首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Reduced levels of brain-derived neurotrophic factor (BDNF) are thought to contribute to the pathophysiology of Rett syndrome (RTT), a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). In Mecp2 mutant mice, BDNF deficits have been associated with breathing abnormalities, a core feature of RTT, as well as with synaptic hyperexcitability within the brainstem respiratory network. Application of BDNF can reverse hyperexcitability in acute brainstem slices from Mecp2-null mice, suggesting that therapies targeting BDNF or its receptor, TrkB, could be effective at acute reversal of respiratory abnormalities in RTT. Therefore, we examined the ability of LM22A-4, a small-molecule BDNF loop-domain mimetic and TrkB partial agonist, to modulate synaptic excitability within respiratory cell groups in the brainstem nucleus tractus solitarius (nTS) and to acutely reverse abnormalities in breathing at rest and during behavioral arousal in Mecp2 mutants. Patch-clamp recordings in Mecp2-null brainstem slices demonstrated that LM22A-4 decreases excitability at primary afferent synapses in the nTS by reducing the amplitude of evoked excitatory postsynaptic currents and the frequency of spontaneous and miniature excitatory postsynaptic currents. In vivo, acute treatment of Mecp2-null and -heterozygous mutants with LM22A-4 completely eliminated spontaneous apneas in resting animals, without sedation. Moreover, we demonstrate that respiratory dysregulation during behavioral arousal, a feature of human RTT, is also reversed in Mecp2 mutants by acute treatment with LM22A-4. Together, these data support the hypothesis that reduced BDNF signaling and respiratory dysfunction in RTT are linked, and establish the proof-of-concept that treatment with a small-molecule structural mimetic of a BDNF loop domain and a TrkB partial agonist can acutely reverse abnormal breathing at rest and in response to behavioral arousal in symptomatic RTT mice.KEY WORDS: Mecp2, Brain-derived neurotrophic factor (BDNF), Respiration, Brainstem, Arousal  相似文献   

3.
Rett syndrome (RTT) is an autism spectrum disorder (ASD) caused by mutations in the X-linked MECP2 gene that encodes methyl-CpG binding protein 2 (MeCP2). Symptoms range in severity and include psychomotor disabilities, seizures, ataxia, and intellectual disability. Symptom onset is between 6-18 months of age, a critical period of brain development that is highly energy-dependent. Notably, patients with RTT have evidence of mitochondrial dysfunction, as well as abnormal levels of the adipokines leptin and adiponectin, suggesting overall metabolic imbalance. We hypothesized that one contributor to RTT symptoms is energy deficiency due to defective nutrient substrate utilization by the TCA cycle. This energy deficit would lead to a metabolic imbalance, but would be treatable by providing anaplerotic substrates to the TCA cycle to enhance energy production. We show that dietary therapy with triheptanoin significantly increased longevity and improved motor function and social interaction in male mice hemizygous for Mecp2 knockout. Anaplerotic therapy in Mecp2 knockout mice also improved indicators of impaired substrate utilization, decreased adiposity, increased glucose tolerance and insulin sensitivity, decreased serum leptin and insulin, and improved mitochondrial morphology in skeletal muscle. Untargeted metabolomics of liver and skeletal muscle revealed increases in levels of TCA cycle intermediates with triheptanoin diet, as well as normalizations of glucose and fatty acid biochemical pathways consistent with the improved metabolic phenotype in Mecp2 knockout mice on triheptanoin. These results suggest that an approach using dietary supplementation with anaplerotic substrate is effective in improving symptoms and metabolic health in RTT.  相似文献   

4.
5.
De novo loss-of-function mutations in methyl-CpG-binding protein 2 (MeCP2) lead to the neurodevelopmental disorder Rett syndrome (RTT). Despite promising results from strategies aimed at increasing MeCP2 levels, additional studies exploring how hypomorphic MeCP2 mutations impact the therapeutic window are needed. Here, we investigated the consequences of genetically introducing a wild-type MECP2 transgene in the Mecp2 R133C mouse model of RTT. The MECP2 transgene reversed the majority of RTT-like phenotypes exhibited by male and female Mecp2 R133C mice. However, three core symptom domains were adversely affected in female Mecp2R133C/+ animals; these phenotypes resemble those observed in disease contexts of excess MeCP2. Parallel control experiments in Mecp2Null/+ mice linked these adverse effects to the hypomorphic R133C mutation. Collectively, these data provide evidence regarding the safety and efficacy of genetically overexpressing functional MeCP2 in Mecp2 R133C mice and suggest that personalized approaches may warrant consideration for the clinical assessment of MeCP2-targeted therapies.  相似文献   

6.
7.
Rett syndrome (RTT) is a regressive developmental disorder characterized by motor and breathing abnormalities, anxiety, cognitive dysfunction and seizures. Approximately 95% of RTT cases are caused by more than 200 different mutations in the X‐linked gene encoding methyl‐CpG‐binding protein 2 (MeCP2). While numerous transgenic mice have been created modeling common mutations in MeCP2, the behavioral phenotype of many of these male and, especially, female mutant mice has not been well characterized. Thorough phenotyping of additional RTT mouse models will provide valuable insight into the effects of Mecp2 mutations on behavior and aid in the selection of appropriate models, ages, sexes and outcome measures for preclinical trials. In this study, we characterize the phenotype of male and female mice containing the early truncating MeCP2 R168X nonsense point mutation, one of the most common in RTT individuals, and compare the phenotypes to Mecp2 null mutants. Mecp2R168X mutants mirror many clinical features of RTT. Mecp2R168X/y males exhibit impaired motor and cognitive function and reduced anxiety. The behavioral phenotype is less severe and with later onset in Mecp2R168X/+ females. Seizures were noted in 3.7% of Mecp2R168X mutant females. The phenotype in Mecp2R168X/y mutant males is remarkably similar to our previous characterizations of Mecp2 null males, whereas Mecp2R168X/+ females exhibit a number of phenotypic differences from females heterozygous for a null Mecp2 mutation. This study describes a number of highly robust behavioral paradigms that can be used in preclinical drug trials and underscores the importance of including Mecp2 mutant females in preclinical studies .  相似文献   

8.
9.
Rett syndrome (RTT) is a genetic disorder characterized by a range of features including cognitive impairment, gait abnormalities and a reduction in purposeful hand skills. Mice harbouring knockout mutations in the Mecp2 gene display many RTT-like characteristics and are central to efforts to find novel therapies for the disorder. As hand stereotypies and gait abnormalities constitute major diagnostic criteria in RTT, it is clear that motor and gait-related phenotypes will be of importance in assessing preclinical therapeutic outcomes. We therefore aimed to assess gait properties over the prodromal phase in a functional knockout mouse model of RTT. In male Mecp2 knockout mice, we observed alterations in stride, coordination and balance parameters at 4 weeks of age, before the onset of other overt phenotypic changes as revealed by observational scoring. These data suggest that gait measures may be used as a robust and early marker of MeCP2-dysfunction in future preclinical therapeutic studies.  相似文献   

10.
Rett syndrome (RTT) is a devastating neurodevelopmental disorder affecting 1 in 10,000 girls. Approximately 90% of cases are caused by spontaneous mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Girls with RTT suffer from severe motor, respiratory, cognitive and social abnomalities attributed to early deficits in synaptic connectivity which manifest in the adult as a myriad of physiological and anatomical abnormalities including, but not limited to, dimished dendritic complexity. Supplementation with acetyl-L-carnitine (ALC), an acetyl group donor, ameliorates motor and cognitive deficits in other disease models through a variety of mechanisms including altering patterns of histone acetylation resulting in changes in gene expression, and stimulating biosynthetic pathways such as acetylcholine. We hypothesized ALC treatment during critical periods in cortical development would promote normal synaptic maturation, and continuing treatment would improve behavioral deficits in the Mecp21lox mouse model of RTT. In this study, wildtype and Mecp21lox mutant mice received daily injections of ALC from birth until death (postnatal day 47). General health, motor, respiratory, and cognitive functions were assessed at several time points during symptom progression. ALC improved weight gain, grip strength, activity levels, prevented metabolic abnormalities and modestly improved cognitive function in Mecp2 null mice early in the course of treatment, but did not significantly improve motor or cognitive functions assessed later in life. ALC treatment from birth was associated with an almost complete rescue of hippocampal dendritic morphology abnormalities with no discernable side effects in the mutant mice. Therefore, ALC appears to be a promising therapeutic approach to treating early RTT symptoms and may be useful in combination with other therapies.  相似文献   

11.
《Epigenetics》2013,8(1):25-32
Mutations within the gene encoding methyl CpG binding protein 2 (MECP2) cause the autism-spectrum neurodevelopmental disorder Rett Syndrome (RTT). MECP2 recruits histone deacetylase to methylated DNA and acts as a long-range regulator of methylated genes. Despite ubiquitous MECP2 expression, the phenotype of RTT and the Mecp2-deficient mouse is largely restricted to the postnatal brain. Since Mecp2-deficient mice have a defect in neuronal maturation, we sought to understand how MECP2/Mecp2 mutations globally affect histone modifications during postnatal brain development by an immunofluorescence approach. Using an antibody specific to acetylated histone H3 lysine 9 (H3K9ac), a bright punctate nuclear staining pattern was observed as MECP2 expression increased in early postnatal neuronal nuclei. As neurons matured in juvenile and adult brain samples, the intensity of H3K9ac staining was reduced. Mecp2-deficient mouse and RTT cerebral neurons lacked this developmental reduction in H3K9ac staining compared to age-matched controls, resulting in a significant increase in neuronal nuclei with bright H3K9ac punctate staining. In contrast, trimethylated histone H3 lysine 9 (H3K9me3) localized to heterochromatin independent of MeCP2, but showed significantly reduced levels in Mecp2 deficient mouse and RTT brain. Autism brain with reduced MECP2 expression displayed similar histone H3 alterations as RTT brain. These observations suggest that MeCP2 regulates global histone modifications during a critical postnatal stage of neuronal maturation. These results have implications for understanding the molecular pathogenesis of RTT and autism in which MECP2 mutation or deficiency corresponds with arrested neurodevelopment.   相似文献   

12.

Background

Rett Syndrome (RTT) is an Autism Spectrum Disorder and the leading cause of mental retardation in females. RTT is caused by mutations in the Methyl CpG-Binding Protein-2 (MECP2) gene and has no treatment. Our objective is to develop viral vectors for MECP2 gene transfer into Neural Stem Cells (NSC) and neurons suitable for gene therapy of Rett Syndrome.

Methodology/Principal Findings

We generated self-inactivating (SIN) retroviral vectors with the ubiquitous EF1α promoter avoiding known silencer elements to escape stem-cell-specific viral silencing. High efficiency NSC infection resulted in long-term EGFP expression in transduced NSC and after differentiation into neurons. Infection with Myc-tagged MECP2-isoform-specific (E1 and E2) vectors directed MeCP2 to heterochromatin of transduced NSC and neurons. In contrast, vectors with an internal mouse Mecp2 promoter (MeP) directed restricted expression only in neurons and glia and not NSC, recapitulating the endogenous expression pattern required to avoid detrimental consequences of MECP2 ectopic expression. In differentiated NSC from adult heterozygous Mecp2tm1.1Bird+/− female mice, 48% of neurons expressed endogenous MeCP2 due to random inactivation of the X-linked Mecp2 gene. Retroviral MECP2 transduction with EF1α and MeP vectors rescued expression in 95–100% of neurons resulting in increased dendrite branching function in vitro. Insulated MECP2 isoform-specific lentiviral vectors show long-term expression in NSC and their differentiated neuronal progeny, and directly infect dissociated murine cortical neurons with high efficiency.

Conclusions/Significance

MeP vectors recapitulate the endogenous expression pattern of MeCP2 in neurons and glia. They have utility to study MeCP2 isoform-specific functions in vitro, and are effective gene therapy vectors for rescuing dendritic maturation of neurons in an ex vivo model of RTT.  相似文献   

13.
MeCP2(Methyl CpG binding protein 2)基因突变可导致Rett综合征(Rett syndrome, RTT)。目前已报道的MeCP2敲除小鼠表型与RTT病人症状存在显著差异。为探索MeCP2在脑发育中的作用及其导致RTT的机制,本研究利用CRISPR/Cas9技术构建了MeCP2基因敲除大鼠模型。通过构建靶向敲除MeCP2基因的载体,体外将Cas9 mRNA和sgRNA显微注射到SD大鼠受精卵中,在MeCP2基因exon2中造成移码突变,从而获得MeCP2基因敲除大鼠。利用测序和Western blotting方法鉴定MeCP2敲除大鼠,并对其表型和行为学特征进行分析,发现MeCP2敲除大鼠体重降低,存在焦虑倾向和认知缺陷。本研究成功构建了MeCP2基因敲除大鼠模型,其表型类似人类RTT患者的症状,为后续MeCP2功能研究提供了更好的动物模型。  相似文献   

14.
Rett syndrome (RTT), a neurodevelopmental disorder affecting mostly females, is caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Although the majority of girls with classic RTT have a random pattern of X-chromosome inactivation (XCI), nonbalanced patterns have been observed in patients carrying mutant MECP2 and, in some cases, account for variability of phenotypic manifestations. We have generated an RTT mouse model that recapitulates all major aspects of the human disease, but we found that females exhibit a high degree of phenotypic variability beyond what is observed in human patients with similar mutations. To evaluate whether XCI influences the phenotypic outcome of Mecp2 mutation in the mouse, we studied the pattern of XCI at the single-cell level in brains of heterozygous females. We found that XCI patterns were unbalanced, favoring expression of the wild-type allele, in most mutant females. It is notable that none of the animals had nonrandom XCI favoring the mutant allele. To explore why the XCI patterns favored expression of the wild-type allele, we studied primary neuronal cultures from Mecp2-mutant mice and found selective survival of neurons in which the wild-type X chromosome was active. Quantitative analysis indicated that fewer phenotypes are observed when a large percentage of neurons have the mutant X chromosome inactivated. The study of neuronal XCI patterns in a large number of female mice carrying a mutant Mecp2 allele highlights the importance of MeCP2 for neuronal viability. These findings also raise the possibility that there are human females who carry mutant MECP2 alleles but are not recognized because their phenotypes are subdued owing to favorable XCI patterns.  相似文献   

15.
16.
17.
Rett Syndrome (RTT) is an autism spectrum disorder caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2). In order to map the neuroanatomic origins of the complex neuropsychiatric behaviors observed in patients with RTT and to uncover endogenous functions of MeCP2 in the hypothalamus, we removed Mecp2 from Sim1-expressing neurons in the hypothalamus using Cre-loxP technology. Loss of MeCP2 in Sim1-expressing neurons resulted in mice that recapitulated the abnormal physiological stress response that is seen upon MeCP2 dysfunction in the entire brain. Surprisingly, we also uncovered a role for MeCP2 in the regulation of social and feeding behaviors since the Mecp2 conditional knockout (CKO) mice were aggressive, hyperphagic, and obese. This study demonstrates that deleting Mecp2 in a defined brain region is an excellent approach to map the neuronal origins of complex behaviors and provides new insight about the function of MeCP2 in specific neurons.  相似文献   

18.
Although methyl CpG binding domain protein-2 (MeCP2) is commonly understood to function as a silencing factor at methylated DNA sequences, recent studies also show that MeCP2 can bind unmethylated sequences and coordinate gene activation. MeCP2 displays broad binding patterns throughout the genome, with high expression levels similar to histone H1 in neurons. Despite its significant presence in the brain, only subtle gene expression changes occur in the absence of MeCP2. This may reflect a more complex regulatory mechanism of MeCP2 to complement chromatin binding. Using an RNA immunoprecipitation of native chromatin technique, we identify MeCP2 interacting microRNAs in mouse primary cortical neurons. In addition, comparison with mRNA sequencing data from Mecp2-null mice suggests that differentially expressed genes may indeed be targeted by MeCP2-interacting microRNAs. These findings highlight the MeCP2 interaction with microRNAs that may modulate its binding with chromatin and regulate gene expression.  相似文献   

19.
Chang Q  Khare G  Dani V  Nelson S  Jaenisch R 《Neuron》2006,49(3):341-348
Mutations in the MECP2 gene cause Rett syndrome (RTT). Bdnf is a MeCP2 target gene; however, its role in RTT pathogenesis is unknown. We examined Bdnf conditional mutant mice for RTT-relevant pathologies and observed that loss of BDNF caused smaller brain size, smaller CA2 neurons, smaller glomerulus size, and a characteristic hindlimb-clasping phenotype. BDNF protein level was reduced in Mecp2 mutant mice, and deletion of Bdnf in Mecp2 mutants caused an earlier onset of RTT-like symptoms. To assess whether this interaction was functional and potentially therapeutically relevant, we increased BDNF expression in the Mecp2 mutant brain with a conditional Bdnf transgene. BDNF overexpression extended the lifespan, rescued a locomotor defect, and reversed an electrophysiological deficit observed in Mecp2 mutants. Our results provide in vivo evidence for a functional interaction between Mecp2 and Bdnf and demonstrate the physiological significance of altered BDNF expression/signaling in RTT disease progression.  相似文献   

20.
The X-linked Mecp2 is a known interpreter of epigenetic information and mutated in Rett syndrome, a complex neurological disease. MeCP2 recruits HDAC complexes to chromatin thereby modulating gene expression and, importantly regulates higher order heterochromatin structure. To address the effects of MeCP2 deficiency on heterochromatin organization during neural differentiation, we developed a versatile model for stem cell in vitro differentiation. Therefore, we modified murine Mecp2 deficient (Mecp2 −/y) embryonic stem cells to generate cells exhibiting green fluorescent protein expression upon neural differentiation. Subsequently, we quantitatively analyzed heterochromatin organization during neural differentiation in wild type and in Mecp2 deficient cells. We found that MeCP2 protein levels increase significantly during neural differentiation and accumulate at constitutive heterochromatin. Statistical analysis of Mecp2 wild type neurons revealed a significant clustering of heterochromatin per nuclei with progressing differentiation. In contrast we found Mecp2 deficient neurons and astroglia cells to be significantly impaired in heterochromatin reorganization. Our results (i) introduce a new and manageable cellular model to study the molecular effects of Mecp2 deficiency, and (ii) support the view of MeCP2 as a central protein in heterochromatin architecture in maturating cells, possibly involved in stabilizing their differentiated state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号