首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The turnover of the collagen triple-helical structure (collagenolysis) is a tightly regulated process in normal physiology and has been ascribed to a small number of proteases. Several members of the matrix metalloproteinase (MMPs) family possess collagenolytic activity, and the mechanisms by which these enzymes process triple helices are beginning to be unraveled. The present study has utilized two triple-helical sequences to compare the cleavage-site specificities of 10 MMPs. One substrate featured a continuous Gly-Xxx-Yyy sequence (Pro-Leu-Gly approximately Met-Arg-Gly), while the other incorporated an interruption in the Gly-Xxx-Yyy repeat (Pro-Val-Asn approximately Phe-Arg-Gly). Both sequences were selectively cleaved by MMP-13 while in linear form, but neither proved to be selective within a triple helix. This suggests that the conformational presentation of substrate sequences to a MMP active site is critical for enzyme specificity, in that activities differ when sequences are presented from an unwound triple helix versus an independent single strand. Differences in specificity between secreted and membrane-type (MT) MMPs were also observed for both sequences, where MMP-2 and MT-MMPs showed an ability to hydrolyze a triple helix at an additional site (Gly-Gln bond). Interruption of the triple helix had different effects on secreted MMPs and MT-MMPs, because MT-MMPs could not hydrolyze the Asn-Phe bond but instead cleaved the triple helix closer to the C terminus at a Gly-Gln bond. It is possible that MT-MMPs have a requirement for Gly in the P1 subsite to be able to efficiently process a triple-helical molecule. Analysis of individual kinetic parameters and activation energies indicated different substrate preferences within secreted MMPs, because MMP-13 preferred the interrupted sequence, while MMP-8 showed little discrimination between non-interrupted and interrupted triple helices. On the basis of the present and prior studies, we can assign unique triple-helical peptidase behaviors to the collagenolytic MMPs. Such differences may be significant for understanding MMP mechanisms of action and aid in the development of selective MMP inhibitors.  相似文献   

2.
The hydrolysis of collagen (collagenolysis) is one of the committed steps in extracellular matrix turnover. Within the matrix metalloproteinase (MMP) family distinct preferences for collagen types are seen. The substrate determinants that may guide these specificities are unknown. In this study, we have utilized 12 triple-helical substrates in combination with 10 MMPs to better define the contributions of substrate sequence and thermal stability toward triple helicase activity and collagen specificity. In general, MMP-13 was found to be distinct from MMP-8 and MT1-MMP(Delta279-523), in that enhanced substrate thermal stability has only a modest effect on activity, regardless of sequence. This result correlates to the unique collagen specificity of MMP-13 compared with MMP-8 and MT1-MMP, in that MMP-13 hydrolyzes type II collagen efficiently, whereas MMP-8 and MT1-MMP are similar in their preference for type I collagen. In turn, MMP-1 was the least efficient of the collagenolytic MMPs at processing increasingly thermal stable triple helices and thus favors type III collagen, which has a relatively flexible cleavage site. Gelatinases (MMP-2 and MMP-9(Delta444-707)) appear incapable of processing more stable helices and are thus mechanistically distinct from collagenolytic MMPs. The collagen specificity of MMPs appears to be based on a combination of substrate sequence and thermal stability. Analysis of the hydrolysis of triple-helical peptides by an MMP mutant indicated that Tyr(210) functions in triple helix binding and hydrolysis, but not in processing triple helices of increasing thermal stabilities. Further exploration of MMP active sites and exosites, in combination with substrate conformation, may prove valuable for additional dissection of collagenolysis and yield information useful in the design of more selective MMP inhibitors.  相似文献   

3.
Matrix metalloproteinases (MMPs) are involved in physiological remodeling as well as pathological destruction of tissues. The turnover of the collagen triple-helical structure has been ascribed to several members of the MMP family, but the determinants for collagenolytic specificity have not been identified. The present study has compared the triple-helical peptidase activities of MMP-1 and MMP-14 (membrane-type 1 MMP; MT1-MMP). The ability of each enzyme to efficiently hydrolyze the triple helix was quantified using chemically synthesized fluorogenic triple-helical substrates that, via addition of N-terminal alkyl chains, differ in their thermal stabilities. One series of substrates was modeled after a collagenolytic MMP consensus cleavage site from types I-III collagen, while the other series had a single substitution in the P(1)' subsite of the consensus sequence. The substitution of Cys(4-methoxybenzyl) for Leu in the P(1)' subsite was greatly favored by MMP-14 but disfavored by MMP-1. An increase in substrate triple-helical thermal stability led to the decreased ability of the enzyme to cleave such substrates, but with a much more pronounced effect for MMP-1. Increased thermal stability was detrimental to enzyme turnover of substrate (k(cat)), but not binding (K(M)). Activation energies were considerably lower for MMP-14 hydrolysis of triple-helical substrates compared with MMP-1. Overall, MMP-1 was found to be less efficient at processing triple-helical structures than MMP-14. These results demonstrate that collagenolytic MMPs have subtle differences in their abilities to hydrolyze triple helices and may explain the relative collagen specificity of MMP-1.  相似文献   

4.
The role of proteases in the tumor cell invasion process is multifaceted. Members of the matrix metalloproteinase (MMP) family have been implicated in primary and metastatic tumor growth, angiogenesis, and degradation of extracellular matrix (ECM) components. Differentiating between the up-regulation of MMP production and the presence of activated MMPs can be difficult but may well dictate which MMPs are critical to invasion. Because the hydrolysis of collagens is one of the committed steps in ECM turnover, we have investigated selective MMP action on collagenous substrates as a means to evaluate active MMPs. Two triple-helical peptide (THP) models of the MMP-9 cleavage site in type V collagen, alpha1(V)436-450 THP and alpha1(V)436-447 fTHP, were hydrolyzed by MMP-2 and MMP-9 at the Gly-Val bond, analogous to the bond cleaved by MMP-9 in the corresponding native collagen. Kinetic analyses showed k(cat)/K(m) values of 14,002 and 5,449 s(-1)m(-1) for MMP-2 and -9 hydrolysis of alpha1(V)436-447 fTHP, respectively. These values, along with individual k(cat) and K(m) values, are comparable with collagen hydrolysis by MMP-2 and -9. Neither THP was hydrolyzed by MMP-1, -3, -13, or -14. alpha1(V)436-447 fTHP and a general fluorogenic THP were used to screen for triple-helical peptidase activity in alpha(2)beta(1) integrin-stimulated melanoma cells. Binding of the alpha(2)beta(1) integrin resulted in the production of substantial triple-helical peptidase activity, the majority (>95%) of which was non-MMP-2/-9. THPs were found to provide highly selective substrates for members of the MMP family and can be used to evaluate active MMP production in cellular systems.  相似文献   

5.
Unregulated activities of the matrix metalloproteinase (MMP) family have been implicated in primary and metastatic tumor growth, angiogenesis, and pathological degradation of extracellular matrix components, such as collagen and laminin. However, clinical trials with small molecule MMP inhibitors have been largely unsuccessful, with a lack of selectivity considered particularly problematic. Enhanced selectivity could be achieved by taking advantage of differences in substrate secondary binding sites (exosites) within the MMP family. In this study, triple-helical substrates and triple-helical transition state analog inhibitors have been utilized to dissect the roles of potential exosites in MMP-9 collagenolytic behavior. Substrate and inhibitor sequences were based on either the alpha1(V)436-450 collagen region, which is hydrolyzed at the Gly (downward arrow) Val bond selectively by MMP-2 and MMP-9, or the Gly (downward arrow) Leu cleavage site within the consensus interstitial collagen sequence alpha1(I-III)769-783, which is hydrolyzed by MMP-1, MMP-2, MMP-8, MMP-9, MMP-13, and MT1-MMP. Exosites within the MMP-9 fibronectin II inserts were found to be critical for interactions with type V collagen model substrates and inhibitors and to participate in interactions with an interstitial (types I-III) collagen model inhibitor. A triple-helical peptide incorporating a fibronectin II insert-binding sequence was constructed and found to selectively inhibit MMP-9 type V collagen-based activities compared with interstitial collagen-based activities. This represents the first example of differential inhibition of collagenolytic activities and was achieved via an exosite-binding triple-helical peptide.  相似文献   

6.
An innovative approach to enhance the selectivity of matrix metalloproteinase (MMP) inhibitors comprises targeting these inhibitors to catalytically required substrate binding sites (exosites) that are located outside the catalytic cleft. In MMP-2, positioning of collagen substrate molecules occurs via a unique fibronectin-like domain (CBD) that contains three distinct modular collagen binding sites. To characterize the contributions of these exosites to gelatinolysis by MMP-2, seven MMP-2 variants were generated with single, or concurrent double and triple alanine substitutions in the three fibronectin type II modules of the CBD. Circular dichroism spectroscopy verified that recombinant MMP-2 wild-type (WT) and variants had the same fold. Moreover, the MMP-2 WT and variants had the same activity on a short FRET peptide substrate that is hydrolyzed independently of CBD binding. Among single-point variants, substitution in the module 3 binding site had greatest impact on the affinity of MMP-2 for gelatin. Simultaneous substitutions in two or three CBD modules further reduced gelatin binding. The rates of gelatinolysis of MMP-2 variants were reduced by 20–40% following single-point substitutions, by 60–75% after double-point modifications, and by > 90% for triple-point variants. Intriguingly, the three CBD modules contributed differentially to cleavage of dissociated α-1(I) and α-2(I) collagen chains. Importantly, kinetic analyses (kcat/Km) revealed that catalysis of a triple-helical FRET peptide substrate by MMP-2 relied primarily on the module 3 binding site. Thus, we have identified three collagen binding site residues that are essential for gelatinolysis and constitute promising targets for selective inhibition of MMP-2.  相似文献   

7.
Matrix metalloproteinases and collagen catabolism   总被引:5,自引:0,他引:5  
The matrix metalloproteinase (MMP)/matrixin family has been implicated in both normal tissue remodeling and a variety of diseases associated with abnormal turnover of extracellular matrix components. The mechanism by which MMPs catabolize collagen (collagenolysis) is still largely unknown. Substrate flexibility, MMP active sites, and MMP exosites all contribute to collagen degradation. It has recently been demonstrated that the ability to cleave a triple helix (triple-helical peptidase activity) can be distinguished from the ability to cleave collagen (collagenolytic activity). This suggests that the ability to cleave a triple helix is not the limiting factor for collagenolytic activity-the ability to properly orient and potentially destabilize collagen is. For the MMP family, the catalytic domain can unwind and cleave a triple-helical structure, while the C-terminal hemopexin-like domain appears to be responsible for properly orienting collagen and destabilizing it to some degree. It is also possible that exosites within the catalytic and/or C-terminal hemopexin-like domain may exclude some MMPs from cleaving collagen. Overall, it appears that many proteases of distinct mechanisms possess triple-helical peptidase activity, and that convergent evolution led to a few proteases possessing collagenolytic activity. Proper orientation and distortion of the triple helix may be the key factor for collagenolysis.  相似文献   

8.
Matrix metalloproteinase (MMP) family members are involved in the physiological remodeling of tissues and embryonic development as well as pathological destruction of extracellular matrix components. To study the mechanisms of MMP action on collagenous substrates, non-fluorogenic and fluorogenic triple-helical peptide models of MMP-1 cleavage sites in interstitial collagens have been constructed. Triple-helical peptides were assembled by either (a) covalent branching or (b) self-association driven by hydrophobic interactions. Fluorogenic triple-helical peptide (fTHP) substrates contained the fluorophore/quencher pair of (7-methoxycoumarin-4-yl)acetyl (Mca) and N-2,4-dinitrophenyl (Dnp) in the P5 and P5' positions, respectively. Investigation of MMP family hydrolysis of THPs showed kcat/Km values in the order of MMP-13 > MMP-1 approximately MMP-1(delta243-450) approximately MMP-2 > MMP-3. Studies on the effect of temperature on fTHP and an analogous fluorogenic single-stranded peptide (fSSP) hydrolysis by MMP-1 showed that the activation energies between these two substrates differed by 3.4-fold, similar to the difference in activation energies for MMP-1 hydrolysis of type I collagen and gelatin. The general proteases trypsin and thermolysin were also studied for triple-helical peptidase activity. Both of these enzymes exhibited similar activation energies to MMP-1 for hydrolysis of fTHP versus fSSP. These results suggest that 'triple-helical peptidase' activity can be distinguished from 'collagenolytic' activity, and that mechanistically distinct enzymes convergently evolved to develop collagenolytic activity.  相似文献   

9.
Matrix metalloproteinase-13 (MMP-13) has been implicated as the protease responsible for collagen degradation in cartilage during osteoarthritis (OA). Compounds that inhibit the metalloproteinase at the Zn binding site typically lack specificity among MMP family members. Analogs of the low-micromolar lead MMP-13 inhibitor 4, discovered through high-throughput screening, were synthesized to investigate structure-activity relationships in this inhibitor series. Systematic modifications of 4 led to the discovery of MMP-13 inhibitors 20 and 24 which are more selective than 4 against other MMPs. Compound 20 is also approximately fivefold more potent as an MMP-13 inhibitor than the original HTS-derived lead compound 4.  相似文献   

10.
Matrix metalloproteinase-13 (MMP13) is a Zn(2+)-dependent protease that catalyzes the cleavage of type II collagen, the main structural protein in articular cartilage. Excess MMP13 activity causes cartilage degradation in osteoarthritis, making this protease an attractive therapeutic target. However, clinically tested MMP inhibitors have been associated with a painful, joint-stiffening musculoskeletal side effect that may be due to their lack of selectivity. In our efforts to develop a disease-modifying osteoarthritis drug, we have discovered MMP13 inhibitors that differ greatly from previous MMP inhibitors; they do not bind to the catalytic zinc ion, they are noncompetitive with respect to substrate binding, and they show extreme selectivity for inhibiting MMP13. By structure-based drug design, we generated an orally active MMP13 inhibitor that effectively reduces cartilage damage in vivo and does not induce joint fibroplasias in a rat model of musculoskeletal syndrome side effects. Thus, highly selective inhibition of MMP13 in patients may overcome the major safety and efficacy challenges that have limited previously tested non-selective MMP inhibitors. MMP13 inhibitors such as the ones described here will help further define the role of this protease in arthritis and other diseases and may soon lead to drugs that safely halt cartilage damage in patients.  相似文献   

11.
Matrix metalloproteinase (MMP) family members are involved in the physiological remodeling of tissues and embryonic development as well as pathological destruction of extracellular matrix components. To study the mechanisms of MMP action on collagenous substrates, we have constructed homotrimeric, fluorogenic triple-helical peptide (THP) models of the MMP-1 cleavage site in type II collagen. The substrates were designed to incorporate the fluorophore/quencher pair of (7-methoxycoumarin-4-yl)acetyl (Mca) and N-2,4-dinitrophenyl (Dnp) in the P(5) and P(5)' positions, respectively. In addition, Arg was incorporated in the P(2)' and P(8)' positions to enhance enzyme activity and improve substrate solubility. The desired sequences were Gly-Pro-Lys(Mca)-Gly-Pro-Gln-Gly approximately Leu-Arg-Gly-Gln-Lys(Dnp)-Gly-Ile/Val-Arg. Two fluorogenic substrates were prepared, one using a covalent branching protocol (fTHP-1) and one using a peptide self-assembly approach (fTHP-3). An analogous single-stranded substrate (fSSP-3) was also synthesized. Both THPs were hydrolyzed by MMP-1 at the Gly approximately Leu bond, analogous to the bond cleaved in the native collagen. The individual kinetic parameters for MMP-1 hydrolysis of fTHP-3 were k(cat) = 0.080 s(-1) and K(M) = 61.2 microM. Subsequent investigations showed fTHP-3 hydrolysis by MMP-2, MMP-3, MMP-13, a C-terminal domain-deleted MMP-1 [MMP-1(Delta(243-450))], and a C-terminal domain-deleted MMP-3 [MMP-3(Delta(248-460))]. The order of k(cat)/K(M) values was MMP-13 > MMP-1 approximately MMP-1(Delta(243-450)) approximately MMP-2 > MMP-3 approximately MMP-3(Delta(248-460)). Studies on the effect of temperature on fTHP-3 and fSSP-3 hydrolysis by MMP-1 showed that the activation energies between these two substrates differed by 3.4-fold, similar to the difference in activation energies for MMP-1 hydrolysis of type I collagen and gelatin. This indicates that fluorogenic triple-helical substrates mimic the behavior of the native collagen substrate and may be useful for the investigation of collagenase triple-helical activity.  相似文献   

12.
Protease-substrate interactions are governed by a variety of structural features. Although the substrate sequence specificities of numerous proteases have been established, "topological specificities," whereby proteases may be classified based on recognition of distinct three-dimensional structural motifs, have not. The aggrecanase members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family cleave a variety of proteins but do not seem to possess distinct sequence specificities. In the present study, the topological substrate specificity of ADAMTS-4 (aggrecanase-1) was examined using triple-helical or single-stranded poly(Pro) II helical peptides. Substrate topology modulated the affinity and sequence specificity of ADAMTS-4 with K(m) values indicating a preference for triple-helical structure. In turn, non-catalytic ADAMTS-4 domains were critical for hydrolysis of triple-helical and poly(Pro) II helical substrates. Comparison of ADAMTS-4 with MMP-1 (collagenase 1), MMP-13 (collagenase 3), trypsin, and thermolysin using triple-helical peptide (THP) and single-stranded peptide (SSP) substrates demonstrated that all five proteases possessed efficient "triple-helical peptidase" activity and fell into one of two categories: (k(cat)/K(m))(SSP) > (k(cat)/K(m))(THP) (thermolysin, trypsin, and MMP-13) or (k(cat)/K(m))(THP) > or = (k(cat)/K(m))(SSP) and (K(m))(SSP) > (K(m))(THP) (MMP-1 and ADAMTS-4). Overall these results suggest that topological specificity may be a guiding principle for protease behavior and can be utilized to design specific substrates and inhibitors. The triple-helical and single-stranded poly(Pro) II helical peptides represent the first synthetic substrates successfully designed for aggrecanases.  相似文献   

13.
The major components of the cartilage extracellular matrix are type II collagen and aggrecan. Type II collagen provides cartilage with its tensile strength, whereas the water-binding capacity of aggrecan provides compressibility and elasticity. Aggrecan breakdown leads to an increase in proteolytic susceptibility of articular collagen; hence, aggrecan may also have a protective effect on type II collagen. Given their role in aggrecan degradation and differing substrate specificity profiles, the pursuit of inhibitors for both aggrecanase 1 (a disintegrin and metalloproteinase with thrombospondin motifs-4 [ADAMTS-4]) and aggrecanase 2 (ADAMTS-5) is desirable. We previously described collagen model fluorescence resonance energy transfer (FRET) substrates for aggrecan-degrading members of the ADAMTS family. These FRET substrate assays are also fully compatible with multiwell formats. In the current study, a collagen model FRET substrate was examined for inhibitor screening of ADAMTS-4. ADAMTS-4 was screened against a small compound library (n=960) with known pharmacological activity. Five compounds that inhibited ADAMTS-4>60% at a concentration of 1muM were identified. A secondary screen using reversed-phase high-performance liquid chromatography (RP-HPLC) was developed and performed for verification of the five potential inhibitors. Ultimately, piceatannol was confirmed as a novel inhibitor of ADAMTS-4, with an IC(50) value of 1muM. Because the collagen model FRET substrates have distinct conformational features that may interact with protease secondary substrate sites (exosites), nonactive site-binding inhibitors can be identified via this approach. Selective inhibitors for ADAMTS-4 would allow a more definitive evaluation of this protease in osteoarthritis and also represent a potential next generation in metalloproteinase therapeutics.  相似文献   

14.
The collagenases are members of the matrix metalloproteinase family (MMP) that degrade native triple-helical type I collagen. To understand the mechanism by which these enzymes recognize and cleave this substrate, we studied the substrate specificity of a modified form of MMP-1 (FC) in which its active site region (amino acids 212-254) had been replaced with that of MMP-9 (amino acids 395-437). Although this substitution increased the activity of the enzyme toward gelatin and the peptide substrate Mca-PLGL(Dpa)AR-NH2 by approximately 3- and approximately 11-fold, respectively, it decreased the type I collagenolytic activity of the enzyme to 0.13%. The replacement of Gly233, the only amino acid in this region of FC that is conserved in all collagenase family members, with the corresponding Glu residue in MMP-9 resulted in a substantial decrease in the type I collagenolytic activity of the enzyme without affecting its general proteolytic activities. The kinetic parameters of the FC/G233E mutant for the collagen substrate were similar to those of the chimeric enzyme. In addition, substituting Gly233 for Glu in the chimera increased the collagenolytic activity of the enzyme by 12-fold. Interestingly, replacing Glu415 in MMP-9 with Gly, its corresponding residue in FC, endowed the enzyme with type I collagenolytic activity. The catalytic activity of the MMP-9 mutant toward triple-helical type I collagen was 2-fold higher than that of the collagenase chimera. These data in conjunction with the X-ray crystal structure of FC indicate that Gly233 provides the flexibility necessary for the enzyme active site to change conformation upon substrate binding. The flexibility provided by the Gly residue is essential for type I collagenolytic activity.  相似文献   

15.
The development of matrix metalloproteinase (MMP) inhibitors has often been frustrated by a lack of specificity and subsequent off-target effects. More recently, inhibitor design has considered secondary binding sites (exosites) to improve specificity. Small molecules and peptides have been developed that bind exosites in the catalytic (CAT) domain of MMP-13, the CAT or hemopexin-like (HPX) domain of MT1-MMP, and the collagen binding domain (CBD) of MMP-2 and MMP-9. Antibody-based approaches have resulted in selective inhibitors for MMP-9 and MT1-MMP that target CAT domain exosites. Triple-helical “mini-proteins” have taken advantage of collagen binding exosites, producing a family of novel probes. A variety of non-traditional approaches that incorporate exosite binding into the design process has yielded inhibitors with desirable selectivities within the MMP family.  相似文献   

16.
The matrix metalloproteinase enzyme MMP-13 plays a key role in the degradation of type II collagen in cartilage and bone in osteoarthritis (OA). An effective MMP-13 inhibitor would provide a disease modifying therapy for the treatment of arthritis, although this goal still continues to elude the pharmaceutical industry due to issues with safety. Our efforts have resulted in the discovery of a series of hydroxamic acid inhibitors of MMP-13 that do not significantly inhibit MMP-2 (gelatinase-1). MMP-2 has been implicated in the musculoskeletal side effects resulting from pan-MMP inhibition due to findings from spontaneously occurring human MMP-2 deletions. Analysis of the SAR of hundreds of previously prepared hydroxamate based MMP inhibitors lead us to 2-naphthylsulfonamide substituted hydroxamates which exhibited modest selectivity for MMP-13 versus MMP-2. This Letter describes the lead optimization of 1 and identification of inhibitors exhibiting >100-fold selectivity for MMP-13 over MMP-2.  相似文献   

17.
A major and early feature of cartilage degeneration is proteoglycan breakdown. Matrix metalloprotease (MMP)-13 plays an important role in cartilage degradation in osteoarthritis (OA). This MMP, in addition to initiating collagen fibre cleavage, acts on several proteoglycans. One of the proteoglycan families, termed small leucine-rich proteoglycans (SLRPs), was found to be involved in collagen fibril formation/interaction, with some members playing a role in the OA process. We investigated the ability of MMP-13 to cleave members of two classes of SLRPs: biglycan and decorin; and fibromodulin and lumican. SLRPs were isolated from human normal and OA cartilage using guanidinium chloride (4 mol/l) extraction. Digestion products were examined using Western blotting. The identities of the MMP-13 degradation products of biglycan and decorin (using specific substrates) were determined following electrophoresis and microsequencing. We found that the SLRPs studied were cleaved to differing extents by human MMP-13. Although only minimal cleavage of decorin and lumican was observed, cleavage of fibromodulin and biglycan was extensive, suggesting that both molecules are preferential substrates. In contrast to biglycan, decorin and lumican, which yielded a degradation pattern similar for both normal and OA cartilage, fibromodulin had a higher level of degradation with increased cartilage damage. Microsequencing revealed a novel major cleavage site (... G177/V178) for biglycan and a potential cleavage site for decorin upon exposure to MMP-13. We showed, for the first time, that MMP-13 can degrade members from two classes of the SLRP family, and identified the site at which biglycan is cleaved by MMP-13. MMP-13 induced SLRP degradation may represent an early critical event, which may in turn affect the collagen network by exposing the MMP-13 cleavage site in this macromolecule. Awareness of SLRP degradation products, especially those of biglycan and fibromodulin, may assist in early detection of OA cartilage degradation.  相似文献   

18.
The matrix components responsible for cartilage mechanical properties, type II collagen and aggrecan, are degraded in osteoarthritis through proteolytic cleavage by matrix metalloproteinases (MMPs) and aggrecanases, respectively. We now show that aggrecan may serve to protect cartilage collagen from degradation. Although collagen in freeze-thawed cartilage depleted of aggrecan was completely degraded following incubation with MMP-1, collagen in cartilage with intact aggrecan was not. Using interleukin-1-stimulated bovine nasal cartilage explants where aggrecan depletion occurs during the first week of culture, followed by collagen loss during the second week, we evaluated the effect of selective MMP and aggrecanase inhibitors on degradation. A selective MMP inhibitor did not block aggrecan degradation but caused complete inhibition of collagen breakdown. Similar inhibition was seen with inhibitor addition following aggrecan depletion on day 6-8, suggesting that MMPs are not causing significant collagen degradation prior to the second week of culture. Inclusion of a selective aggrecanase inhibitor blocked aggrecan degradation, and, in addition, inhibited collagen degradation. When the inhibitor was introduced following aggrecan depletion, it had no effect on collagen breakdown, ruling out a direct effect through inhibition of collagenase. These data suggest that aggrecan plays a protective role in preventing degradation of collagen fibrils, and that an aggrecanase inhibitor may impart overall cartilage protection.  相似文献   

19.
Ryu JH  Lee A  Na JH  Lee S  Ahn HJ  Park JW  Ahn CH  Kim BS  Kwon IC  Choi K  Youn I  Kim K 《Amino acids》2011,41(5):1113-1122
Among the classical collagenases, matrix metalloproteinase-13 (called MMP-13, collagenase-3) is one of the most important components for cartilage destruction of osteoarthritis (OA) developments. Despite many efforts, the detection methods of MMP-13 activity have been met with limited success in vivo, in part, due to the low sensitivity and low selectivity by homology of MMP family. Previously, we demonstrated the use of strongly dark-quenched fluorogenic probe allowed for the visual detection of MMP-13 in vitro and in OA-induced rat models. In this study, we described the optimization of MMP-13 fluorogenic probe for OA detection in vivo. Three candidate probes demonstrated recovered fluorescent intensity proportional with MMP-13 concentrations, respectively; however, Probe 2 exhibited both high signal amplification and selective recognition for MMP-13, not MMP-2 and MMP-9 in vitro. When Probe 2 was applied to OA-induced rat models, clear visualization of MMP-13 activity in OA-induced cartilage was obtained. Optimized MMP-13 fluorogenic probe can be applied to detect and image OA and have potential for evaluating the in vivo efficacy of MMP-13 inhibitors which are being tested for therapeutic treatment of OA.  相似文献   

20.
The matrix metalloproteinase (MMP) family has been implicated in the process of a variety of diseases such as arthritis, atherosclerosis, and tumor cell metastasis. To study the mechanisms of MMP action on collagenous substrates, we have constructed homotrimeric triple-helical peptide (THP) models of the collagenase cleavage sites in types I and II collagen. The THPs incorporate either the alpha1(I)772-786 or the alpha1(II)772-783 sequence. The alpha1(I)772-786 and alpha1(II)772-783 THPs were hydrolyzed by MMP-1 at the Gly-Ile and Gly-Leu bonds, respectively, analogous to the bonds cleaved in corresponding native collagens. Thus, the THPs contained all necessary information to direct MMP-1 binding and proteolysis. Subsequent investigations using the alpha1(I)772-786 THP showed hydrolysis by MMP-2, MMP-13, and a COOH-terminal domain-deleted MMP-1 (MMP-1(Delta(243-450))) but not by MMP-3 or a COOH-terminal domain-deleted MMP-3 (MMP-3(Delta(248-460))). Kinetic analyses showed a k(cat)/K(m) value of 1,808 s(-1) m(-1) for MMP-1 hydrolysis of alpha1(I)772-786 THP, approximately 10-fold lower than for type I collagen. The effect is caused primarily by relative K(m) values. MMP-2 and MMP-13 cleaved the THP more rapidly than MMP-1, but MMP-2 cleavage occurred at distinct multiple sites. Comparison of MMP-1 and MMP-1(Delta(243-450)) hydrolysis of alpha1(I)772-786 THP showed that both can cleave a triple-helical substrate with a slightly higher K(m) value for MMP-1(Delta(243-450)). We propose that the COOH-terminal domain of MMPs is necessary for orienting whole, native collagen molecules but may not be necessary for binding to and cleaving a THP. This proposal is consistent with the large distance between the MMP-1 catalytic and COOH-terminal domains observed by three-dimensional structural analysis and supports previous suggestions that the features of the catalytic domain contribute significantly toward enzyme specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号