首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although human cancers are widely treated with anthracycline drugs, these drugs have limited use because they are cardiotoxic. To clarify the cardiotoxic action of the anthracycline drug adriamycin (ADM), the inhibitory effect on succinate dehydrogenase (SDH) by ADM and other anthracyclines was examined by using pig heart submitochondrial particles. ADM rapidly inactivated mitochondrial SDH during its interaction with horseradish peroxidase (HRP) in the presence of H(2)O(2) (HRP-H(2)O(2)). Butylated hydroxytoluene, iron-chelators, superoxide dismutase, mannitol and dimethylsulfoxide did not block the inactivation of SDH, indicating that lipid-derived radicals, iron-oxygen complexes, superoxide and hydroxyl radicals do not participate in SDH inactivation. Reduced glutathione was extremely efficient in blocking the enzyme inactivation, suggesting that the SH group in enzyme is very sensible to ADM activated by HRP-H(2)O(2). Under anaerobic conditions, ADM with HRP-H(2)O(2) caused inactivation of SDH, indicating that oxidized ADM directly attack the enzyme, which loses its activity. Other mitochondrial enzymes, including NADH dehydrogenase, NADH oxidase and cytochrome c oxidase, were little sensitive to ADM with HRP-H(2)O(2). SDH was also sensitive to other anthracycline drugs except for aclarubicin. Mitochondrial creatine kinase (CK), which is attached to the outer face of the inner membrane of muscle mitochondria, was more sensitive to anthracyclines than SDH. SDH and CK were inactivated with loss of red color of anthracycline, indicating that oxidative activation of the B ring of anthracycline has a crucial role in inactivation of enzymes. Presumably, oxidative semiquinone or quinone produced from anthracyclines participates in the enzyme inactivation.  相似文献   

2.
The interaction of two clinically important anticancer agents doxorubicin (DXR) and daunorubicin (DNR) and the DNR analog 5-iminodaunorubicin (5IDNR) with the model mammalian peroxidase microperoxidase 11 (MP11) and H(2)O(2) has been investigated using spectrophotometric and EPR techniques. We demonstrate that DNR, DXR, and 5IDNR undergo irreversible oxidation by MP11/H(2)O(2), forming colorless products in both phosphate buffer pH 7.0 and in phosphate buffer pH 7.0/MeOH mixture (1:1 vol/vol), suggesting an extensive modification of the compounds' chromophores. The initial rate of the anthracyclines' oxidation is independent of anthracycline concentrations, but is linearly dependent on [H(2)O(2)](i) at constant [MP11](i) (and vice versa), indicating that the reaction is zero order in [anthracycline], first order with respect to [H(2)O(2)] and [MP11], and second order overall. Based on data obtained using DNR, DXR, 5IDNR, and p-hydroquinone k(2app), the apparent second order rate constant for the formation of a reactive intermediate from MP11 and H(2)O(2) (an analog of peroxidase compound I) has been determined to be in the range of (2.51-5.11) x 10(3) M(-1) s(-1) in both solvent systems. EPR studies show that oxidation of DNR, DXR, or 5IDNR with MP11/H(2)O(2) generates free radicals, suggesting that the reaction may be a one-electron process. This study also shows that 5IDNR, but not DNR or DXR, efficiently protects MP11 heme against degradation by H(2)O(2). Our overall conclusion is that MP11 is an effective catalyst of oxidation of anthracyclines by H(2)O(2). Given that, at sites of inflammation or cancer, the anthracyclines can colocalize with peroxidases, protein degradation products, and with H(2)O(2), peroxidation could be one possible fate of these anticancer agents in vivo.  相似文献   

3.
The Amplex Red assay, a fluorescent assay for the detection of H(2)O(2), relies on the reaction of H(2)O(2) and colorless, nonfluorescent Amplex Red with a 1:1 stoichiometry to form colored, fluorescent resorufin, catalyzed by horseradish peroxidase (HRP). We have found that resorufin is artifactually formed when Amplex Red is exposed to light. In the absence of H(2)O(2) and HRP, the absorption and fluorescence spectra of Amplex Red changed during exposure to ambient room light or instrumental excitation light, clearly indicating that the fluorescent product resorufin had formed. This photochemistry was initiated by trace amounts of resorufin that are present in Amplex Red stock solutions. ESR spin-trapping studies demonstrated that superoxide radical was an intermediate in this process. Oxygen consumption measurements further confirmed that superoxide and H(2)O(2) were artifactually produced by the photooxidation of Amplex Red. The artifactual formation of resorufin was also significantly increased by the presence of superoxide dismutase or HRP. This photooxidation process will result in a less sensitive assay for H(2)O(2) under ambient light exposure and potentially invalid measurements under high energy exposure such as UVA irradiation. In general, precautions should be taken to minimize exposure to light during measurement of oxidative stress with Amplex Red.  相似文献   

4.
Cytochrome c peroxidase (CcP) and horseradish peroxidase (HRP), when combined with a stoichiometric amount of H2O2, form stable compounds I which are known as FeIV Ro and FeIV o pi + structures, respectively. These compounds were assayed in the catalysis of thyroid hormone synthesis and the iodination reaction. As previously shown for the lactoperoxidase FeIV Ro compound, the CcP FeIV Ro compound was involved in the coupling and not in the iodination reactions. In contrast, the HRP FeIV o pi + compound catalyzed both iodination and hormone formation. The possible role of the different peroxidase-H2O2 compounds in the two sequential reactions, thyroglobulin iodination and thyroid hormone formation, is discussed.  相似文献   

5.
Oxidation of the anticancer anthracyclines doxorubicin (DXR) and daunorubicin (DNR) by lactoperoxidase(LPO)/H(2)O(2) and horseradish peroxidase(HRP)/H(2)O(2) systems in the presence and absence of nitrite (NO(2)(-)) has been investigated using spectrophotometric and EPR techniques. We report that LPO/H(2)O(2)/NO(2)(-) causes rapid and irreversible loss of anthracyclines' absorption bands, suggesting oxidative degradation of their chromophores. Both the initial rate and the extent of oxidation are dependent on both NO(2)(-) concentration and pH. The initial rate decreases when the pH is changed from 7 to 5, and the reaction virtually stops at pH 5. Oxidation of a model hydroquinone compound, 2,5-di-tert-butylhydroquinone, by LPO/H(2)O(2) is also dependent on NO(2)(-); however, in contrast to DNR and DXR, this oxidation is most efficient at pH 5, indicating that LPO/H(2)O(2)/NO(2)(-) is capable of efficiently oxidizing simple hydroquinones even in the neutral form. Oxidation of anthracyclines by HRP/H(2)O(2)/NO(2)(-) is substantially less efficient relative to that by LPO/H(2)O(2)/NO(2)(-) at either pH 5 or pH 7, most likely due to the lower rate of NO(2)(-) metabolism by HRP/H(2)O(2). EPR measurements show that interaction of anthracyclines and 2,5-di-tert-butylhydroquinone with LPO/H(2)O(2)/NO(2)(-) generates the corresponding semiquinone radicals presumably via one-electron oxidation of their hydroquinone moieties. The possible role of the (*)NO(2) radical, a putative LPO metabolite of NO(2)(-), in oxidation of these compounds is discussed. Because in vivo the anthracyclines may co-localize with peroxidases, H(2)O(2), and NO(2)(-) in tissues, their oxidation via the proposed mechanism is likely. These observations reveal a novel, peroxidase- and nitrite-dependent mechanism for the oxidative transformation of the anticancer anthracyclines, which may be pertinent to their biological activities in vivo.  相似文献   

6.
Peroxidases catalyze the dehydrogenation by hydrogen peroxide (H2O2) of various phenolic and endiolic substrates in a peroxidatic reaction cycle. In addition, these enzymes exhibit an oxidase activity mediating the reduction of O2 to superoxide (O2.-) and H2O2 by substrates such as NADH or dihydroxyfumarate. Here we show that horseradish peroxidase can also catalyze a third type of reaction that results in the production of hydroxyl radicals (.OH) from H2O2 in the presence of O2.-. We provide evidence that to mediate this reaction, the ferric form of horseradish peroxidase must be converted by O2.- into the perferryl form (Compound III), in which the haem iron can assume the ferrous state. It is concluded that the ferric/perferryl peroxidase couple constitutes an effective biochemical catalyst for the production of .OH from O2.- and H2O2 (iron-catalyzed Haber-Weiss reaction). This reaction can be measured either by the hydroxylation of benzoate or the degradation of deoxyribose. O2.- and H2O2 can be produced by the oxidase reaction of horseradish peroxidase in the presence of NADH. The .OH-producing activity of horseradish peroxidase can be inhibited by inactivators of haem iron or by various O2.- and .OH scavengers. On an equimolar Fe basis, horseradish peroxidase is 1-2 orders of magnitude more active than Fe-EDTA, an inorganic catalyst of the Haber-Weiss reaction. Particularly high .OH-producing activity was found in the alkaline horseradish peroxidase isoforms and in a ligninase-type fungal peroxidase, whereas lactoperoxidase and soybean peroxidase were less active, and myeloperoxidase was inactive. Operating in the .OH-producing mode, peroxidases may be responsible for numerous destructive and toxic effects of activated oxygen reported previously.  相似文献   

7.
We have recently shown that intact IgGs from the sera of healthy Wistar rats oxidize 3,3'-diaminobenzidine (DAB) in the presence and in the absence of H(2)O(2) similar to horseradish peroxidase (HRP). Here we demonstrate for the first time that the peroxidase and oxidoreductase activities of IgGs can efficiently oxidize not only DAB but also o-phenylendiamine, phenol, p-dihydroquinone, alpha-naphthol, and NADH but, in contrast to HRP, cannot oxidize adrenalin. In contrast to IgGs, HRP cannot oxidize phenol, p-dihydroquinone, or alpha-naphthol in the absence of H(2)O(2). In contrast to plant and mammalian peroxidases, IgGs were more universal in their metal dependence. The specific wide repertoire of polyclonal peroxidase and oxidoreductase IgGs oxidizing various substances could play an important role in protecting the organism from oxidative stress and serve as an additional natural system destroying different toxic, carcinogenic, and mutagenic compounds.  相似文献   

8.
In order to rapidly and simultaneously quantify and screen trace levels of multiple biomarkers in a single sample, rapid 1,1'-oxalyldiimidazole chemiluminescence (ODI CL) was applied as a biosensor of immunoassays using various enzymes such as alkaline phosphatase (ALP) and horseradish peroxidise (HRP). (1) Fluorescein was formed from the reaction of fluorescein diphosphate (FDP) and immuno-complex conjugated with ALP. (2) Resorufin was formed from the reaction between Amplex Red and H(2)O(2) in the presence of immuno-complex conjugated with HRP. When ODI CL reagents (H(2)O(2) in isopropyl alcohol, ODI in ethyl acetate) were injected in a test tube or strip-well containing fluorescein and resorufin formed from above two reactions a bright CL emission spectrum having two peaks (518 nm for fluorescein and 602 nm for resorufin) was observed. The two peaks can be independently quantified with an appropriate statistical tool capable of deconvoluting multiple emission peaks. In conclusion, we expect that ODI chemiluminescent enzyme immunoassays (CLEIAs) using a couple of enzymes conjugated with antigen or antibody and substrates can rapidly and simultaneously quantify and screen multiple biomarkers in a single sample.  相似文献   

9.
Efficiencies of binding between horseradish peroxidase (HRP) and its polymers (HRPp) with inorganic adsorbents (precipitated and coprecipitated) were studied. In aqueous solutions, HRP efficiently adsorbed to aluminum oxide and the coprecipitated sorbent (composed of calcium orthophosphate, magnesium hydroxide, and aluminum hydroxide). HRP readily bound to zinc hydroxide but not to aluminum hydroxide in 25.0 mM bicarbonate buffer (pH 9.0). Several variants of HRP polymerization and HRPp modification with diamines in the presence of Al2O3 and Zn(OH)2 were compared. Synthesis of HRPp according to the scheme comprising HRP activation in solution followed by its polymerization in the presence of Zn(OH)2 appeared the most efficient. HRP and HRPp bound to Zn(OH)2 displayed a high catalytic activity in the presence of high H2O2 concentrations.  相似文献   

10.
Extracellularly secreted peroxidases in cell suspension culture of tobacco (Nicotiana tabacum L. cv. Bright Yellow-2, cell line BY-2) catalyse the salicylic acid (SA)-dependent formation of active oxygen species (AOS) which, in turn, triggers an increase in cytosolic Ca2+ concentration. Addition of horseradish peroxidase (HRP) to tobacco cell suspension culture enhanced the SA-induced increase in cytosolic Ca2+ concentration, suggesting that HRP enhanced the production of AOS. The mechanism of peroxidase-catalysed generation of AOS in SA signalling was investigated with chemiluminescence sensitive to AOS and electron spin resonance (ESR) spectroscopy, using the cell suspension culture of tobacco, and HRP as a model system of peroxidase reaction. The results showed that SA induced the peroxidase inhibitor-sensitive production of superoxide and H2O2 in tobacco suspension culture, but no production of hydroxy radicals was detected. Similar results were obtained using HRP. It was also observed that SA suppressed the H2O2-dependent formation of hydroxy radicals in vitro. The results suggest that SA protect the cells from highly reactive hydroxy radicals, while producing the less reactive superoxide and H2O2 through peroxidase-catalysed reaction, as the intermediate signals. The formation of superoxide was followed by that of H2O2, suggesting that superoxide was converted to H2O2. In addition, it was observed that superoxide dismutase-insensitive ESR signal of monodehydroascorbate radical was induced by SA both in the tobacco suspension culture and HRP reaction mixture, suggesting that SA free radicals, highly reactive against ascorbate, were formed by peroxidase-catalysed reactions. The formation of SA free radicals may lead to subsequent monovalent reduction of O2 to superoxide.  相似文献   

11.
Bioactivity of horseradish peroxidase entrapped in silica nanospheres   总被引:1,自引:0,他引:1  
Interest in the fabrication of micro/nanoreactors for evaluation of the function of biomolecules in biological processes, enzymatic reaction kinetics occurring inside the nanospace is rapidly increasing. With a simple reverse-micelle microemulsion method, horseradish peroxidase (HRP), a model biomolecule, was herein skillfully confined in silica nanoshells (HRP@SiO(2)) and its biocatalytical behaviors were investigated in detail. Spectroscopic measurements showed that the entrapped HRP molecules retained their native structure and had high enzymatic activity toward 3,3',5,5'-tetramethylbenzidine (TMB) with Michaelis constant (K(m)) of 3.02 × 10(-5) mol L(-1). The entrapped HRP displayed a good direct electron transfer behavior and sensitive electrocatalytic response toward the reduction of H(2)O(2), which could be enhanced using thionine and o-phenylenediamine (o-PD) as electron mediators. When using thionine as mediator, the mass transport between the substrates in electrolyte and HRP confined in silica nanospheres through the mesoporous tunnels was slower than that of o-PD, which slowed down the electron transfer between heme in HRP in the confined nanospace and the electrode, and resulted in low sensitivity to H(2)O(2) with thionine as mediator when compared to o-PD.  相似文献   

12.
A new strategy for immobilization of horseradish peroxidase (HRP) has been presented by self-assembling gold nanoparticles on chitosan hydrogel modified Au electrode. From a mildly acidic chitosan solution, a chitosan film is electrochemically deposited on Au electrode surface via a negative voltage bias. This process is accompanied by the hydrogen evolution reaction, and the released hydrogen gas made the deposited chitosan film with porous structure, which facilitates the assembly of gold nanoparticles and HRP. The resulting substrates were characterized by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). The immobilized HRP displayed an excellent catalytic property to the reduction of H2O2 in the presence of methylene blue mediator. The resulting biosensor (HRP-modified electrode) showed a wide dynamic range of 8.0 microM-15 mM H2O2, and the linear ranges were 8.0 microM-0.12 mM and 0.50-12 mM, with a detection limit of 2.4 microM estimated at a signal-to-noise ratio of 3. Moreover, the biosensor remained about 85% of its original sensitivity after four weeks' storage.  相似文献   

13.
We identify the cyanogenic substrate for horseradish peroxidase (HRP) as a conjugated enamine and explore this unusual reaction using alpha-aminocinnamate (RH) as follows. 1) HRP catalyzes the oxidation of RH by O2 (and its peroxidation by H2O2 to form R-R) to produce, simultaneously, CN- and benzaldehyde cyanohydrin. 2) RH is transient and must be generated in situ. The properties of the cyanogenic reaction of HRP are independent of the method of preparation of RH (whether this be condensation of NH3 with phenylpyruvate, enzymatic hydrolysis of glycyldehydrophenylalanine, or oxidation of L-phenylalanine by L-amino acid oxidase). 3) The oxidation of RH is a free radical chain reaction initiated by HRP Compounds I and II (I (or II) + RH----R. + II (or HRP], propagated by RO2. (R. + O2----RO2., RO2. + RH----R. + RO2H), and terminated by recombination reactions such as 2R.----R2 and RO2.----R' + HO2. followed by R. + HO2.----RH + O2. KMnO4 and K3Fe(CN)6 can substitute for HRP. 4) The proximal precursor of CN- and cyanohydrin is postulated to be RO2H (phi-CH(-O2H)-CCO2-(= NH]. These results explain why cyanide is generated from the synergistic action of HRP and L-amino acid oxidase on aromatic L-amino acids and O2 and suggest that the requirement for a beta-aryl substituent on the enamine originates in the reaction of RH with HRP, or of R with O2, rather than the imine/enamine tautomerization of the L-amino acid oxidase product.  相似文献   

14.
Horseradish peroxidase (HRP) has attracted intense research interest due to its potential applications in biotechnological fields. However, inadequate stability under prevalent conditions such as elevated temperatures and H(2)O(2) exposure, has limited its industrial application. In this study, stability of HRP was investigated in the presence of different buffer systems (potassium phosphate and Tris-HCl) and additives. It was shown that the concentration of phosphate buffer severely affects enzyme thermostability in a way that in diluted potassium phosphate buffer (10mM) half-life (from 13 to 35 min at 80 °C) and T(m) (from 73 to 77.5 °C) increased significantly. Among additives tested, trehalose had the most thermostabilizing effect. Exploring the role of glycosylation in stabilizing effect of phosphate buffer, non-glycosylated recombinant HRP was also examined for its thermal and H(2)O(2) stability in both diluted and concentrated phosphate buffers. The recombinant enzyme was more thermally stable in diluted buffer in accordance to glycosylated HRP; but interestingly recombinant HRP showed higher H(2)O(2) tolerance in concentrated buffer.  相似文献   

15.
Chen YR  Deterding LJ  Tomer KB  Mason RP 《Biochemistry》2000,39(15):4415-4422
Previous studies established that the cyanyl radical ((*)CN), detected as 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/(*)CN by the electron spin resonance (ESR) spin-trapping technique, can be generated by horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H(2)O(2)) and by mitochondrial cytochrome c oxidase (CcO) in the absence of H(2)O(2). To investigate the mechanism of inhibition by cyanyl radical, we isolated and characterized the iron protoporphyrin IX and heme a from the reactions of CN(-) with HRP and CcO, respectively. The purified heme from the reaction mixture of HRP/H(2)O(2)/KCN was unambiguously identified as cyanoheme by the observation of the protonated molecule, (M + H)(+), of m/z = 642.9 in the matrix-assisted laser desorption/ionization (MALDI) mass spectrum. The proton NMR spectrum of the bipyridyl ferrous cyanoheme complex revealed that one of the four meso protons was missing and had been replaced with a cyanyl group, indicating that the single, heme-derived product was meso-cyanoheme. The holoenzyme of HRP from the reconstitution of meso-cyanoheme with the apoenzyme of HRP (apoHRP) showed no detectable catalytic activity. The Soret peak of cyanoheme-reconstituted apoHRP was shifted to 411 nm from the 403 nm peak of native HRP. In contrast, the heme a isolated from partially or fully inhibited CcO did not show any change in the structure of the protoporphyrin IX as indicated by its MALDI mass spectrum, which showed an (M + H)(+) of m/z = 853.6, and by its pyridine hemochromogen spectrum. However, a protein-centered radical on the CcO can be detected in the reaction of CcO with cyanide and was identified as the thiyl radical(s) based on inhibition of its formation by N-ethylmaleimide pretreatment, suggesting that the protein matrix rather than protoporphyrin IX was attacked by the cyanyl radical. In addition to the difference in heme structures between HRP and CcO, the available crystallographic data also suggested that the distinct heme environments may contribute to the different inhibition mechanisms of HRP and CcO by cyanyl radical.  相似文献   

16.
Ethylenediaminetetraacetic acid (EDTA) is an inhibitor of iodide (I-) oxidation that is catalyzed by horseradish peroxidase (HRP). HRP-mediated iodine (I2) reduction and triiodide (I3+) disappearance occur in the presence of this inhibitor. It is interesting that in the presence of EDTA, HRP produces superoxide radical, a reactive oxygen species that is required for iodine reduction. Substitution of potassium superoxide (KO2) or a biochemical superoxide generating system (xanthine/xanthine oxidase) for HRP and H2O2 in the reaction mixture also can reduce iodine to iodide. Thus, iodine reduction mediated by HRP occurs because HRP is able to mediate the formation of superoxide in the presence of EDTA and H2O2. Although superoxide is able to mediate iodine reduction directly, other competing reactions appear to be more important. For example, high concentrations (mM range) of EDTA are required for efficient iodine reduction in this system. Under such conditions, the concentration (microM range) of contaminating EDTA-Fe(III) becomes catalytically important. In the presence of superoxide, EDTA-Fe(III) is reduced to EDTA-Fe(II), which is able to reduce iodine and form triiodide rapidly. Also of importance is the fact that EDTA-Fe(II) reacts with hydrogen peroxide to form hydroxyl radical. Hydroxyl radical involvement is supported by the fact that a wide variety of hydroxyl radical (OH) scavengers can inhibit HRP dependent iodine reduction in the presence of EDTA and hydrogen peroxide.  相似文献   

17.
The effects of nitric oxide (NO) on both tyrosinase/O(2)- and horseradish peroxidase/H(2)O(2)-mediated oxidations of dopamine and its o-dihydric phenol precursor l-dopa were compared with autoxidative processes and quantitatively assessed by oxidative and reductive electrochemical detection systems. In peroxidase/H(2)O(2)/NO-catalyzed reactions, significantly more substrate was oxidized than in the corresponding control incubations lacking NO. In tyrosinase/O(2)/NO-promoted reactions the total amounts of l-dopa and dopamine oxidized were significantly less than the amounts of the substrates oxidized by enzyme alone. These data indicate that the activity of the heme protein peroxidase was enhanced by NO, whereas tyrosinase, a copper-containing monoxygenase, was inhibited. The NO-mediated reduction of tyrosinase/O(2) activity may be attributed to the formation of an inhibitory copper.nitrosyl complex. An oxidized nitrodopamine derivative, considered to be either the quinone or semiquinone of 6-nitrosodopamine, was generated in peroxidase/H(2)O(2)/NO-mediated reactions with dopamine along with two oxidized melanin precursors, dopamine quinone and dopaminechrome. No corresponding nitroso compound was formed in reactions involving l-dopa or in any of the tyrosinase-mediated reactions. The formation of such a noncyclized nitrosodopamine represents an important alternative pathway in catecholamine metabolism, one that by-passes the formation of cytoprotective indole precursors of melanin. The results of this investigation suggest that cellular integrity and function can be adversely affected by NO-promoted oxidations of dopamine and other catechols, reactions that not only accelerate their conversion to reactive quinones but also form potentially cytotoxic noncyclized nitroso derivatives. Reduced levels of dopamine in the brain through NO-enhanced oxidation of the catecholamine will almost certainly be manifested by diminished levels of the dopamine-derived brain pigment neuromelanin.  相似文献   

18.
A variety of nitrogenous compounds broaden the activity versus pH profile for the peroxidation of dianisidine catalyzed by horseradish peroxidase (HRP), but not by myeloperoxidase, chloroperoxidase, Escherichia coli hydroperoxidase I, methemoglobin, or microperoxidases. The peroxidation of dianisidine catalyzed by cytochrome c peroxidase was affected by the nitrogenous compounds, but to a lesser extent than was the action of HRP. The peroxidations of a variety of phenols by HRP exhibited broad activity versus pH profiles and were unaffected by the nitrogenous compounds. The energy of activation for the peroxidation of dianisidine by HRP was unaffected by changes of pH in the range 6.5-8.5 and was unchanged by the presence of the nitrogenous compounds. The nitrogenous compounds markedly increased Vm for the peroxidation of dianisidine by HRP, but did not change the slope of Lineweaver-Burk plots of kinetic data. These results are accommodated by a mechanism in which nitrogenous compounds hydrogen-bond to the distal histidine of HRP and in so doing raise its pK alpha. Since the acid form of the distal histidine is thought to facilitate peroxidations catalyzed by HRP by hydrogen bonding to the ferryl oxygen of compound II, raising its pK alpha broadens the activity versus pH profile for the peroxidation of anilino substrates, such as dianisidine. We propose that phenolic substrates hydrogen-bond directly to the ferryl oxygen, thus displacing the distal histidine and eliminating the possibility of being influenced by nitrogenous compounds.  相似文献   

19.
Protein modification methods represent fundamental techniques that are applicable in many fields. In this study, a site-specific protein cross-linking based on the oxidative tyrosine coupling reaction was demonstrated. In the presence of horseradish peroxidase (HRP) and H(2)O(2), tyrosine residues undergo one-electron oxidation reactions and form radicals in their phenolic moieties, and these species subsequently react with each other to form dimers or further react to generate polymers. Here, a peptide-tag containing a tyrosine residue(s) (Y-tag, of which the amino acid sequences were either GGGGY or GGYYY) was genetically introduced at the C-terminus of a model protein, Escherichia coli alkaline phosphatase (BAP). Following the incubation of recombinant BAPs with HRP and H(2)O(2), Y-tagged BAPs were efficiently cross-linked with each other, whereas wild-type BAP did not undergo cross-linking, indicating that the tyrosine residues in the Y-tags were recognized by HRP as the substrates. To determine the site-specificity of the cross-linking reaction, the Y-tag was selectively removed by thrombin digestion. The resultant BAP without the Y-tag showed no reactivity in the presence of HRP and H(2)O(2). Conversely, Y-tagged BAPs cross-linked by HRP treatment were almost completely digested into monomeric BAP units following incubation with the protease. Moreover, cross-linked Y-tagged BAPs retained ~95% of their native enzymatic activity. These results show that HRP catalyzed the site-specific cross-linking of BAPs through tyrosine residues positioned in the C-terminal Y-tag. The site-selective enzymatic oxidative tyrosine coupling reaction should offer a practical option for site-specific and covalent protein modifications.  相似文献   

20.
Peroxidases catalyze many reactions, the most common being the utilization of H2O2 to oxidize numerous substrates (peroxidative mode). Peroxidases have also been proposed to produce H2O2 via utilization of NAD(P)H, thus providing oxidant either for the first step of lignification or for the "oxidative burst" associated with plant-pathogen interactions. The current study with horseradish peroxidase characterizes a third type of peroxidase activity that mimics the action of catalase; molecular oxygen is produced at the expense of H2O2 in the absence of other reactants. The oxygen production and H2O2-scavenging activities had temperature coefficients, Q10, of nearly 3 and 2, which is consistent with enzymatic reactions. Both activities were inhibited by autoclaving the enzyme and both activities had fairly broad pH optima in the neutral-to-alkaline region. The apparent Km values for the oxygen production and H2O2-scavenging reactions were near 1.0 mM H2O2. Irreversible inactivation of horseradish peroxidase by exposure to high concentrations of H2O2 coincided with the formation of an absorbance peak at 670 nm. Addition of superoxide dismutase (SOD) to reaction mixtures accelerated the reaction, suggesting that superoxide intermediates were involved. It appears that horseradish peroxidase is capable of using H2O2 both as an oxidant and as a reductant. A model is proposed and the relevance of the mechanism in plant-bacterial systems is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号