首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We analyse, from a mathematical point of view, the global stability of equilibria for models describing the interaction between infectious agents and humoral immunity. We consider the models that contain the variables of pathogens explicitly. The first model considers the situation where only a single strain exists. For the single strain model, the disease steady state is globally asymptotically stable if the basic reproductive ratio is greater than one. The other models consider the situations where multiple strains exist. For the multi-strain models, the disease steady state is globally asymptotically stable. In the model that does not explicitly contain an immune variable, only one strain with the maximum basic reproductive ratio can survive at the steady state. However, in our models explicitly involving the immune system, multiple strains coexist at the steady state.  相似文献   

2.
We study the global stability of a class of models for in-vivo virus dynamics that take into account the Cytotoxic T Lymphocyte immune response and display antigenic variation. This class includes a number of models that have been extensively used to model HIV dynamics. We show that models in this class are globally asymptotically stable, under mild hypothesis, by using appropriate Lyapunov functions. We also characterise the stable equilibrium points for the entire biologically relevant parameter range. As a by-product, we are able to determine what is the diversity of the persistent strains.  相似文献   

3.
New stochastic models are developed for the dynamics of a viral infection and an immune response during the early stages of infection. The stochastic models are derived based on the dynamics of deterministic models. The simplest deterministic model is a well-known system of ordinary differential equations which consists of three populations: uninfected cells, actively infected cells, and virus particles. This basic model is extended to include some factors of the immune response related to Human Immunodeficiency Virus-1 (HIV-1) infection. For the deterministic models, the basic reproduction number, R0, is calculated and it is shown that if R0<1, the disease-free equilibrium is locally asymptotically stable and is globally asymptotically stable in some special cases. The new stochastic models are systems of stochastic differential equations (SDEs) and continuous-time Markov chain (CTMC) models that account for the variability in cellular reproduction and death, the infection process, the immune system activation, and viral reproduction. Two viral release strategies are considered: budding and bursting. The CTMC model is used to estimate the probability of virus extinction during the early stages of infection. Numerical simulations are carried out using parameter values applicable to HIV-1 dynamics. The stochastic models provide new insights, distinct from the basic deterministic models. For the case R0>1, the deterministic models predict the viral infection persists in the host. But for the stochastic models, there is a positive probability of viral extinction. It is shown that the probability of a successful invasion depends on the initial viral dose, whether the immune system is activated, and whether the release strategy is bursting or budding.  相似文献   

4.
捕食者有病的生态-流行病模型的分析   总被引:11,自引:1,他引:10  
建立并分析了捕食者具有疾病且有功能反应的生态-流行病(SI)模型,讨论了解的有界性.应用特征根法得到了平衡点局部渐近稳定的充分条件,进一步分析了平衡点的全局稳定性,得到了边界平衡点和正平衡点全局稳定的充分条件。  相似文献   

5.
The dynamics of a general in-host model with intracellular delay is studied. The model can describe in vivo infections of HIV-I, HCV, and HBV. It can also be considered as a model for HTLV-I infection. We derive the basic reproduction number R 0 for the viral infection, and establish that the global dynamics are completely determined by the values of R 0. If R 0≤1, the infection-free equilibrium is globally asymptotically stable, and the virus are cleared. If R 0>1, then the infection persists and the chronic-infection equilibrium is locally asymptotically stable. Furthermore, using the method of Lyapunov functional, we prove that the chronic-infection equilibrium is globally asymptotically stable when R 0>1. Our results shows that for intercellular delays to generate sustained oscillations in in-host models it is necessary have a logistic mitosis term in target-cell compartments.  相似文献   

6.
Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium.  相似文献   

7.
The trajectories of the dynamic system which regulates the competition between the populations of malignant cells and immune cells may tend to an asymptotically stable equilibrium in which the sizes of these populations do not vary, which is called tumor dormancy. Especially for lower steady-state sizes of the population of malignant cells, this equilibrium represents a desirable clinical condition since the tumor growth is blocked. In this context, it is of mandatory importance to analyze the robustness of this clinical favorable state of health in the face of perturbations. To this end, the paper presents an optimization technique to determine whether an assigned rectangular region, which surrounds an asymptotically stable equilibrium point of a quadratic systems, is included into the domain of attraction of the equilibrium itself. The biological relevance of the application of this technique to the analysis of tumor growth dynamics is shown on the basis of a recent quadratic model of the tumor–immune system competition dynamics. Indeed the application of the proposed methodology allows to ensure that a given safety region, determined on the basis of clinical considerations, belongs to the domain of attraction of the tumor blocked equilibrium; therefore for the set of perturbed initial conditions which belong to such region, the convergence to the healthy steady state is guaranteed. The proposed methodology can also provide an optimal strategy for cancer treatment.  相似文献   

8.
In this article, we study the global dynamics of a discrete two-dimensional competition model. We give sufficient conditions on the persistence of one species and the existence of local asymptotically stable interior period-2 orbit for this system. Moreover, we show that for a certain parameter range, there exists a compact interior attractor that attracts all interior points except Lebesgue measure zero set. This result gives a weaker form of coexistence which is referred to as relative permanence. This new concept of coexistence combined with numerical simulations strongly suggests that the basin of attraction of the locally asymptotically stable interior period-2 orbit is an infinite union of connected components. This idea may apply to many other ecological models. Finally, we discuss the generic dynamical structure that gives relative permanence.  相似文献   

9.
A sufficient condition for the existence of a globally asymptotically stable equilibrium in Volterra models with continuous time delay is obtained, and some properties of the stable equilibrium are proven. Furthermore, some applications in which asymptotic stability only depends on the sign of the coefficients are considered.  相似文献   

10.
This paper presents a resource-dependent viability selection differential equation model of continuously reproducing diploid population with two alleles at one locus for a single limiting resource. This model assumes that the genotypic fitness is only a function of the limiting resource. The conditions that the interior equilibrium point of the system exists are that the heterozygote fitness is positive and the homozygote fitness is negative, or the heterozygote fitness is negative and the homozygote fitness is positive at the point. The sufficient and necessary conditions of locally asymptotical stability of the interior equilibrium point are that the heterozygote fitness is positive at the point, or the locally asymptotically stable equilibrium corresponds to the point at which the level of the limiting resource is locally minimized on the zero mean fitness curve, f = 0.  相似文献   

11.
讨论了一类具免疫时滞的HIV感染模型.分析了未感染平衡点的全局渐近稳定性,给出了感染无免疫平衡点及感染免疫平衡点局部渐近稳定的充分条件.数值模拟结果表明,当易感细胞生成率的取值使得基本再生数满足平衡存在的条件且低于某一临界值时,时滞对平衡点的稳定性没有影响;若大于该临界值,随着时滞增大,稳定性开关发生,平衡点不稳定,出现一系列Hopf分支,最终表现为周期波动模式.  相似文献   

12.
具有三个年龄阶段的单种群自食模型   总被引:5,自引:1,他引:4  
建立并研究了两个具有三个年龄阶段的单种群自食模型.这篇文章的主要目的是研究时滞对种群生长的作用,对于没有时滞的的模型,我们利用Liapunov函数,得到了系统平衡点全局渐近稳定的充分条件;而具有时滞的的模型,我们得到,随着时滞T增加,当系数满足一定条件时,正平衡点的稳定性可以改变有限次,最后变成不稳定;否则,时滞模型的正平衡点的稳定性不改变。  相似文献   

13.
一类含间隙分布时滞的种群增长模型的稳定性   总被引:4,自引:0,他引:4  
本文首先利用间隙分布时滞函数来建立更为符合实际的种群增长模型,然后运用两种不同的方法,对其平衡位置的局部稳定性进行了全面的讨论,得出了局部渐近稳定的充分必要条件,在参数平面上划分出了稳定和不稳地的区域。  相似文献   

14.
The class of immunosuppressive lymphocytes known as regulatory T cells (Tregs) has been identified as a key component in preventing autoimmune diseases. Although Tregs have been incorporated previously in mathematical models of autoimmunity, we take a novel approach which emphasizes the importance of professional antigen presenting cells (pAPCs). We examine three possible mechanisms of Treg action (each in isolation) through ordinary differential equation (ODE) models. The immune response against a particular autoantigen is suppressed both by Tregs specific for that antigen and by Tregs of arbitrary specificities, through their action on either maturing or already mature pAPCs or on autoreactive effector T cells. In this deterministic approach, we find that qualitative long-term behaviour is predicted by the basic reproductive ratio R 0 for each system. When R 0<1, only the trivial equilibrium exists and is stable; when R 0>1, this equilibrium loses its stability and a stable non-trivial equilibrium appears. We interpret the absence of self-damaging populations at the trivial equilibrium to imply a state of self-tolerance, and their presence at the non-trivial equilibrium to imply a state of chronic autoimmunity. Irrespective of mechanism, our model predicts that Tregs specific for the autoantigen in question play no role in the system’s qualitative long-term behaviour, but have quantitative effects that could potentially reduce an autoimmune response to sub-clinical levels. Our results also suggest an important role for Tregs of arbitrary specificities in modulating the qualitative outcome. A stochastic treatment of the same model demonstrates that the probability of developing a chronic autoimmune response increases with the initial exposure to self antigen or autoreactive effector T cells. The three different mechanisms we consider, while leading to a number of similar predictions, also exhibit key differences in both transient dynamics (ODE approach) and the probability of chronic autoimmunity (stochastic approach).  相似文献   

15.
Transient oscillations induced by delayed growth response in the chemostat   总被引:2,自引:0,他引:2  
In this paper, in order to try to account for the transient oscillations observed in chemostat experiments, we consider a model of single species growth in a chemostat that involves delayed growth response. The time delay models the lag involved in the nutrient conversion process. Both monotone response functions and nonmonotone response functions are considered. The nonmonotone response function models the inhibitory effects of growth response of certain nutrients when concentrations are too high. By applying local and global Hopf bifurcation theorems, we prove that the model has unstable periodic solutions that bifurcate from unstable nonnegative equilibria as the parameter measuring the delay passes through certain critical values and that these local periodic solutions can persist, even if the delay parameter moves far from the critical (local) bifurcation values.When there are two positive equilibria, then positive periodic solutions can exist. When there is a unique positive equilibrium, the model does not have positive periodic oscillations and the unique positive equilibrium is globally asymptotically stable. However, the model can have periodic solutions that change sign. Although these solutions are not biologically meaningful, provided the initial data starts close enough to the unstable manifold of one of these periodic solutions they may still help to account for the transient oscillations that have been frequently observed in chemostat experiments. Numerical simulations are provided to illustrate that the model has varying degrees of transient oscillatory behaviour that can be controlled by the choice of the initial data.Mathematics Subject Classification: 34D20, 34K20, 92D25Research was partially supported by NSERC of Canada.This work was partly done while this author was a postdoc at McMaster.  相似文献   

16.
In this paper, we rigorously analyse an ordinary differential equation system that models fighting the HIV-1 virus with a genetically modified virus. We show that when the basic reproduction ratio ?0<1, then the infection-free equilibrium E 0 is globally asymptotically stable; when ?0>1, E 0 loses its stability and there is the single-infection equilibrium E s. If ?0∈(1, 1+δ) where δ is a positive constant explicitly depending on system parameters, then the single-infection equilibrium E s that is globally asymptotically stable, while when ?0>1+δ, E s becomes unstable and the double-infection equilibrium E d comes into existence. When ?0 is slightly larger than 1+δ, E d is stable and it loses its stability via Hopf bifurcation when ?0 is further increased in some ways. Through a numerical example and by applying a normal form theory, we demonstrate how to determine the bifurcation direction and stability, as well as the estimates of the amplitudes and the periods of the bifurcated periodic solutions. We also perform numerical simulations which agree with the theoretical results. The approaches we use here are a combination of analysis of characteristic equations, fluctuation lemma, Lyapunov function and normal form theory.  相似文献   

17.
In this paper, with the assumptions that an infectious disease in a population has a fixed latent period and the latent individuals of the population may disperse, we formulate an SIR model with a simple demographic structure for the population living in an n-patch environment (cities, towns, or countries, etc.). The model is given by a system of delay differential equations with a fixed delay accounting for the latency and a non-local term caused by the mobility of the individuals during the latent period. Assuming irreducibility of the travel matrices of the infection related classes, an expression for the basic reproduction number R0{\mathcal{R}_0} is derived, and it is shown that the disease free equilibrium is globally asymptotically stable if R0 < 1{\mathcal{R}_0 < 1} , and becomes unstable if ${\mathcal{R}_0 > 1}${\mathcal{R}_0 > 1} . In the latter case, there is at least one endemic equilibrium and the disease will be uniformly persistent. When n = 2, two special cases allowing reducible travel matrices are considered to illustrate joint impact of the disease latency and population mobility on the disease dynamics. In addition to the existence of the disease free equilibrium and interior endemic equilibrium, the existence of a boundary equilibrium and its stability are discussed for these two special cases.  相似文献   

18.
提出一个改进的乙肝病毒感染动力学模型.本模型有三个平衡点.对于HBV感染人群,三个平衡点分别对应于三类人群:感染病毒后自愈人群、健康带毒人群、慢性乙肝患者人群.证明了当模型导出的基本复制数R_0〈1时病毒清除平衡点具有局部稳定性和全局渐近稳定性,当1〈R_0〈k_3d/(k_2λ-k_3a)+1时持续带毒平衡点具有局部稳定性.  相似文献   

19.
This paper is concerned with the qualitative analysis of two models [S. Bonhoeffer, M. Lipsitch, B.R. Levin, Evaluating treatment protocols to prevent antibiotic resistance, Proc. Natl. Acad. Sci. USA 94 (1997) 12106] for different treatment protocols to prevent antibiotic resistance. Detailed qualitative analysis about the local or global stability of the equilibria of both models is carried out in term of the basic reproduction number R0. For the model with a single antibiotic therapy, we show that if R0 < 1, then the disease-free equilibrium is globally asymptotically stable; if R0 > 1, then the disease-endemic equilibrium is globally asymptotically stable. For the model with multiple antibiotic therapies, stabilities of various equilibria are analyzed and combining treatment is shown better than cycling treatment. Numerical simulations are performed to show that the dynamical properties depend intimately upon the parameters.  相似文献   

20.
Thresholds, equilibria, and their stability are found for SIQS and SIQR epidemiology models with three forms of the incidence. For most of these models, the endemic equilibrium is asymptotically stable, but for the SIQR model with the quarantine-adjusted incidence, the endemic equilibrium is an unstable spiral for some parameter values and periodic solutions arise by Hopf bifurcation. The Hopf bifurcation surface and stable periodic solutions are found numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号