB-VLDL. Under these conditions intracellular TAG accumulated mainly in the cell cytosol, but also, to a lesser extent, in the microsomal membranes. The results suggest that inactivation of MTP inhibits a pathway of VLDL assembly which does not involve the bulk lumenal compartments of the microsomes. Suppression of this pathway ultimately prevents the net transfer of cytosolic TAG into mature apoB-VLDL.  相似文献   

10.
Microsomal triglyceride transfer protein (MTP) has been studied extensively, primarily because of its role in the assembly of very low density lipoproteins by the liver and chylomicrons by the intestine. Recent studies have suggested that MTP may also play key roles in other cellular processes. In this paper we report the identification of a novel splice variant of MTP in mice. This isoform, MTP-B, has a unique first exon located approximately 2.7 kilobases upstream of canonical MTP (MTP-A) exon 1. The alternative exon encodes 35 amino acids compared with 20 amino acids encoded by exon 1 of MTP-A. MTP-B represents approximately 90% of total MTP mRNA in mouse adipocytes and 3T3-L1 cells and <5% in mouse liver and intestine. Expression of the alternate isoform in mouse liver was confirmed by mass spectrometry. Co-transfection of COS cells with truncated forms of apoB and either MTP-A or MTP-B demonstrated that both isoforms are effective in the assembly and secretion of nascent apoB-containing lipoproteins. Confocal microscopy of 3T3-L1 cells transfected with enhanced green fluorescent protein or DsRed fusions of the two proteins revealed that MTP-A is localized to the endoplasmic reticulum, whereas MTP-B localizes primarily to the Golgi complex in these cells. We conclude that MTP-B functions similarly to MTP-A in lipoprotein assembly. However, in nonlipoprotein-secreting cells, such as the adipocyte, MTP-B may have different localization properties, perhaps reflecting a distinct role in lipid storage and mobilization.  相似文献   

11.
Although the evidence linking apoA-IV expression and triglyceride (TG)-rich lipoprotein assembly and secretion is compelling, the intracellular mechanisms by which apoA-IV could modulate these processes remain poorly understood. We therefore examined the functional impact of apoA-IV expression on endogenous apoB, TG, and VLDL secretion in stably transfected McA-RH7777 rat hepatoma cells. Expression of apoA-IV modified with the endoplasmic reticulum (ER) retention signal KDEL (apoA-IV-KDEL) dramatically decreased both the rate and efficiency of endogenous apoB secretion, suggesting a presecretory interaction between apoA-IV-KDEL and apoB or apoB-containing lipoproteins. Expression of native apoA-IV using either a constitutive or tetracycline-inducible promoter delayed the initial rate of apoB secretion and reduced the final secretion efficiency by ~40%. However, whereas apoA-IV-KDEL reduced TG secretion by 75%, expression of native apoA-IV caused a 20-35% increase in TG secretion, accompanied by a ~55% increase in VLDL-associated apoB, an increase in the TG:phospholipid ratio of secreted d < 1.006 lipoproteins, and a 10.1 nm increase in peak VLDL(1) particle diameter. Native apoA-IV expression had a negligible impact on expression of the MTP gene. These data suggest that by interacting with apoB in the secretory pathway, apoA-IV alters the trafficking kinetics of apoB-containing TG-rich lipoproteins through cellular lipidation compartments, which in turn, enhances particle expansion and increases TG secretion.  相似文献   

12.
We previously demonstrated that the N-terminal 1000 amino acid residues of human apolipoprotein (apo) B (designated apoB:1000) are competent to fold into a three-sided lipovitellin-like lipid binding cavity to form the apoB "lipid pocket" without a structural requirement for microsomal triglyceride transfer protein (MTP). Our results established that this primordial apoB-containing particle is phospholipid-rich (Manchekar, M., Richardson, P. E., Forte, T. M., Datta, G., Segrest, J. P., and Dashti, N. (2004) J. Biol. Chem. 279, 39757-39766). In this study we have investigated the putative functional role of MTP in the initial lipidation of apoB:1000 in stable transformants of McA-RH7777 cells. Inhibition of MTP lipid transfer activity by 0.1 microm BMS-197636 and 5, 10, and 20 microm of BMS-200150 had no detectable effect on the synthesis, lipidation, and secretion of apoB:1000-containing particles. Under identical experimental conditions, the synthesis, lipidation, and secretion of endogenous apoB100-containing particles in HepG2 and parental untransfected McA-RH7777 cells were inhibited by 86-94%. BMS-200150 at 40 microm nearly abolished the secretion of endogenous apoB100-containing particles in HepG2 and parental McA-RH cells but caused only 15-20% inhibition in the secretion of apoB: 1000-containing particles. This modest decrease was attributable to the nonspecific effect of a high concentration of this compound on hepatic protein synthesis, as reflected in a similar (20-25%) reduction in albumin secretion. Suppression of MTP gene expression in stable transformants of McA-RH7777 cells by micro-interfering RNA led to 60-70% decrease in MTP mRNA and protein levels, but it had no detectable effect on the secretion of apoB:1000. Our results provide a compelling argument that the initial addition of phospholipids to apoB:1000 and initiation of apoB-containing lipoprotein assembly occur independently of MTP lipid transfer activity.  相似文献   

13.
The process of assembly of apolipoprotein (apo) B-containing lipoprotein particles occurs co-translationally after disulfide-dependent folding of the N-terminal domain of apoB but the mechanism is not understood. During a recent database search for protein sequences that contained similar amphipathic beta strands to apoB-100, four vitellogenins, the precursor form of lipovitellin, an egg yolk lipoprotein, from chicken, frog, lamprey, and C. elegans appeared on the list of candidate proteins. The X-ray crystal structure of lamprey lipovitellin is known to contain a "lipid pocket" lined by antiparallel amphipathic beta sheets. Here we report that the first 1000 residues of human apoB-100 (the alpha(1) domain plus the first 200 residues of the beta(1) domain) have sequence and amphipathic motif homologies to the lipid-binding pocket of lamprey lipovitellin. We also show that most of the alpha(1) domain of human apoB-100 has sequence and amphipathic motif homologies to human microsomal triglyceride transfer protein (MTP), a protein required for assembly of apoB-containing lipoproteins. Based upon these results, we suggest that an LV-like "proteolipid" intermediate containing a "lipid pocket" is formed by the N-terminal portion of apoB alone or, more likely, as a complex with MTP. This intermediate produces a lipid nidus required for assembly of apoB-containing lipoprotein particles; pocket expansion through the addition of amphipathic beta strands from the beta(1) domain of apoB results in the formation of a progressively larger high density lipoprotein (HDL)-like, then very low density lipoprotein (VLDL)-like, spheroidal lipoprotein particle.  相似文献   

14.
Naringenin, the principal flavonoid in grapefruit, reduces plasma lipids in vivo and inhibits apoB secretion, cholesterol esterification, and MTP activity in HepG2 human hepatoma cells. Although naringenin inhibits ACAT, we recently demonstrated that CE availability in the microsomal lumen does not regulate apoB secretion in HepG2 cells. We therefore hypothesized that inhibition of TG accumulation in the ER lumen, secondary to MTP inhibition, is the primary mechanism whereby naringenin blocks lipidation and subsequent secretion of apoB. Multicompartmental modeling of pulse-chase studies was used to compare cellular apoB kinetics in the presence of either naringenin or the specific MTP inhibitor, BMS-197636. At concentrations that reduced apoB secretion by 50%, both compounds selectively enhanced degradation via a kinetically defined, rapid, proteasomal pathway to the same extent. Subcellular fractionation experiments revealed that naringenin and BMS-197636 reduced accumulation of newly synthesized TG in the microsomal lumen by 48% and 54%, respectively. Newly synthesized CE accumulation in the lumen was reduced by 80% and 33% with naringenin and BMS-197636, respectively, demonstrating for the first time that MTP is involved in CE accumulation in the microsomal lumen. Reduced TG availability at this initial site of lipoprotein assembly was associated with significant reductions in the secretion of apoB-containing lipoproteins. Both naringenin and BMS-197636 were most effective in reducing secretion of IDL and LDL, but also inhibited secretion of apoB-containing HDL-sized particles. Furthermore, in McA-RH7777-derived cell lines, naringenin reduced secretion of hapoB72 and hapoB100, which require significant assembly with lipid to be secreted, but did not reduce secretion of hapoB17, hapoB23, and hapoB48, which require only minimal lipidation. Taken together, our results indicate that naringenin inhibits the lipidation and subsequent secretion of apoB-containing lipoproteins primarily by limiting the accumulation of TG in the ER lumen, secondary to MTP inhibition.  相似文献   

15.
The N-terminal 17% of apolipoprotein B (apoB-17) is secreted lipid-poor while apoB-41 particles are secreted with a triacylglycerol (TAG)-rich core. Thus, the sequence between apoB-17 and apoB-41 is necessary for the assembly of TAG-rich lipoproteins. To delineate this region, C127 cells were permanently transfected to secrete the N-terminal 29, 32.5, or 37% of apoB. Density gradient centrifugation showed that secreted apoB-29, apoB-32.5, and apoB-37 had peak densities of 1.25, 1.22, and 1.16 g/mL and percent lipid of particle weights of 30, 37, and 49%, respectively. Calculated anhydrous particle diameters were: apoB-29 = 81 A, apoB-32.5 = 88 A, and apoB-37 = 101 A. Immunoprecipitated particles labeled with [(3)H]oleate showed that, as apoB length increased from apoB-29 to apoB-32.5 and apoB-37, the number of TAG (core) molecules per apoB particle increased almost 16-fold from 8 to 32 to 124, while phospholipids and diacylglycerols (surface lipids) increased only slightly from 71 to 87 to 97 molecules, respectively. Thus, sequences in the C-terminus of apoB-29 bind phospholipids and diacylglycerols, sequences between apoB-29 and apoB-32.5 augment TAG binding and sequences between apoB-32.5 and apoB-41 account for the marked incorporation of TAG at a rate of approximately 1 TAG per 2 amino acids. Cryoelectron micrographs of isolated apoB-37 particles revealed mostly spherical particles of approximately 110 A (11.0 nm) with an electron lucent center, consistent with these particles having a TAG core. We suggest that the predicted amphipathic beta-sheets beginning at apoB-29, starts to preferentially recruit core lipids into apoB and propose that the consistent presence of DAG in the secreted particles may have a role in fission of the nascent lipoprotein particles from the endoplasmic reticulum membrane.  相似文献   

16.
The assembly of very low density lipoproteins in hepatocytes requires the microsomal triacylglycerol transfer protein (MTP). This microsomal lumenal protein transfers lipids, particularly triacylglycerols (TG), between membranes in vitro and has been proposed to transfer TG to nascent apolipoprotein (apo) B in vivo. We examined the role of MTP in the assembly of apoB-containing lipoproteins in cultured murine primary hepatocytes using an inhibitor of MTP. The MTP inhibitor reduced TG secretion from hepatocytes by 85% and decreased the amount of apoB100 in the microsomal lumen, as well as that secreted into the medium, by 70 and 90%, respectively, whereas the secretion of apoB48 was only slightly decreased and the amount of lumenal apoB48 was unaffected. However, apoB48-containing particles formed in the presence of inhibitor were lipid-poor compared with those produced in the absence of inhibitor. We also isolated a pool of apoB-free TG from the microsomal lumen and showed that inhibition of MTP decreased the amount of TG in this pool by approximately 45%. The pool of TG associated with apoB was similarly reduced. However, inhibition of MTP did not directly block TG transfer from the apoB-independent TG pool to partially lipidated apoB in the microsomal lumen. We conclude that MTP is required for TG accumulation in the microsomal lumen and as a source of TG for assembly with apoB, but normal levels of MTP are not required for transferring the bulk of TG to apoB during VLDL assembly in murine hepatocytes.  相似文献   

17.
The microsomal triglyceride transfer protein (MTP) is essential for the secretion of apolipoprotein B (apoB)48- and apoB100-containing lipoproteins in the intestine and liver, respectively. Loss of function mutations in MTP cause abetalipoproteinemia. Heterologous cells are used to evaluate the function of MTP in apoB secretion to avoid background MTP activity in liver and intestine-derived cells. However, these systems are not suitable to study the role of MTP in the secretion of apoB100-containing lipoproteins, as expression of a large apoB100 peptide using plasmids is difficult. Here, we report a new cell culture model amenable for studying the role of different MTP mutations on apoB100 secretion. The endogenous MTTP gene was ablated in human hepatoma Huh-7 cells using single guide RNA and RNA-guided clustered regularly interspaced short palindromic repeats-associated sequence 9 ribonucleoprotein complexes. We successfully established three different clones that did not express any detectable MTTP mRNA or MTP protein or activity. These cells were defective in secreting apoB-containing lipoproteins and accumulated lipids. Furthermore, we show that transfection of these cells with plasmids expressing human MTTP cDNA resulted in the expression of MTP protein, restoration of triglyceride transfer activity, and secretion of apoB100. Thus, these new cells can be valuable tools for studying structure-function of MTP, roles of different missense mutations in various lipid transfer activities of MTP, and their ability to support apoB100 secretion, compensatory changes associated with loss of MTP, and in the identification of novel proteins that may require MTP for their synthesis and secretion.  相似文献   

18.
The assembly and secretion of triglyceride-rich lipoproteins in vertebrates requires apolipoprotein B (apoB) and the endoplasmic reticulum-localized cofactor, microsomal triglyceride transfer protein (MTP). Invertebrates, particularly insects, transport the majority of their neutral and polar lipids in lipophorins; however, the assembly of lipophorin precursor particles was presumed to be MTP-independent. A Drosophila melanogaster expressed gene sequence (CG9342), displaying 23% identity with human MTP, was recently identified. When coexpressed in COS cells, CG9342 promoted the assembly and secretion of apoB34 and apoB41 (N-terminal 34 and 41% of human apoB). The apoB34-containing particles assembled by human MTP and CG9342 displayed similar peak densities of approximately 1.169 g/ml and similar lipid compositions. However, CG9342 displayed differential sensitivities to two inhibitors of human MTP and low vesicle-based lipid transfer activity, in vitro. In addition, important predicted structural distinctions exist between the human and Drosophila proteins suggesting overlapping but not identical functional roles. We conclude that CG9342 and human MTP are orthologs that share only a subset of functions, consistent with known differences in intracellular and extracellular aspects of vertebrate and invertebrate lipid transport and metabolism.  相似文献   

19.
Apolipoprotein B (apoB) and microsomal triglyceride transfer protein (MTP) are essential for the efficient assembly of triglyceride-rich lipoproteins. Evidence has been presented for physical interactions between these proteins. To study the importance of apoB-MTP binding in apoB secretion, we have identified a compound, AGI-S17, that inhibited (60-70% at 40 microM) the binding of various apoB peptides to MTP but not to an anti-apoB monoclonal antibody, 1D1, whose epitope overlaps with an MTP binding site in apoB. AGI-S17 had no significant effect on the lipid transfer activity of the purified MTP. In contrast, another antagonist, BMS-200150, did not affect apoB-MTP binding but inhibited MTP's lipid transfer activity. The differential effects of these inhibitors suggest two functionally independent, apoB binding and lipid transfer, domains in MTP. AGI-S17 was then used to study its effect on the lipid transfer and apoB binding activities of MTP in HepG2 cells. AGI-S17 had no effect on cellular lipid transfer activities, but it inhibited coimmunoprecipitation of apoB with MTP. These studies indicate that AGI-S17 inhibits apoB-MTP binding but has no effect on MTP's lipid transfer activity. Experiments were then performed to study the effect of inhibition of apoB-MTP binding on apoB secretion in HepG2 cells. AGI-S17 (40 microM) did not affect cell protein levels but decreased the total mass of apoB secreted by 70-85%. Similarly, AGI-S17 inhibited the secretion of nascent apoB by 60-80%, but did not affect albumin secretion. These studies indicate that AGI-S17 decreases apoB secretion most likely by inhibiting apoB-MTP interactions. Thus, the binding of MTP to apoB may be important for the assembly and secretion of apoB-containing lipoproteins and can be a potential target for the development of lipid-lowering drugs. It is proposed that the apoB binding may represent MTP's chaperone activity that assists in the transfer from the membrane to the lumen of the endoplasmic reticulum and in the net lipidation of nascent apoB, and may be essential for lipoprotein assembly and secretion.  相似文献   

20.
Very low density lipoprotein (VLDL), a large particle containing apolipoprotein B (apoB) and large amounts of neutral lipids, is formed in the luminal space within the endoplasmic reticulum (ER) of hepatic cells. The assembly mechanism of VLDL particles is a tightly regulated process where apoB, associated with an insufficient amount of lipids, is selectively degraded intracellularly. In this study we found that treatment of HuH-7 human hepatoma cells with verapamil inhibited secretion of apoB-containing lipoprotein particles through increasing degradation of apoB. Addition of N-acetylleucyl-leucyl-norleucinal, an inhibitor of proteasome and other cysteinyl proteases that are responsible for apoB degradation, restored apoB recovery from verapamil-treated cells. De novo synthesis of lipids from [14C]acetate was increased in the presence of verapamil, suggesting that verapamil decreases lipid availability for apoB thus leading to the secretion of apoB-containing lipoprotein. We prepared cytosolic fractions from cells preincubated with [14C]acetate and used as a donor of radioactive lipids. When this cytosolic fraction was incubated with microsomes isolated separately, radioactive triglyceride (TG) accumulated in the luminal space of the microsomes. The transfer of radioactive TG from the cytosolic fraction to the microsomal lumen was inhibited in the presence of verapamil, suggesting that there is a verapamil-sensitive mechanism for TG transfer across ER membranes that is involved in formation of apoB-containing lipoprotein particles in ER. Verapamil showed no inhibitory effect on microsomal TG transfer protein, a well known lipid transfer protein in ER. We propose from these results that there is novel machinery for transmembrane movement of neutral lipids, which is involved in providing TG for apoB during VLDL assembly in ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号