首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Specific electrophysiological and pharmacological properties of ionic channels in NMDA, AMPA, and kainate subtypes of ionotropic glutamate receptors (GluRs) are determined by the Asn (N), Gln (Q), and Arg (R) residues located at homologous positions of the pore-lining M2 segments (the N/Q/R site). Presumably, the N/Q/R site is located at the apex of the reentrant membrane loop and forms the narrowest constriction of the pore. Although the shorter Asn residues are expected to protrude in the pore to a lesser extent than the longer Gln residues, the effective dimension of the NMDA channel (corresponding to the size of the largest permeant organic cation) is, surprisingly, smaller than that of the AMPA channel. To explain this paradox, we propose that the N/Q/R residues form macrocyclic structures (rings) stabilized by H-bonds between a NH(2) group in the side chain of a given M2 segment and a C==O group of the main chain in the adjacent M2 segment. Using Monte Carlo minimization, we have explored conformational properties of the rings. In the Asn, but not in the Gln ring, the side-chain oxygens protruding into the pore may facilitate ion permeation and accept H-bonds from the blocking drugs. In this way, the model explains different electrophysiological and pharmacological properties of NMDA and non-NMDA GluR channels. The ring of H-bonded polar residues at the pore narrowing resembles the ring of four Thr(75) residues observed in the crystallographic structure of the KcsA K(+) channel.  相似文献   

2.
Ionotropic glutamate receptors (GluRs) are ligand-gated ion channels with a modular structure. The ion channel itself shares structural similarity, albeit an inverted membrane topology, with P-loop channels. Like P-loop channels, prokaryotic GluR subunits (e.g. GluR0) have two transmembrane segments. In contrast, eukaryotic GluRs have an additional transmembrane segment (M4), located C-terminal to the ion channel core. However, the structural/functional significance of this additional transmembrane segment is poorly defined. Although topologically similar to GluR0, mammalian AMPA receptor (GluA1) subunits lacking the M4 segment do not display surface expression. This lack of expression is not due to the M4 segment serving as an anchor to the ligand-binding domain because insertion of an artificial polyleucine transmembrane segment does not rescue surface expression. Specific interactions between M4 and the ligand-binding domain are also unlikely because insertion of polyglycines into the linker connecting them has no deleterious effects on function or surface expression. However, tryptophan and cysteine scanning mutagenesis of the M4 segment, as well as recovery of function in the polyleucine background, defined a unique face of the M4 helix that is required for GluR surface expression. In the AMPA receptor structure, this face forms intersubunit contacts with the transmembrane helices of the ion channel core (M1 and M3) from another subunit within the homotetramer. Thus, our experiments show that a highly specific interaction of the M4 segment with an adjacent subunit is required for surface expression of AMPA receptors. This interaction may represent a mechanism for regulating AMPA receptor biogenesis.  相似文献   

3.
Beck C  Wollmuth LP  Seeburg PH  Sakmann B  Kuner T 《Neuron》1999,22(3):559-570
In NMDA receptor channels, the M2 loop forms the narrow constriction and the cytoplasmic vestibule. The identity of an extracellular vestibule leading toward the constriction remained unresolved. Using the substituted cysteine accessibility method (SCAM), we identified channel-lining residues of the NR1 subunit in the region preceding M1 (preM1), the C-terminal part of M3 (M3C), and the N-terminal part of M4 (M4N). These residues are located on the extracellular side of the constriction and, with one exception, are exposed to the pore independently of channel activation, suggesting that the gate is at the constriction or further cytoplasmic to it. Permeation of Ca2+ ions was decreased by mutations in M3C and M4N, but not by mutations in preM1, suggesting a functionally distinct contribution of the segments to the extracellular vestibule of the NMDA receptor channel.  相似文献   

4.
We tested the hypothesis that part of the lumenal amino acid segment between the two most C-terminal membrane segments of the skeletal muscle ryanodine receptor (RyR1) is important for channel activity and conductance. Eleven mutants were generated and expressed in HEK293 cells focusing on amino acid residue I4897 homologous to the selectivity filter of K(+) channels and six other residues in the M3-M4 lumenal loop. Mutations of amino acids not absolutely conserved in RyRs and IP(3)Rs (D4903A and D4907A) showed cellular Ca(2+) release in response to caffeine, Ca(2+)-dependent [(3)H]ryanodine binding, and single-channel K(+) and Ca(2+) conductances not significantly different from wild-type RyR1. Mutants with an I4897 to A, L, or V or D4917 to A substitution showed a decreased single-channel conductance, loss of high-affinity [(3)H]ryanodine binding and regulation by Ca(2+), and an altered caffeine-induced Ca(2+) release in intact cells. Mutant channels with amino acid residue substitutions that are identical in the RyR and IP(3)R families (D4899A, D4899R, and R4913E) exhibited a decreased K(+) conductance and showed a loss of high-affinity [(3)H]ryanodine binding and loss of single-channel pharmacology but maintained their response to caffeine in a cellular assay. Two mutations (G4894A and D4899N) were able to maintain pharmacological regulation both in intact cells and in vitro but had lower single-channel K(+) and Ca(2+) conductances than the wild-type channel. The results support the hypothesis that amino acid residues in the lumenal loop region between the two most C-terminal membrane segments constitute a part of the ion-conducting pore of RyR1.  相似文献   

5.
The loop between transmembrane regions S5 and S6 (P-region) of voltage-gated K+ channels has been proposed to form the ion-conducting pore, and the internal part of this segment is reported to be responsible for ion permeation and internal tetraethylammonium (TEA) binding. The two T-cell K+ channels, Kv3.1 and Kv1.3, with widely divergent pore properties, differ by a single residue in this internal P-region, leucine 401 in Kv3.1 corresponding to valine 398 in Kv1.3. The L401V mutation in Kv3.1 was created with the anticipation that the mutant channel would exhibit Kv1.3-like deep-pore properties. Surprisingly, this mutation did not alter single channel conductance and only moderately enhanced internal TEA sensitivity, indicating that residues outside the P-region influence these properties. Our search for additional residues was guided by the model of Durell and Guy, which predicted that the C-terminal end of S6 formed part of the K+ conduction pathway. In this segment, the two channels diverge at only one position, Kv3.1 containing M430 in place of leucine in Kv1.3. The M430L mutant of Kv3.1 exhibited permeant ion- and voltage-dependent flickery outward single channel currents, with no obvious changes in other pore properties. Modification of one or more ion-binding sites located in the electric field and possibly within the channel pore could give rise to this type of channel flicker.  相似文献   

6.
RNA editing by select adenosine deamination (A-to-I editing) alters functional determinants in certain ion channels and neurotransmitter receptors in vertebrates and invertebrates. In most cases, edited and unedited versions of a given receptor/channel co-exist to expand the functional space of the receptor population. Recent studies have characterized K(+) channels in squid that are edited at multiple positions, revealed a role for Q/R site editing in AMPA receptor assembly, and demonstrated a link between serotonin levels and the extent of editing of a mammalian serotonin receptor.  相似文献   

7.
RNA editing at the Q/R site near the apex of the pore loop of AMPA and kainate receptors controls a diverse array of channel properties, including ion selectivity and unitary conductance and susceptibility to inhibition by polyamines and cis-unsaturated fatty acids, as well as subunit assembly into tetramers and regulation by auxiliary subunits. How these different aspects of channel function are all determined by a single amino acid substitution remains poorly understood; however, several lines of evidence suggest that interaction between the pore helix (M2) and adjacent segments of the transmembrane inner (M3) and outer (M1) helices may be involved. In the present study, we have used double mutant cycle analysis to test for energetic coupling between the Q/R site residue and amino acid side chains along the M3 helix. Our results demonstrate interaction with several M3 locations and particularly strong coupling to substitution for L614 at the level of the central cavity. In this location, replacement with smaller side chains completely and selectively reverses the effect of fatty acids on gating of edited channels, converting strong inhibition of wild-type GluK2(R) to nearly 10-fold potentiation of GluK2(R) L614A.  相似文献   

8.
Structure of the Ca channel open pore is unlikely to be the same as that of the K channel because Ca channels do not contain the hinge residues Gly or Pro. The Ca channel does not have a wide entry into the inner pore, as is found in K channels. First we sought to simulate the open state of the Ca channel by modeling forced opening of the KcsA channel using a procedure of restrained minimization with distance constraints at the level of the α-helical bundle, corresponding to segments Thr-107-Val-115. This produced an intermediate open state, which was populated by amino acid residues of Ca channels and then successively optimized until the opening of the pore reached a diameter of about 10 Å, large enough to allow verapamil to enter and block the Ca channel from inside. Although this approach produced a sterically plausible structure, it was in significant disagreement with the MTSET accessibility data for single cysteine mutations of S6 segments of the P/Q channel1 that do not fit with an α-helical pattern. Last we explored the idea that the four S6 segments of Ca channels may contain intra-molecular deformations that lead to reorientation of its side chains. After introduction of π-bulges, the model agreed with the MTSET accessibility data. MTSET modification of a cysteine at the C-end of only one S6 could produce physical occlusion and block of the inner pore of the open Ca channel, as observed experimentally, and as expected if the pore opening is narrower than that of K channels.Key words: calcium channels, homology modeling, π-bulges, restrained minimization  相似文献   

9.
Ionotropic glutamate receptors belong to the superfamily of P-loop channels as well as K(+), Na(+), and Ca(2+) channels. However, the structural similarity between ion channels of the glutamate receptors and K(+) channels is a matter of discussion. The aim of this study was to analyze differences between the structures of K(+) channels and glutamate receptor channels. For this purpose, homology models of NMDA and AMPA receptor channels (M2 and M3 segments) were built using X-ray structures of K(+) channels as templates. The models were optimized and used to reproduce specific data on the structure of glutamate receptor channels. Particular attention was paid to the data of the binding of channel blockers and to the results of scanning mutagenesis. The modeling demonstrates that properties of glutamate receptor channel can be reproduced assuming only local structural deformations of the K(+) channel templates. The most valuable differences were found in the selectivity-filter region, whereas helical parts of M2 and M3 segments could have similar spatial organization with homologous segments in K(+) channels. It is concluded that the current experimental data on glutamate receptor channels does not reveal global structural differences with K(+) channels.  相似文献   

10.
Li RA  Sato K  Kodama K  Kohno T  Xue T  Tomaselli GF  Marbán E 《FEBS letters》2002,511(1-3):159-164
mu-Conotoxin (mu-CTX) inhibits Na+ flux by obstructing the Na+ channel pore. Previous studies of mu-CTX have focused only on charged toxin residues, ignoring the neutral sites. Here we investigated the proximity between the C-terminal neutral alanine (A22) of mu-CTX and the Na+ channel pore by replacing it with the negatively charged glutamate. The analog A22E and wild-type (WT) mu-CTX exhibited identical nuclear magnetic resonance spectra except at the site of replacement, verifying that they have identical backbone structures. A22E significantly reduced mu-CTX affinity for WT mu1 Na+ channels (90-fold), as if the inserted glutamate repels the anionic pore receptor. We then looked for the interacting partner(s) of residue 22 by determining the potency of block of Y401K, Y401A, E758Q, D762K, D762A, E765K, E765A and D1241K channels by WT mu-CTX and A22E, followed by mutant cycle analysis to assess their individual couplings. Our results show that A22E interacts strongly with E765K from domain II (DII) (deltadeltaG=2.2 +/- 0.1 vs. <1 kcal/mol for others). We conclude that mu-CTX residue 22 closely associates with the DII pore in the toxin-bound channel complex. The approach taken may be further exploited to study the proximity of other neutral toxin residues with the Na+ channel pore.  相似文献   

11.
The inner pore of voltage-gated Ca2+ channels (VGCCs) is functionally important, but little is known about the architecture of this region. In K+ channels, this part of the pore is formed by the S6/M2 transmembrane segments from four symmetrically arranged subunits. The Ca2+ channel pore, however, is formed by four asymmetric domains of the same (alpha1) subunit. Here we investigated the architecture of the inner pore of P/Q-type Ca2+ channels using the substituted-cysteine accessibility method. Many positions in the S6 segments of all four repeats of the alpha1 subunit (Ca(v)2.1) were modified by internal methanethiosulfonate ethyltrimethylammonium (MTSET). However, the pattern of modification does not fit any known sequence alignment with K+ channels. In IIS6, five consecutive positions showed clear modification, suggesting a likely aqueous crevice and a loose packing between S6 and S5 segments, a notion further supported by the observation that some S5 positions were also accessible to internal MTSET. These results indicate that the inner pore of VGCCs is indeed formed by the S6 segments but is different from that of K+ channels. Interestingly some residues in IIIS6 and IVS6 whose mutations in L-type Ca2+ channels affect the binding of dihydropyridines and phenylalkylamines and are thought to face the pore appeared not to react with internal MTSET. Probing with qBBr, a rigid thiol-reactive agent with a dimension of 12 angstroms x 10 angstroms x 6 angstroms suggests that the inner pore can open to >10 angstroms. This work provides an impetus for future studies on ion permeation, gating, and drug binding of VGCCs.  相似文献   

12.
Binding of argiotoxin in the closed state of Ca(2+)-permeable AMPA receptor channels was studied using electrophysiological and molecular modeling approaches. Experimental study unambiguously revealed that argiotoxin is trapped in the closed AMPA receptor channels after agonist dissociation. Docking of the argiotoxin to the channel model based on recently published X-ray structure demonstrated that the drug can be effectively accommodated in the cavity of the closed channel only if the terminal moiety of the molecule penetrates in the narrow portion of the pore below the selectivity filter. Combining these results, we conclude that the selectivity filter of the AMPA receptor channels is not sterically occluded in the closed state.  相似文献   

13.
L-type calcium channels (LCCs) are transmembrane (TM) proteins that respond to membrane depolarization by selectively permeating Ca(2+) ions. Dihydropyridine (DHP) agonists and antagonist modulate Ca(2+) permeation by stabilizing, respectively, the open and closed states of the channel. The mechanism of action of these drugs remains unclear. Using, as a template, the crystal structure of the KcsA K(+) channel (Doyle et al. (1998) Science 280, 69-77), we have built several homology models of LCC with alternative alignments of TM segments between the proteins. In each model, nifedipine was docked in the pore region and in the interface between repeats III and IV. Several starting structures were generated by constraining the ligand to residues whose mutations reportedly affect DHP binding (DHP-sensing residues). These structures were Monte Carlo-minimized with and without constraints. In the complex with the maximum number of contacts between the ligand and DHP-sensing residues and the lowest ligand-receptor energy, the drug fits snugly in the "water-lake" cavity between segments S6s, which were aligned with M2 segment of KcsA as proposed for Na(+) channel (Lipkind and Fozzard (2000) Biochemistry 39, 8161-8170). In the flattened-boat conformation of DHP ring, the NH group at the stern approaches the DHP-sensing tyrosines in segments IIIS6 and IVS6. Stacking interactions of IVS6 Tyr with the bowsprit aromatic ring stabilize the ligand's orientation in which the starboard COOMe group coordinates Ca(2+) ion chelated by two conserved glutamates in the selectivity filter. In the inverted teepee structure of LCC, the portside COOMe group approaches a bracelet of conserved hydrophobic residues at the helical-bundle crossing, which may function as the activation gate. The dimensions of the gate may readily change upon small rotation of the pore-forming TM segments. The end of the portside group is hydrophobic in nifedipine, (R)-Bay K 8644, and other antagonists. Favorable interactions of this group with the hydrophobic bracelet would stabilize its closed conformation. In contrast, (S)-Bay K 8644 and several other agonists have hydrophilic groups at the portside. Unfavorable interactions of the hydrophilic group with the hydrophobic bracelet would destabilize its closed conformation thereby stabilizing the open conformation. In the agonist-bound channel, Ca(2+) ions would permeate between the hydrophilic face of the ligand and conserved hydrophilic residues in segments IS6 and IIS6. Our model suggests mutational experiments that could further our understanding of the pharmacological modulation of voltage-gated ion channels.  相似文献   

14.
beta-Scorpion toxins shift the voltage dependence of activation of sodium channels to more negative membrane potentials, but only after a strong depolarizing prepulse to fully activate the channels. Their receptor site includes the S3-S4 loop at the extracellular end of the S4 voltage sensor in domain II of the alpha subunit. Here, we probe the role of gating charges in the IIS4 segment in beta-scorpion toxin action by mutagenesis and functional analysis of the resulting mutant sodium channels. Neutralization of the positively charged amino acid residues in the IIS4 segment by mutation to glutamine shifts the voltage dependence of channel activation to more positive membrane potentials and reduces the steepness of voltage-dependent gating, which is consistent with the presumed role of these residues as gating charges. Surprisingly, neutralization of the gating charges at the outer end of the IIS4 segment by the mutations R850Q, R850C, R853Q, and R853C markedly enhances beta-scorpion toxin action, whereas mutations R856Q, K859Q, and K862Q have no effect. In contrast to wild-type, the beta-scorpion toxin Css IV causes a negative shift of the voltage dependence of activation of mutants R853Q and R853C without a depolarizing prepulse at holding potentials from -80 to -140 mV. Reaction of mutant R853C with 2-aminoethyl methanethiosulfonate causes a positive shift of the voltage dependence of activation and restores the requirement for a depolarizing prepulse for Css IV action. Enhancement of sodium channel activation by Css IV causes large tail currents upon repolarization, indicating slowed deactivation of the IIS4 voltage sensor by the bound toxin. Our results are consistent with a voltage-sensor-trapping model in which the beta-scorpion toxin traps the IIS4 voltage sensor in its activated position as it moves outward in response to depolarization and holds it there, slowing its inward movement on deactivation and enhancing subsequent channel activation. Evidently, neutralization of R850 and R853 removes kinetic barriers to binding of the IIS4 segment by Css IV, and thereby enhances toxin-induced channel activation.  相似文献   

15.
Structure of the Ca channel open pore is unlikely to be the same as that of the K channel because Ca channels do not contain the hinge residues Gly or Pro. The Ca channel does not have a wide entry into the inner pore, as is found in K channels. First we sought to simulate the open state of the Ca channel by modeling forced opening of the KcsA channel using a procedure of restrained minimization with distance constraints at the level of the α-helical bundle, corresponding to segments Thr-107-Val-115. This produced an intermediate open state, which was populated by amino acid residues of Ca channels and then successively optimized until the opening of the pore reached a diameter of about 10 Å, large enough to allow verapamil to enter and block the Ca channel from inside. Although this approach produced a sterically plausible structure, it was in significant disagreement with the MTSET accessibility data for single cysteine mutations of S6 segments of the P/Q channel1 that do not fit with an α-helical pattern. Last we explored the idea that the four S6 segments of Ca channels may contain intra-molecular deformations that lead to reorientation of its side chains. After introduction of ≠-bulges, the model agreed with the MTSET accessibility data. MTSET modification of a cysteine at the C-end of only one S6 could produce physical occlusion and block of the inner pore of the open Ca channel, as observed experimentally, and as expected if the pore opening is narrower than that of K channels.  相似文献   

16.
The permeation pathway of the Na channel is formed by asymmetric loops (P segments) contributed by each of the four domains of the protein. In contrast to the analogous region of K channels, previously we (Yamagishi, T., M. Janecki, E. Marban, and G. Tomaselli. 1997. Biophys. J. 73:195-204) have shown that the P segments do not span the selectivity region, that is, they are accessible only from the extracellular surface. The portion of the P-segment NH(2)-terminal to the selectivity region is referred to as SS1. To explore further the topology and functional role of the SS1 region, 40 amino acids NH(2)-terminal to the selectivity ring (10 in each of the P segments) of the rat skeletal muscle Na channel were substituted by cysteine and expressed in tsA-201 cells. Selected mutants in each domain could be blocked with high affinity by externally applied Cd(2)+ and were resistant to tetrodotoxin as compared with the wild-type channel. None of the externally applied sulfhydryl-specific methanethiosulfonate reagents modified the current through any of the mutant channels. Both R395C and R750C altered ionic selectivity, producing significant increases in K(+) and NH(4)(+) currents. The pattern of side chain accessibility is consistent with a pore helix like that observed in the crystal structure of the bacterial K channel, KcsA. Structure prediction of the Na channel using the program PHDhtm suggests an alpha helix in the SS1 region of each domain channel. We conclude that each of the P segments undergoes a hairpin turn in the permeation pathway, such that amino acids on both sides of the putative selectivity filter line the outer mouth of the pore. Evolutionary conservation of the pore helix motif from bacterial K channels to mammalian Na channels identifies this structure as a critical feature in the architecture of ion selective pores.  相似文献   

17.
Glycine receptors (GlyR) are the primary inhibitory receptors in the spinal cord and belong to a superfamily of ligand-gated ion channels (LGICs) that are extremely sensitive to low-affinity neurological agents such as general anesthetics and alcohols. The high-resolution pore architecture and the gating mechanism of this superfamily, however, remain unclear. The pore-lining second transmembrane (TM2) segments of the GlyR alpha(1) subunit are unique in that they form functional homopentameric channels with conductance characteristics nearly identical to those of an authentic receptor (Opella, S. J., J. Gesell, A. R. Valente, F. M. Marassi, M. Oblatt-Montal, W. Sun, A. F. Montiel, and M. Montal. 1997. Chemtracts Biochem. Mol. Biol. 10:153-174). Using NMR and circular dichroism (CD), we determined the high-resolution structures of the TM2 segment of human alpha(1) GlyR and an anesthetic-insensitive mutant (S267Y) in dodecyl phosphocholine (DPC) and sodium dodecyl sulfate (SDS) micelles. The NMR structures showed right-handed alpha-helices without kinks. A well-defined hydrophilic path, composed of side chains of G2', T6', T10', Q14', and S18', runs along the helical surfaces at an angle approximately 10-20 degrees relative to the long axis of the helices. The side-chain arrangement of the NMR-derived structures and the energy minimization of a homopentameric TM2 channel in a fully hydrated DMPC membrane using large-scale computation suggest a model of pore architecture in which simultaneous tilting movements of entire TM2 helices by a mere 10 degrees may be sufficient to account for the channel gating. The model also suggests that additional residues accessible from within the pore include L3', T7', T13', and G17'. A similar pore architecture and gating mechanism may apply to other channels in the same superfamily, including GABA(A), nACh, and 5-HT(3) receptors.  相似文献   

18.
Two-pore domain potassium (K(2P)) channels play a key role in setting the membrane potential of excitable cells. Despite their role as putative targets for drugs and general anesthetics, little is known about the structure and the drug binding site of K(2P) channels. We describe A1899 as a potent and highly selective blocker of the K(2P) channel TASK-1. As A1899 acts as an open-channel blocker and binds to residues forming the wall of the central cavity, the drug was used to further our understanding of the channel pore. Using alanine mutagenesis screens, we have identified residues in both pore loops, the M2 and M4 segments, and the halothane response element to form the drug binding site of TASK-1. Our experimental data were used to validate a K(2P) open-pore homology model of TASK-1, providing structural insights for future rational design of drugs targeting K(2P) channels.  相似文献   

19.
Mu-conotoxins (mu-CTXs) are Na+ channel-blocking, 22-amino acid peptides produced by the sea snail Conus geographus. Although K+ channel pore-blocking toxins show specific interactions with permeant ions and strong dependence on the ionic strength (mu), no such dependence has been reported for mu-CTX and Na+ channels. Such properties would offer insight into the binding and blocking mechanism of mu-CTX as well as functional and structural properties of the Na+ channel pore. Here we studied the effects of mu and permeant ion concentration ([Na+]) on mu-CTX block of rat skeletal muscle (mu1, Nav1.4) Na+ channels. Mu-CTX sensitivity of wild-type and E758Q channels increased significantly (by approximately 20-fold) when mu was lowered by substituting external Na+ with equimolar sucrose (from 140 to 35 mm Na+); however, toxin block was unaltered (p > 0.05) when mu was maintained by replacement of [Na+] with N-methyl-d-glucamine (NMG+), suggesting that the enhanced sensitivity at low mu was not due to reduction in [Na+]. Single-channel recordings identified the association rate constant, k(on), as the primary determinant of the changes in affinity (k(on) increased 40- and 333-fold for mu-CTX D2N/R13Q and D12N/R13Q, respectively, when symmetric 200 mm Na+ was reduced to 50 mm). In contrast, dissociation rates changed <2-fold for the same derivatives under the same conditions. Experiments with additional mu-CTX derivatives identified toxin residues Arg-1, Arg-13, and Lys-16 as important contributors to the sensitivity to external mu. Taken together, our findings indicate that mu-CTX block of Na+ channels depends critically on mu but not specifically on [Na+], contrasting with the known behavior of pore-blocking K+ channel toxins. These findings suggest that different degrees of ion interaction, underlying the fundamental conduction mechanisms of Na+ and K+ channels, are mirrored in ion interactions with pore-blocking toxins.  相似文献   

20.
RNA editing at the Q/R site in the GluR5 and GluR6 subunits of neuronal kainate receptors regulates channel inhibition by lipid-derived modulators including the cis-unsaturated fatty acids arachidonic acid and docosahexaenoic acid. Kainate receptor channels in which all of the subunits are in the edited (R) form exhibit strong inhibition by these compounds, whereas wild-type receptors that include a glutamine (Q) at the Q/R site in one or more subunits are resistant to inhibition. In the present study, we have performed an arginine scan of residues in the pore loop of the GluR6(Q) subunit. Amino acids within the range from -19 to +7 of the Q/R site of GluR6(Q) were individually mutated to arginine and the mutant cDNAs were expressed as homomeric channels in HEK 293 cells. All but one of the single arginine substitution mutants yielded functional channels. Only weak inhibition, typical of wild-type GluR6(Q) channels, was observed for substitutions +1 to +6 downstream of the Q/R site. However, arginine substitution at several locations upstream of the Q/R site resulted in homomeric channels exhibiting strong inhibition by fatty acids, which is characteristic of homomeric GluR6(R) channels. Based on homology with the pore loop of potassium channels, locations at which R substitution induces susceptibility to fatty acid inhibition face away from the cytoplasm toward the M1 and M3 helices and surrounding lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号