首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 974 毫秒
1.
Single blastomeres from four- and eight-cell mouse embryos were fused into the enucleated halves of two-cell embryos, and the ability of these reconstituted embryos to develop in vitro and in vivo was examined. The proportion of these reconstituted embryos developing to blastocysts was 74% (60/81) when four-cell embryo blastomeres were used as nuclei donors and 31% (57/182) when eight-cell embryo blastomeres were used. Eight complete sets of the quadruplet-reconstituted embryos developed to blastocysts, and five live young (9%, 5/57) were obtained after transfer; however, none of the live young were clones. Although when using blastomeres from eight-cell embryos no complete set of eight developed to blastocysts, sextuplets were obtained. The blastocysts, however, failed to produce live young after transfer. In assessing the outgrowths, it was found that 43% of those derived from reconstituted embryos using blastomeres from four-cell embryos had an inner cell mass (ICM); however, outgrowths derived from reconstituted embryos using blastomeres from eight-cell embryos lacked an ICM. These results suggest that the genomes of four- and eight-cell nuclei introduced into the enucleated halves of two-cell embryos are reversed to support the development of the reconstituted embryo.  相似文献   

2.
Nuclear transfer protocol for the pig using cryopreserved delipated four- to eight-cell and morula stage embryos as nucleus donors was developed. Donor embryos, which had been delipated by micromanipulation following centrifugation for polarizing cytoplasmic lipid droplets, were cryopreserved with 1.5 M 1,2-propanediol and 0.1 M sucrose. Recipient cytoplasts were prepared from ovulated oocytes. Activation of oocytes could be induced more efficiently when electric stimulation was given 53 hr after the hCG injection or later (66–83%), compared with 52 hr or earlier (11–16%, P < 0.05), suggesting that aging after ovulation may be required for in vivo matured porcine oocytes to be activated by electric stimuli. Membrane fusion rates between donor blastomeres and enucleated oocytes were 88% (127/144) and 97% (56/58, P > 0.05) for the four- to eight-cell and morula stage embryos, respectively. In vitro developmental rates to the two-cell (53/100 vs. 35/65), four-cell (34/100 vs. 26/65), and morula stage (17/100 vs. 18/65) were the same between the nuclear transfer embryos with four- to eight-cell and morula nuclei. However, more embryos reconstituted with morula nuclei developed to blastocysts (15% vs. 6%, P < 0.05). These data demonstrated that blastomeres of cryopreserved, delipated porcine embryos can be used as donor nuclei for nuclear transfer. Frozen-thawed, delipated blastomeres can be efficiently isolated and fused, and therefore provide a useful source of donor nuclei. Mol. Reprod. Dev. 48:339–343, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Until now, no primate animals have been successfully cloned to birth with somatic cell nuclear transfer (SCNT) procedures, and little is known about the molecular events that occurred in the reconstructed embryos during preimplantation development. In many SCNT cases, epigenetic reprogramming of the donor nuclei after transfer into enucleated oocytes was hypothesized to be crucial to the reestablishment of embryonic totipotency. In the present study, we focused on two major epigenetic marks, DNA methylation and histone H3 lysine 9 (H3K9) acetylation, which we examined by indirect immunofluorescence and confocal laser scanning microscopy. During preimplantation development, 67% of two-cell- and 50% of eight-cell-cloned embryos showed higher DNA methylation levels than their in vitro fertilization (IVF) counterparts, which undergo gradual demethylation until the early morula stage. Moreover, whereas an asymmetric distribution of DNA methylation was established in an IVF blastocysts with a lower methylation level in the inner cell mass (ICM) than in the trophectoderm, in most cloned blastocysts, ICM cells maintained a high degree of methylation. Finally, two donor cell lines (S11 and S1-04) that showed a higher level of H3K9 acetylation supported more blastocyst formation after nuclear transfer than the other cell line (S1-03), with a relatively low level of acetylation staining. In conclusion, we propose that abnormal DNA methylation patterns contribute to the poor quality of cloned preimplantation embryos and may be one of the obstacles to successful cloning in primates.  相似文献   

4.
5.
Active demethylation of cytosine residues in the sperm genome before forming a functional zygotic nucleus is thought to be an important function of the oocyte cytoplasm for subsequent embryonic development in the mouse. Conversely, this event does not occur in the sheep or rabbit zygote and occurs only partially in the cow. The aim of this study was to investigate the effect of limited methylation reprogramming in the normal sheep embryo on reprogramming somatic nuclei. Sheep fibroblast somatic nuclei were partially demethylated after electrofusion with recipient sheep oocytes and undergo a stepwise passive loss of DNA methylation during early development, as determined by 5-methylcytosine immunostaining on interphase embryonic nuclei. A similar decrease takes place with in vivo-derived sheep embryos up to the eight-cell stage, although nuclear transfer embryos exhibit a consistently higher level of methylation at each stage. Between the eight-cell and blastocyst stages, DNA methylation levels in nuclear transfer embryos are comparable with those derived in vivo, but the distribution of methylated DNA is abnormal in a high proportion. By correlating DNA methylation with developmental potential at individual stages, our results suggest that somatic nuclei that do not undergo rapid reorganization of their DNA before the first mitosis fail to develop within two to three cell cycles and that the observed methylation defects in early cleavage stages more likely occur as a direct consequence of failed nuclear reorganization than in failed demethylation capacity. However, because only embryos with reorganized chromatin appear to survive the 16-cell and morula stages, failure to demethylate the trophectoderm cells of the blastocyst is likely to directly impact on developmental potential by altering programmed patterns of gene expression in extra-embryonic tissues. Thus, both remodeling of DNA and epigenetic reprogramming appear critical for development of both fertilized and nuclear transfer embryos.  相似文献   

6.
Nuclear reprogramming of cloned embryos produced in vitro   总被引:10,自引:0,他引:10  
Han YM  Kang YK  Koo DB  Lee KK 《Theriogenology》2003,59(1):33-44
  相似文献   

7.
人-兔异种核移植构建克隆胚的实验研究   总被引:1,自引:0,他引:1  
“治疗性克隆”是人类最关注的课题之一,而人体细胞核移植是治疗性克隆的基础和前提。异种核移植的方法虽已被引入人体细胞克隆胚的构建,但供体细胞的类型、培养代数及准备方法与其效率之间的关系尚有待探讨。本实验以不同培养代数和不同准备方法的人卵丘细胞、皮肤成纤维细胞和软骨细胞为供体构建了克隆胚,对其发育情况的比较表明,以卵丘细胞为供体时重构胚的体外发育率高于其余二者,差异显著(P〈0.05);不同培养代数的成纤维细胞克隆胚和不同冷藏天数供体细胞克隆胚体外发育率无明显差异。此外,本实验还尝试用荧光原位杂交法检测所构建的异种克隆胚核遗传物质的来源,结果显示来自人体细胞。本研究表明,人一兔异种核移植构建克隆胚切实可行;体细胞的类型与核移植效率相关;供体细胞的体外培养传代对克隆胚的发育并无影响;而冷藏是一种简便有效的供体细胞准备方法;此外,用FISH方法对重构胚进行核遗传物质的鉴定切实可行。  相似文献   

8.
Development of interspecies cloned embryos in yak and dog   总被引:4,自引:0,他引:4  
Interspecies nuclear transfer (NT) could be an alternative to replicate animals when supply of recipient oocytes is limited or in vitro embryo production systems are incomplete. In the present study, embryonic development was assessed following interspecies NT of donor cumulus cells derived from yak and dog into the recipient ooplasm of domestic cow. The percentages of fusion and subsequent embryo development to the eight-cell stage of interspecies NT embryos were comparable to those of intraspecies NT embryos (cow-cow NT embryos). The percentage of development to blastocysts was significantly lower (p < 0.05) in yak-cow NT embryos than that in cow-cow NT embryos (10.9% vs. 39.8%). In dog-cow NT embryos, only one embryo (0.4%) developed to the blastocyst stage. These results indicate that interspecies NT embryos possess equally developmental competence to the eight-cell stage as intraspecies NT embryos, but the development to blastocysts is very low when dog somatic cells are used as the donor nuclei.  相似文献   

9.
During differentiation, somatic nuclei acquire highly specialized DNA and chromatin modifications, which are thought to result in cellular memory of the differentiated state. Upon somatic nuclear transfer into oocytes, the donor nucleus may have to undergo reprogramming of these epigenetic marks in order to achieve totipotency. This may involve changes in epigenetic features similar to those that occur in normal embryos during early development. However, there is accumulating evidence that epigenetic reprogramming is severely deficient in cloned embryos. Several reports reveal inefficient demethylation and inappropriate reestablishment of DNA methylation in quantitative and qualitative patterns on somatic nuclear transfer. Here we examine histone H3 lysine 9 (H3-K9) methylation and acetylation in normal embryos and in those created by somatic nuclear transfer. We find that H3-K9 methylation is reprogrammed in parallel with DNA methylation in normal embryos. However, the majority of cloned embryos exhibit H3-K9 hypermethylation associated with DNA hypermethylation, suggesting a genome-wide failure of reprogramming. Strikingly, the precise epigenotype in cloned embryos depends on the donor cell type, and the proportion of embryos with normal epigenotypes correlates closely with the proportion developing to the blastocyst stage. These results suggest a mechanistic link between DNA and histone methylation in the mammalian embryo and reveal an association between epigenetic marks and developmental potential of cloned embryos.  相似文献   

10.
It has been reported that buffalo (Bubalus bubalis) embryos reconstructed by somatic cell nucleus transfer (SCNT) can develop to the full term of gestation and result in newborn calves. However, the developmental competence of reconstructed embryos is still low. Recently, it has been reported that treating donor cells or embryos with trichostatin A (TSA) can increase the cloning efficiency in some species. Thus, the present study was undertaken to improve the development of buffalo SCNT embryos by treatment of donor cells (buffalo fetal fibroblasts) with TSA and explore the relation between histone acetylation status of donor cells and developmental competence of SCNT embryos. Treatment of donor cells with either 0.15 or 0.3 μM TSA for 48 hours resulted in a significant increase in the cleavage rate and blastocyst yield of SCNT embryos (P < 0.05). Meanwhile, the expression level of HDAC1 in donor cells was also decreased (0.4–0.6 fold, P < 0.05) by TSA treatment, although the expression level of HAT1 was not affected. Further measurement of the epigenetic maker AcH4K8 in buffalo IVF and SCNT embryos at the eight-cell stage revealed that the spatial distribution of acH4K8 staining in SCNT embryos was different from the IVF embryos. Treatment of donor cells with TSA resulted in an increase in the AcH4K8 level of SCNT embryos and similar to fertilized counterparts. These results suggest that treatment of donor cells with TSA can facilitate their nucleus reprogramming by affecting the acetylated status of H4K8 and improving the in vitro development of buffalo SCNT embryos. The AcH4K8 status at the eight-cell stage can be used as an epigenetic marker for predicting the SCNT efficiency in buffalos.  相似文献   

11.
Nuclear transfer experiments in mammals have attempted to reprogram a donor nucleus to a state equivalent to the zygotic one. Reprogramming of the donor nucleus is, among other features, indicated by a synthesis of ribosomal RNA (rRNA). The initiation of rRNA synthesis is simultaneously reflected in nuclear morphology as a transformation of the nucleolus precursor body into a functional rRNA synthesising nucleolus with a characteristic ultrastructure. We examined nucleolar ultrastructure in bovine in vitro produced (control) embryos and in nuclear transfer embryos reconstructed from a MII phase (nonactivated) or S phase (activated) cytoplasts. Control embryos were fixed at the two-, four-, early eight- and late eight-cell stages; nuclear transfer embryos were fixed at 1 and 3 hr post fusion and at the two-, four-, and eight-cell stages. Control embryos possessed a nucleolar precursor body throughout all three cell cycles. In the eight-cell stage embryo, a primary vacuole appeared as an electron lucid area originating in the centre of the nucleolar precursor body. In nuclear transfer embryos reconstructed from nonactivated cytoplasts, the nuclear envelope was fragmented or completely broken down at 1 hr after fusion and, by 3 hr after fusion, it was restored again. At this time, the reticulated fibrillo-granular nucleolus had an almost round shape. The nucleolar precursor body seen in the two-cell stage nuclear transfer embryos consisted of intermingled filamentous components and secondary vacuoles. A nucleolar precursor body typical for the two-cell stage control embryos was never observed. None of the reconstructed embryos of this group reached the eight-cell stage. Nuclear transfer embryos reconstructed from activated cytoplasts, in contrast, exhibited a complete nuclear envelope at all time intervals after fusion. In the two-cell stage nuclear transfer embryo, the originally reticulated nucleolus of the donor blastomere had changed into a typical nucleolar precursor body consisting of a homogeneous fibrillar structure. A primary vacuole appeared in the four-cell stage nuclear transfer embryos, which was one cell cycle earlier than in control embryos. Only nuclear transfer embryos reconstructed from activated cytoplasts underwent complete remodelling of the nucleolus. The reorganisation of the donor nucleolar architecture into a functionally active nucleolus was observed as early as in the four-cell stage nuclear transfer embryo. These ultrastructural observations were correlated with our autoradiographic data on the initiation of RNA synthesis in nuclear transfer embryos.  相似文献   

12.
Therapeutic cloning,which is based on human somatic cell nuclear transfer,is one of our major research objectives.Though inter-species nuclear transfer has been introduced to construct human somatic cell cloned embryos,the effects of type,passage,and preparation method of donor cells on embryo development remain unclear.In our experiment,cloned embryos were reconstructed with different passage and preparation methods of ossocartilaginous cell,skin fibroblast,and cumulus cells.The cumulus cell embryos showed significantly higher development rates than the other two (P<0.05).The development rate of embryos reconstructed with skin fibroblasts of different passage number and somatic cells of different chilling durations showed no significant difference.Also,fluorescence in situ hybridization (FISH)was conducted to detect nuclear derivation of the embryos.The result showed that the nuclei of the inter-species cloned embryo cells came from human.We conclude that (1)cloned embryos can be constructed through human-rabbit interspecies nuclear transfer;(2)different kinds of somatic cells result in different efficiency of nuclear transfer,while in vitro passage of the donor does not influence embryo development;(3)refrigeration is a convenient and efficient donor cell preparation method.Finally,it is feasible to detect DNA gcnotype through FISH.  相似文献   

13.
14.
Four-cell stage mouse blastomeres have different developmental properties   总被引:3,自引:0,他引:3  
Blastomeres of the early mouse embryo are thought to be equivalent in their developmental properties at least until the eight-cell stage. However, the experiments that have led to this conclusion could not have taken into account either the spatial origin of individual blastomeres or the spatial allocation and fate of their progeny. We have therefore readdressed this issue having defined cell lineages in mouse embryos undergoing different patterns of cleavage in their second division cycle. This has enabled us to identify a major group of embryos in which we can predict not only the spatial origin of each given four-cell blastomeres, but also which region of the blastocyst is most likely to be occupied by its progeny. We show that a pattern of second cleavage divisions in which a meridional division is followed by one that is equatorial or oblique allows us to identify blastomeres that differ in their fate and in their developmental properties both from each other and from their cousins. We find that one of these four-cell stage blastomeres that inherits some vegetal membrane marked in the previous cleavage cycle tends to contribute to mural trophectoderm. The progeny of its sister tend to donate cells to part of the ICM lining the blastocyst cavity and its associated trophectoderm. Chimaeras made entirely of these equatorially or obliquely derived blastomeres show developmental abnormalities in both late preimplantation and early postimplantation development. By contrast, chimaeras made from four-cell stage blastomeres from early meridional divisions develop normally. The developmental defects of chimaeras made from the most vegetal blastomeres that result from later second cleavages are the most severe and following transplantation into foster mothers they fail to develop to term. However, when such individual four-cell blastomeres are surrounded by blastomeres from random positions, they are able to contribute to all embryonic lineages. In conclusion, this study shows that while all four-cell blastomeres can have full developmental potential, they differ in their individual developmental properties according to their origin in the embryo from as early as the four-cell stage.  相似文献   

15.
16.
Differentiated somatic cells and embryos cloned from somatic cells by nuclear transfer (NT) have higher levels of DNA methylation than gametes and early embryos produced in vivo. Reducing DNA methylation in donor cells before NT by treating them with chemicals such as the DNA methyl-transferase inhibitor (5-aza-2'-deoxycytidine; 5-aza-dC) may improve cloning efficiency of NT embryos by providing donor cells with similar epigenetic characteristics as in vivo embryos. Previously, high levels of this reagent were used to treat donor cells, and decreased development of cloned embryos was observed. In this study, we tested a lower range (0.005 to 0.08 microM) of this drug and used cell cycle distribution changes as an indicator of changes in the characteristics of donor cells. We found that at 0.01 microM 5-aza-dC induced changes in the cycle stage distribution of donor cells, increased the fusion rate of NT embryos, and had no deleterious effect on the percentage of blastocyst development. Levels of 5-aza-dC greater than 0.01 microM significantly decreased embryo development. Embryos cloned from donor cells treated with a low dose of 5-aza-dC had higher levels of DNA methylation than embryos produced by in vitro fertilization, but they also had higher levels of histone acetylation. Although 5-aza-dC at 0.04 microM or higher reduced DNA methylation and histone acetylation levels to those of in vitro-fertilized embryos, development to blastocyst was reduced, suggesting that this concentration of the drug was detrimental. In summary, 5-aza-dC at 0.01 microM altered donor cell characteristics while showing no deleterious effects on embryos cloned from treated cells.  相似文献   

17.
In 1997, Dolly, the first animal cloned from an adult cell, was born. It was announced in 1999 that Dolly might be aging faster than normal because her telomeres were shorter than age-matched control sheep. Telomeres, a repeated DNA sequence located at the ends of linear chromosomes, allow for base pair loss during DNA replication. Telomere shortening acts as a "mitotic clock," leading to replicative senescence. By using whole cell lysate and slot-blot analysis, we determined the telomere-to-centromere ratio (T/C) for bovine gametes, embryos, fetal tissues (brain, heart, lung, kidney, uterus, ovary, and skin), adult donor cells, and cloned embryos. Our data indicates a consistency in T/C among the various fetal tissues. The T/C of sperm is significantly lower than in oocytes. The T/C decreases from the oocyte to the 2-8-cell stage embryo, increases dramatically at the morula stage, and decreases at the blastocyst stage. Our data shows no significant difference in T/C between cloned embryos and in vitro fertilized (IVF) embryos, but there is a significant difference between cloned embryos and adult donor cells. In conclusion, the enucleated bovine oocyte has the ability to reestablish the telomere length of adult somatic cell donor nuclei.  相似文献   

18.
Although it is generally accepted that relatively high efficiencies of somatic cell cloning in mammals can be achieved by using donor cells from the female reproductive system (e.g., cumulus/granulosa, oviduct, and mammary gland cells), there is little information on the possibility of using male-specific somatic cells as donor cells. In this study we injected the nucleus of immature mouse Sertoli cells isolated from the testes of newborn (Days 3-10) males into enucleated mature oocytes in order to examine the ability of their nuclei to support embryonic development. After activation of the oocytes that had received the freshly recovered immature Sertoli cells, some developed into the morula/blastocyst stage, depending on the age of the donor cells (22.0-37.4%). When transferred into pseudopregnant females, 7 (3.3%, 7 of 215) developed into normal pups at term. Nuclear transfer of immature Sertoli cells after 1 wk in culture also produced normal pups after embryo transfer (3.1%, 2 of 65). Even after cryopreservation in a conventional cryoprotectant solution, their ability as donor cells was maintained, as demonstrated by the birth of cloned young (6.7%, 7 of 105). Immature Sertoli cells transfected with green fluorescent protein gene also supported embryo development into morulae/blastocysts, which showed specific fluorescence. This study demonstrates that immature Sertoli cells, male-specific somatic cells, are potential donors for somatic cell cloning.  相似文献   

19.
Cloning by somatic cell nuclear transfer requires silencing of the donor cell gene expression program and the initiation of the embryonic gene expression program (nuclear reprogramming). Failure to silence the donor cell program could lead to altered embryonic phenotypes. Cloned mouse embryos produced using myoblast nuclei fail to thrive in standard embryo culture media but flourish in somatic cell culture media favored by the donor myoblasts themselves, forming blastocysts at a significant rate, with robust morphologies, high total cell number, and a normal allocation of cells to the inner cell mass in most embryos. Myoblast cloned embryos continue expressing the GLUT4 glucose transporter, which is typically expressed in muscle but not in preimplantation stage embryos. Myoblast clones also exhibit precocious enrichment of GLUT1 at the cell surface. Both myoblast and cumulus cell cloned embryos exhibit enhanced rates of glucose uptake. These observations indicate that silencing of the donor cell genome during cloning either is incomplete or occurs progressively over the course of preimplantation development. As a result, cloned embryos initially exhibit many somatic cell-like characteristics. Tetraploid constructs, which possess a transplanted somatic cell genome plus the oocyte-derived chromosomes, exhibit a more embryonic-like pattern of gene expression and culture preference. We conclude that preimplantation stage cloned embryos have profoundly altered characteristics that are donor cell type specific and that exposure of cloned embryos to standard embryo culture conditions may lead to disruptions in basic homeostasis and inhibition of a range of essential processes including further nuclear reprogramming, contributing to cloned embryo demise.  相似文献   

20.
During the transition from the four- to the eight-cell stage in ctenophore embryos, each blastomere produces one daughter cell with the potential to form comb plate cilia and one daughter cell that does not have this potential. If the second cleavage in a two-cell embryo is blocked, at the next cleavage these embryos frequently form four blastomeres which have the configuration of the blastomeres in a normal eight-cell embryo. At this division there is also a segregation of comb plate-forming potential. By compressing a two-cell embryo in a plane perpendicular to the first plane of cleavage it is possible to produce a four-cell blastomere configuration that is identical to that produced following the inhibition of the second cleavage. However, under these circumstances the segregation of comb plate potential does not occur. These results suggest that the appropriate plane of cleavage must take place for a given cleavage cycle, in order for localizations of developmental potential to be properly positioned within blastomeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号