首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During differentiation, somatic nuclei acquire highly specialized DNA and chromatin modifications, which are thought to result in cellular memory of the differentiated state. Upon somatic nuclear transfer into oocytes, the donor nucleus may have to undergo reprogramming of these epigenetic marks in order to achieve totipotency. This may involve changes in epigenetic features similar to those that occur in normal embryos during early development. However, there is accumulating evidence that epigenetic reprogramming is severely deficient in cloned embryos. Several reports reveal inefficient demethylation and inappropriate reestablishment of DNA methylation in quantitative and qualitative patterns on somatic nuclear transfer. Here we examine histone H3 lysine 9 (H3-K9) methylation and acetylation in normal embryos and in those created by somatic nuclear transfer. We find that H3-K9 methylation is reprogrammed in parallel with DNA methylation in normal embryos. However, the majority of cloned embryos exhibit H3-K9 hypermethylation associated with DNA hypermethylation, suggesting a genome-wide failure of reprogramming. Strikingly, the precise epigenotype in cloned embryos depends on the donor cell type, and the proportion of embryos with normal epigenotypes correlates closely with the proportion developing to the blastocyst stage. These results suggest a mechanistic link between DNA and histone methylation in the mammalian embryo and reveal an association between epigenetic marks and developmental potential of cloned embryos.  相似文献   

3.
Full-term development has now been achieved in several mammalian species by transfer of somatic nuclei into enucleated oocytes [1, 2]. Although a high proportion of such reconstructed embryos can evolve until the blastocyst stage, only a few percent develop into live offspring, which often exhibit developmental abnormalities [3, 4]. Regulatory epigenetic markers such as DNA methylation are imposed on embryonic cells as normal development proceeds, creating differentiated cell states. Cloned embryos require the erasure of their somatic epigenetic markers so as to regain a totipotent state [5]. Here we report on differences in the dynamics of chromosome methylation between cloned and normal bovine embryos before implantation. We show that cloned embryos fail to reproduce distinguishable parental-chromosome methylation patterns after fusion and maintain their somatic pattern during subsequent stages, mainly by a highly reduced efficiency of the passive demethylation process. Surprisingly, chromosomes appear constantly undermethylated on euchromatin in morulae and blastocysts, while centromeric heterochromatin remains more methylated than that of normal embryos. We propose that the abnormal time-dependent methylation events spanning the preimplantation development of clones may significantly interfere with the epigenetic reprogramming, contributing to the high incidence of physiological anomalies occurring later during pregnancy or after clone birth.  相似文献   

4.
5.
Nuclear reprogramming of cloned embryos produced in vitro   总被引:10,自引:0,他引:10  
Han YM  Kang YK  Koo DB  Lee KK 《Theriogenology》2003,59(1):33-44
  相似文献   

6.
7.
8.
Until now, no primate animals have been successfully cloned to birth with somatic cell nuclear transfer (SCNT) procedures, and little is known about the molecular events that occurred in the reconstructed embryos during preimplantation development. In many SCNT cases, epigenetic reprogramming of the donor nuclei after transfer into enucleated oocytes was hypothesized to be crucial to the reestablishment of embryonic totipotency. In the present study, we focused on two major epigenetic marks, DNA methylation and histone H3 lysine 9 (H3K9) acetylation, which we examined by indirect immunofluorescence and confocal laser scanning microscopy. During preimplantation development, 67% of two-cell- and 50% of eight-cell-cloned embryos showed higher DNA methylation levels than their in vitro fertilization (IVF) counterparts, which undergo gradual demethylation until the early morula stage. Moreover, whereas an asymmetric distribution of DNA methylation was established in an IVF blastocysts with a lower methylation level in the inner cell mass (ICM) than in the trophectoderm, in most cloned blastocysts, ICM cells maintained a high degree of methylation. Finally, two donor cell lines (S11 and S1-04) that showed a higher level of H3K9 acetylation supported more blastocyst formation after nuclear transfer than the other cell line (S1-03), with a relatively low level of acetylation staining. In conclusion, we propose that abnormal DNA methylation patterns contribute to the poor quality of cloned preimplantation embryos and may be one of the obstacles to successful cloning in primates.  相似文献   

9.
Genome-wide changes of DNA methylation by active and passive demethylation processes are typical features during preimplantation development. Here we provide an insight that epigenetic reprogramming of DNA methylation is regulated in a region-specific manner, not a genome-wide fashion. To address this hypothesis, methylation states of three repetitive genomic regions were monitored at various developmental stages in the mouse embryos. Active demethylation was not observed in the IAP sequences whereas methylation reprogramming of the satellite sequences was regulated only by the active mechanism. Etn elements were actively demethylated after fertilization, passively demethylated by the 8-cell stage, and de novo methylated at the morular and blastocyst stages, showing dynamic epigenetic changes. Thus, our findings suggest that the specific genomic regions or sequences may spatially/temporally have their unique characteristics in the reprogramming of the DNA methylation during preimplantation development.  相似文献   

10.
Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as well as embryo loss during development may occur even in cloned embryos reconstructed with nuclei from preimplantation-stage embryos, and these abnormalities are not specific to somatic cloning.  相似文献   

11.
Epigenetic asymmetry between parental genomes and embryonic lineages exists at the earliest stages of mammalian development. The maternal genome in the zygote is highly methylated in both its DNA and its histones and most imprinted genes have maternal germline methylation imprints. The paternal genome is rapidly remodelled with protamine removal, addition of acetylated histones, and rapid demethylation of DNA before replication. A minority of imprinted genes have paternal germline methylation imprints. Methylation and chromatin reprogramming continues during cleavage divisions, but at the blastocyst stage lineage commitment to inner cell mass (ICM) or trophectoderm (TE) fate is accompanied by a dramatic increase in DNA and histone methylation, predominantly in the ICM. This may set up major epigenetic differences between embryonic and extraembryonic tissues, including in X-chromosome inactivation and perhaps imprinting. Maintaining epigenetic asymmetry appears important for development as asymmetry is lost in cloned embryos, most of which have developmental defects, and in particular an imbalance between extraembryonic and embryonic tissue development.  相似文献   

12.
13.
Wei Y  Huan Y  Shi Y  Liu Z  Bou G  Luo Y  Zhang L  Yang C  Kong Q  Tian J  Xia P  Sun QY  Liu Z 《PloS one》2011,6(5):e20154
The low success rate of somatic cell nuclear transfer (SCNT) in mammalian cloning is largely due to imprinting problems. However, little is known about the mechanisms of reprogramming imprinted genes during SCNT. Parental origin-specific DNA methylation regulates the monoallelic expression of imprinted genes. In natural fertilization, methylation imprints are established in the parental germline and maintained throughout embryonic development. However, it is unclear whether methylation imprints are protected from global changes of DNA methylation in cloned preimplantation embryos. Here, we demonstrate that cloned porcine preimplantation embryos exhibit demethylation at differentially methylated regions (DMRs) of imprinted genes; in particular, demethylation occurs during the first two cell cycles. By RNAi-mediated knockdown, we found that Dnmt1 is required for the maintenance of methylation imprints in porcine preimplantation embryos. However, no clear signals were detected in the nuclei of oocytes and preimplantation embryos by immunofluorescence. Thus, Dnmt1 is present at very low levels in the nuclei of porcine oocytes and preimplantation embryos and maintains methylation imprints. We further showed that methylation imprints were rescued in nonenucleated metaphase II (MII) oocytes. Our results indicate that loss of Dnmt1 in the maternal nucleus during SCNT significantly contributes to the unfaithful maintenance of methylation imprints in cloned embryos.  相似文献   

14.
Precise recapitulation of methylation change in early cloned embryos   总被引:1,自引:0,他引:1  
Change of DNA methylation during preimplantation development is very dynamic, which brings this term to the most attractive experimental target for measuring the capability of cloned embryo to reprogram its somatic genome. However, one weak point is that the preimplantation stage carries little information on genomic sequences showing a site-specific re-methylation after global demethylation; these sequences, if any, may serve as an advanced subject to test how exactly the reprogramming/programming process is recapitulated in early cloned embryos. Here, we report a unique DNA methylation change occurring at bovine neuropeptide galanin gene sequence. The galanin gene sequence in early bovine embryos derived by in vitro fertilization (IVF) maintained a undermethylated status till the morula stage. By the blastocyst, certain CpG sites became methylated specifically, which may be an epigenetic sign for the galanin gene to start a differentiation programme. The same sequence was moderately methylated in somatic donor cell and, after transplanted into an enucleated oocyte by nuclear transfer (NT), came rapidly demethylated to a completion, and then, at the blastocyst stage, re-methylated at exactly the same CpG sites, as observed so in normal blastocysts. The precise recapitulation of normal methylation reprogramming and programming at the galanin gene sequence in bovine cloned embryos gives a cue for the potential of cloned embryo to superintend the epigenetic states of foreign genome, even after global demethylation.  相似文献   

15.
Development of interspecies cloned embryos in yak and dog   总被引:4,自引:0,他引:4  
Interspecies nuclear transfer (NT) could be an alternative to replicate animals when supply of recipient oocytes is limited or in vitro embryo production systems are incomplete. In the present study, embryonic development was assessed following interspecies NT of donor cumulus cells derived from yak and dog into the recipient ooplasm of domestic cow. The percentages of fusion and subsequent embryo development to the eight-cell stage of interspecies NT embryos were comparable to those of intraspecies NT embryos (cow-cow NT embryos). The percentage of development to blastocysts was significantly lower (p < 0.05) in yak-cow NT embryos than that in cow-cow NT embryos (10.9% vs. 39.8%). In dog-cow NT embryos, only one embryo (0.4%) developed to the blastocyst stage. These results indicate that interspecies NT embryos possess equally developmental competence to the eight-cell stage as intraspecies NT embryos, but the development to blastocysts is very low when dog somatic cells are used as the donor nuclei.  相似文献   

16.
Somatic cell nuclear transfer has successfully been used to clone several mammalian species including the mouse, albeit with extremely low efficiency. This study investigated gene expression in cloned mouse embryos derived from cumulus cell donor nuclei, in comparison with in vivo fertilized mouse embryos, at progressive developmental stages. Enucleation was carried out by the conventional puncture method rather than by the piezo-actuated technique, whereas nuclear transfer was achieved by direct cumulus nuclear injection. Embryonic development was monitored from chemically induced activation on day 0 until the blastocyst stage on day 4. Poor developmental competence of cloned embryos was observed, which was confirmed by lower cell counts in cloned blastocysts, compared with the in vivo fertilized controls. Subsequently, real-time polymerase chain reaction was used to analyze and compare embryonic gene expression at the 2-cell, 4-cell, and blastocyst stages, between the experimental and control groups. The results showed reduced expression of the candidate genes in cloned 2-cell stage embryos, as manifested by poor developmental competence, compared with expression in the in vivo fertilized controls. Cloned 4-cell embryos and blastocysts, which had overcome the developmental block at the 2-cell stage, also showed up-regulated and down-regulated expression of several genes, strongly suggesting incomplete nuclear reprogramming. We have therefore demonstrated that aberrant embryonic gene expression is associated with low developmental competence of cloned mouse embryos. To improve the efficiency of somatic cell nuclear transfer, strategies to rectify aberrant gene expression in cloned embryos should be investigated.This project was funded mainly by the National University of Singapore (grant number: R-174-000-065-112/303).  相似文献   

17.
Interspecies somatic cell nuclear transfer (iSCNT) involves the transfer of a nucleus or cell from one species into the cytoplasm of an enucleated oocyte from another. Once activated, reconstructed oocytes can be cultured in vitro to blastocyst, the final stage of preimplantation development. However, they often arrest during the early stages of preimplantation development; fail to reprogramme the somatic nucleus; and eliminate the accompanying donor cell's mitochondrial DNA (mtDNA) in favour of the recipient oocyte's genetically more divergent population. This last point has consequences for the production of ATP by the electron transfer chain, which is encoded by nuclear and mtDNA. Using a murine-porcine interspecies model, we investigated the importance of nuclear-cytoplasmic compatibility on successful development. Initially, we transferred murine fetal fibroblasts into enucleated porcine oocytes, which resulted in extremely low blastocyst rates (0.48%); and failure to replicate nuclear DNA and express Oct-4, the key marker of reprogramming. Using allele specific-PCR, we detected peak levels of murine mtDNA at 0.14±0.055% of total mtDNA at the 2-cell embryo stage and then at ever-decreasing levels to the blastocyst stage (<0.001%). Furthermore, these embryos had an overall mtDNA profile similar to porcine embryos. We then depleted porcine oocytes of their mtDNA using 10 μM 2',3'-dideoxycytidine and transferred murine somatic cells along with murine embryonic stem cell extract, which expressed key pluripotent genes associated with reprogramming and contained mitochondria, into these oocytes. Blastocyst rates increased significantly (3.38%) compared to embryos generated from non-supplemented oocytes (P<0.01). They also had significantly more murine mtDNA at the 2-cell stage than the non-supplemented embryos, which was maintained throughout early preimplantation development. At later stages, these embryos possessed 49.99±2.97% murine mtDNA. They also exhibited an mtDNA profile similar to murine preimplantation embryos. Overall, these data demonstrate that the addition of species compatible mtDNA and reprogramming factors improves developmental outcomes for iSCNT embryos.  相似文献   

18.
Su J  Wang Y  Li Y  Li R  Li Q  Wu Y  Quan F  Liu J  Guo Z  Zhang Y 《PloS one》2011,6(8):e23805
Aberrant epigenetic nuclear reprogramming results in low somatic cloning efficiency. Altering epigenetic status by applying histone deacetylase inhibitors (HDACi) enhances developmental potential of somatic cell nuclear transfer (SCNT) embryos. The present study was carried out to examine the effects of Oxamflatin, a novel HDACi, on the nuclear reprogramming and development of bovine SCNT embryos in vitro. We found that Oxamflatin modified the acetylation status on H3K9 and H3K18, increased total and inner cell mass (ICM) cell numbers and the ratio of ICM∶trophectoderm (TE) cells, reduced the rate of apoptosis in SCNT blastocysts, and significantly enhanced the development of bovine SCNT embryos in vitro. Furthermore, Oxamflatin treatment suppressed expression of the pro-apoptotic gene Bax and stimulated expression of the anti-apoptotic gene Bcl-XL and the pluripotency-related genes OCT4 and SOX2 in SCNT blastocysts. Additionally, the treatment also reduced the DNA methylation level of satellite I in SCNT blastocysts. In conclusion, Oxamflatin modifies epigenetic status and gene expression, increases blastocyst quality, and subsequently enhances the nuclear reprogramming and developmental potential of SCNT embryos.  相似文献   

19.
Nuclear reprogramming in nuclear transplant rabbit embryos   总被引:26,自引:0,他引:26  
The first six genetically verified nuclear transplant rabbits have been produced in this study. Individual eight-cell stage embryo blastomeres were transferred and fused with enucleated mature oocytes of which six full-term offspring were produced out of 164 manipulated eggs. The following efficiency rates were determined for the nuclear transplantation procedure: chromosomal removal from oocytes, 92%; fusion rate, 84%; activation rate, 46%; embryo transfer rate, 27%. Additional reasons for the low efficiency rate of nuclear transplant embryos may include limited development due to aging in recipient oocytes and asynchronous transfers of manipulated embryos to recipient females. The successful development to term may have been due to the ability of the mature oocyte to reprogram the eight-cell stage nuclei. The number of cells in blastocysts derived from isolated eight-cell blastomeres (18 +/- .08) was lower than that of nonmanipulated pronuclear (106 +/- 5.1) and nuclear transplant embryos derived from eight-cell stage nuclei (91 +/- 10.2) (p less than 0.001). This evidence along with the significant amount of nuclear swelling in nuclear transplant embryos and a delay in the time of blastocyst formation indicate that nuclear reprogramming had taken place in these embryos. Successful nuclear reprogramming indicates that serial transfers could result in the expanded multiplication of mammalian embryos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号