首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 393 毫秒
1.
Reproductive isolation can evolve between species as a byproduct of adaptation to different niches, through reinforcement, and by direct selection on mating preferences. We investigated the potential role of direct selection in the reproductive isolation between sympatric species of threespine sticklebacks. Each sympatric pair consists of a small-bodied limnetic species and large-bodied benthic species. We compared the mate preferences and courtship behavior of males from one sympatric limnetic population and two allopatric populations. We used limnetic-like allopatric populations to control for the effects of ecological character displacement and adaptation to different niches on mate preferences. The sympatric limnetic males preferred the small limnetic females, whereas the allopatric limnetic-like males preferred the large benthic females, suggesting that adaptation to the limnetic niche does not automatically confer a preference for small limnetic females. This reproductive character displacement of male preference is consistent with the predictions of both reinforcement and direct selection on mate preferences. To test for direct selection, we assessed a prediction of one proposed mechanism: predation by benthic females on eggs guarded by limnetic males. The allopatric males come from populations in which there is no egg predation. Sympatric limnetic males were more aggressive toward benthic females than toward limnetic females, whereas the allopatric limnetic-like males did not treat the two types of females differently. The contrast in male behavior suggests that egg predation has shaped male preferences. Direct selection is potentially more effective than indirect selection via reinforcement, and it is likely that it has been important in building up reproductive isolation between limnetic and benthic sticklebacks.  相似文献   

2.
Female mate preferences for ecologically relevant traits may enhance natural selection, leading to rapid divergence. They may also forge a link between mate choice within species and sexual isolation between species. Here, we examine female mate preference for two ecologically important traits: body size and body shape. We measured female preferences within and between species of benthic, limnetic, and anadromous threespine sticklebacks (Gasterosteus aculeatus species complex). We found that mate preferences differed between species and between contexts (i.e., within vs. between species). Within species, anadromous females preferred males that were deep bodied for their size, benthic females preferred larger males (as measured by centroid size), and limnetic females preferred males that were more limnetic shaped. In heterospecific mating trials between benthics and limnetics, limnetic females continued to prefer males that were more limnetic like in shape when presented with benthic males. Benthic females showed no preferences for size when presented with limnetic males. These results show that females use ecologically relevant traits to select mates in all three species and that female preference has diverged between species. These results suggest that sexual selection may act in concert with natural selection on stickleback size and shape. Further, our results suggest that female preferences may track adaptation to local environments and contribute to sexual isolation between benthic and limnetic sticklebacks.  相似文献   

3.
The Lake Victoria 'species flock' of cichlids is puzzling because reproductive isolation often occurs in the absence of substantial ecological differences among species. Theory predicts that this cannot evolve with most genetic mechanisms for mate choice. We provide the first evidence that learning, in the form of sexual imprinting, helps maintain reproductive isolation among closely related cichlid species. Using a cross-fostering experiment, we show that young females develop a sexual preference for males of their foster mothers' species, even reversing species assortative mating preferences. We suggest that learning creates favourable conditions for reproductive isolation to evolve.  相似文献   

4.
Detailed studies of reproductive isolation and how it varies among populations can provide valuable insight into the mechanisms of speciation. Here we investigate how the strength of premating isolation varies between sympatric and allopatric populations of threespine sticklebacks to test a prediction of the hypothesis of reinforcement: that interspecific mate discrimination should be stronger in sympatry than in allopatry. In conducting such tests, it is important to control for ecological character displacement between sympatric species because ecological character divergence may strengthen prezygotic isolation as a by-product. We control for ecological character displacement by comparing mate preferences of females from a sympatric population (benthics) with mate preferences of females from two allopatric populations that most closely resemble the sympatric benthic females in ecology and morphology. No-choice mating trials indicate that sympatric benthic females mate less readily with heterospecific (limnetic) than conspecific (benthic) males, whereas two different populations of allopatric females resembling benthics show no such discrimination. These differences demonstrate reproductive character displacement of benthic female mate choice. Previous studies have established that hybridization between sympatric species occurred in the past in the wild and that hybrid offspring have lower fitness than either parental species, thus providing conditions under which natural selection would favor individuals that do not hybridize. Results are therefore consistent with the hypothesis that female mate preferences have evolved as a response to reduced hybrid fitness (reinforcement), although direct effects of sympatry or a biased extinction process could also produce the pattern. Males of the other sympatric species (limnetics) showed a preference for smaller females, in contrast to the inferred ancestral preference for larger females, suggesting reproductive character displacement of limnetic male mate preferences as well.  相似文献   

5.
Predation risk can alter female mating decisions because the costs of mate searching and selecting attractive mates increase when predators are present. In response to predators, females have been found to plastically adjust mate preference within species, but little is known about how predators alter sexual isolation and hybridization among species. We tested the effects of predator exposure on sexual isolation between benthic and limnetic threespine sticklebacks (Gasterosteus spp.). Female discrimination against heterospecific mates was measured before and after females experienced a simulated attack by a trout predator or a control exposure to a harmless object. In the absence of predators, females showed increased aversion to heterospecifics over time. We found that predator exposure made females less discriminating and precluded this learned aversion to heterospecifics. Benthic and limnetic males differ in coloration, and predator exposure also affected sexual isolation by weakening female preferences for colourful males. Predator effects on sexual selection were also tested but predators had few effects on female choosiness among conspecific mates. Our results suggest that predation risk may disrupt the cognitive processes associated with mate choice and lead to fluctuations in the strength of sexual isolation between species.  相似文献   

6.
In the present study we investigated sexual isolation between Triturus vulgaris and 77 montandoni in mating experiments run under semi-natural conditions. The two newt species offer a suitable model for studying evolution of reproductive isolation and mating preferences because they arc genetically the most similar species within the genus and readily hybridize in nature. Separate experiments were conducted in which groups of virgin females were placed together (in artificial pools) with groups of homospecific, heterospecific or both types of males. The estimates of reproductive isolation and mating propensity were based on the numbers of females producing hybrids and/or non-hybrid progeny. The levels of reproductive isolation, isolation asymmetry (IA) and propensity asymmetry (PA) were significant only for experiments in which females were given a choice between conspecific and heterospecific males. This implies that mating experiments with no interspecific choice may reduce discrimination and affect patterns of IA and PA. Asymmetry in reproductive isolation was also significant when the analysis was confined to just inseminated females. Differences in habitat preferences and condition of females possibly contributed to the relatively high values of PA.  相似文献   

7.
Sexual isolation is often assumed to arise because choosy females recognize and reject heterospecific males as mates. Yet in taxa in which both males and females are choosy, males might also recognize and reject heterospecific females. Here, we asked about the relative contribution of the sexes to the strong sexual isolation found in limnetic–benthic species pairs of threespine sticklebacks, which show mutual mate choice. We asked whether males and females of the two species recognize conspecifics and also prefer to mate with them. We found evidence for mate recognition by both sexes but only females prefer conspecifics. The nature of male courtship depended on which species of female they were courting, indicating that males recognized conspecific females and differentiated them from heterospecifics. However, males courted both species of females with equal vigor and changed courtship in a manner that would increase the chance of mating with heterospecifics. Females both recognized conspecifics and strongly preferred them. They responded very little to heterospecific male courtship and almost never mated with them. Therefore, males are likely to undermine sexual isolation, but females uphold it. Despite mutual mate choice and mate recognition in both sexes, females are primarily responsible for sexual isolation in these taxa.  相似文献   

8.
Sexual selection against viable, fertile hybrids may contribute to reproductive isolation between recently diverged species. If so, then sexual selection may be implicated in the speciation process. Laboratory measures of the mating success of hybrids may underestimate the amount of sexual selection against them if selection pressures are habitat specific. Male F1 hybrids between sympatric benthic and limnetic sticklebacks (Gasterosteus aculeatus complex) do not suffer a mating disadvantage when tested in the laboratory. However, in the wild males choose different microhabitats and parental females tend to be found in the same habitats as conspecific males. This sets up the opportunity for sexual selection against male hybrids because they must compete with parental males for access to parental females. To test for sexual selection against adult F1 hybrid males, we examined their mating success in enclosures in their preferred habitat (open, unvegetated substrate) where limnetic males and females also predominate. We found significantly reduced mating success in F1 hybrid males compared with limnetic males. Thus, sexual selection, like other mechanisms of postzygotic isolation between young sister species, may be stronger in a wild setting than in the laboratory because of habitat-specific selection pressures. Our results are consistent with, but do not confirm, a role for sexual selection in stickleback speciation.  相似文献   

9.
Speciation can be initiated by adaptive divergence between populations in ecologically different habitats, but how sexually based reproductive barriers contribute to this process is less well understood. We here test for sexual isolation between ecotypes of threespine stickleback fish residing in adjacent lake and stream habitats in the Lake Constance basin, Central Europe. Mating trials exposing females to pairings of territorial lake and stream males in outdoor mesocosms allowing for natural reproductive behaviour reveal that mating occurs preferentially between partners of the same ecotype. Compared to random mating, this sexual barrier reduces gene flow between the ecotypes by some 36%. This relatively modest strength of sexual isolation is surprising because comparing the males between the two ecotypes shows striking differentiation in traits generally considered relevant to reproductive behaviour (body size, breeding coloration, nest size). Analysing size differences among the individuals in the mating trials further indicates that assortative mating is not related to ecotype differences in body size. Overall, we demonstrate that sexually based reproductive isolation promotes divergence in lake–stream stickleback along with other known reproductive barriers, but we also caution against inferring strong sexual isolation from the observation of strong population divergence in sexually relevant traits.  相似文献   

10.
The Hawaiian picture-winged flies in the genus Drosophila are a spectacular example of rapid evolutionary diversification in which sexual selection is considered an important mechanism for reproductive isolation and speciation. We investigated the behavioral reproductive isolation of two closely related and sympatric Hawaiian picture-winged Drosophila species, D. silvestris and D. heteroneura, which are known to hybridize in nature and produce viable and fertile hybrids. We compared the mating success of parental, F1 and backcross males in pairings with D. heteroneura females. The F1 males were produced by mating D. heteroneura males with D. silvestris females, and the backcross males were produced by mating F1 females with D. heteroneura males. The mating success of backcross males paired with D. heteroneura females were significantly reduced relative to that of parental and F1 males. This reduced mating success occurred primarily at a late stage of courtship where female choice of mate may be important. Two- and three-gene models demonstrate that epistasis involving a few genes could account for the observed variation in male mating success. These results are consistent with negative epistasis in the backcross generation and support the importance of sexual selection and negative epistasis in the evolution and maintenance of these species.  相似文献   

11.
Sexual isolation, a reproductive barrier, can prevent interbreeding between diverging populations or species. Sexual isolation can have a clear genetic basis; however, it may also result from learned mate preferences that form via sexual imprinting. Here, we demonstrate that two sympatric species of mice—the white‐footed mouse (Peromyscus leucopus) and its sister species, the cotton mouse (P. gossypinus)—hybridize only rarely in the wild despite co‐occurrence in the same habitat and lack of any measurable intrinsic postzygotic barriers in laboratory crosses. We present evidence that strong conspecific mating preferences in each species result in significant sexual isolation. We find that these preferences are learned in at least one species: P. gossypinus sexually imprints on its parents, but in P. leucopus, additional factors influence mating preferences. Our study demonstrates that sexual imprinting contributes to reproductive isolation that reduces hybridization between otherwise interfertile species, supporting the role for learning in mammalian speciation.  相似文献   

12.
The haplochromine cichlids of Lake Victoria constitute a classical example of explosive speciation. Extensive intra- and interspecific variation in male nuptial coloration and female mating preferences, in the absence of postzygotic isolation between species, has inspired the hypothesis that sexual selection has been a driving force in the origin of this species flock. This hypothesis rests on the premise that the phenotypic traits that underlie behavioural reproductive isolation between sister species diverged under sexual selection within a species. We test this premise in a Lake Victoria cichlid, by using laboratory experiments and field observations. We report that a male colour trait, which has previously been shown to be important for behavioural reproductive isolation between this species and a close relative, is under directional sexual selection by female mate choice within this species. This is consistent with the hypothesis that female choice has driven the divergence in male coloration between the two species. We also find that male territoriality is vital for male reproductive success and that multiple mating by females is common.  相似文献   

13.
Sexual selection drives the evolution of exaggerated male ornaments in many animal species. Female ornamentation is now acknowledged also to be common but is generally less well understood. One example is the recently documented red female throat coloration in some threespine stickleback (Gasterosteus aculeatus) populations. Although female sticklebacks often exhibit a preference for red male throat coloration, the possibility of sexual selection on female coloration has been little studied. Using sequential and simultaneous mate choice trials, we examined male mate preferences for female throat color, as well as pelvic spine color and standard length, using wild-captured threespine sticklebacks from the Little Campbell River, British Columbia. In a multivariate analysis, we found no evidence for a population-level mate preference in males, suggesting the absence of directional sexual selection on these traits arising from male mate choice. Significant variation was detected among males in their preference functions, but this appeared to arise from differences in their mean responsiveness across mating trials and not from variation in the strength (i.e., slope) of their preference, suggesting the absence of individual-level preferences as well. When presented with conspecific intruder males, male response decreased as intruder red throat coloration increased, suggesting that males can discriminate color and other aspects of phenotype in our experiment and that males may use these traits in intrasexual interactions. The results presented here are the first to explicitly address male preference for female throat color in threespine sticklebacks.  相似文献   

14.
Rick IP  Mehlis M  Bakker TC 《PloS one》2011,6(9):e25554
Sexual selection theory proposes correlated evolutionary changes in mating preferences and secondary sexual characters based on a positive genetic correlation between preference and the preferred trait. Empirical work has provided support for a genetic covariation between female preference and male attractiveness in several taxa. Here, we study parent and offspring visual traits in threespine sticklebacks, Gasterosteus aculeatus. While focusing on the proximate basis of mating preferences, we compare the red breeding coloration of males, which strongly contributes to female choice, with their daughters' red sensitivity measured by optomotor response thresholds. We show that the red color expression of fathers correlates well with their daughters' red sensitivity. Given that a within-population genetic correlation between signal and preference was experimentally confirmed for the red coloration in sticklebacks, our results indicate a proximate mechanism in terms of perceptual sensitivity being involved in the co-evolution of female preferences and male mating signals.  相似文献   

15.
Sequential mate choice strategies predict how females should alter their choosiness based on the availability of attractive males. There are many studies on sequential mate choice within species, but few have asked whether females apply these strategies to interactions between species and how these strategies may affect hybridization. We tested how previous interactions with conspecific and heterospecific males affect mate preference and sexual isolation in two threespine stickleback species (benthics and limnetics: Gasterosteus spp.). Consistent with previous work, we found that within species, stickleback females gauge male attractiveness relative to previously encountered males. If females extend these decision rules between species, we predicted that previous interactions with conspecifics should make heterospecifics less attractive, whereas interactions with heterospecifics should make conspecifics more attractive. However, females found heterospecifics less attractive after prior experience, largely independent of the species of male first encountered. Thus, sequential mate choice strategies are used within but not between species in sticklebacks. Further, learning from prior courtship interactions acts to enhance existing sexual isolation between species.  相似文献   

16.
The threespine stickleback ( Gasterosteus aculeatus ) species complex is well suited for identifying the types of phenotypic divergence and isolating barriers that contribute to reproductive isolation at early stages of speciation. In the present study, we characterize the patterns of genetic and phenotypic divergence as well as the types of isolating barriers that are present between two sympatric pairs of threespine sticklebacks in Hokkaido, Japan. One sympatric pair consists of an anadromous and a resident freshwater form and shows divergence in body size between the forms, despite the lack of genetic differentiation between them. The second sympatric pair consists of two anadromous forms, which originated before the last glacial period and are currently reproductively isolated. These two anadromous forms have diverged in many morphological traits as well as in their reproductive behaviours. Both sexual isolation and hybrid male sterility contribute to reproductive isolation between the anadromous species pair. We discuss the shared and unique aspects of phenotypic divergence and reproductive isolation in the Japanese sympatric pairs compared with postglacial stickleback species pairs. Further studies of these divergent species pairs will provide a deeper understanding of the mechanisms of speciation in sticklebacks.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 671–685.  相似文献   

17.
Ecological speciation can be driven by divergent natural and/or sexual selection. The relative contribution of these processes to species divergence, however, is unknown. Here, we investigate how sexual selection in the form of male and female mate preferences contributes to divergence of body size. This trait is known be under divergent natural selection and also contributes to sexual isolation in species pairs of threespine sticklebacks (Gasterosteus aculeatus). We show that neither female nor male size preferences contribute to body size divergence in this species pair, suggesting that size-based sexual isolation arises primarily through natural selection.  相似文献   

18.
19.
The pace of divergence and likelihood of speciation often depends on how and when different types of reproductive barriers evolve. Questions remain about how reproductive isolation evolves after initial divergence. We tested for the presence of sexual isolation (reduced mating between populations due to divergent mating preferences and traits) in Rhagoletis pomonella flies, a model system for incipient ecological speciation. We measured the strength of sexual isolation between two very recently diverged (~170 generations) sympatric populations, adapted to different host fruits (hawthorn and apple). We found that flies from both populations were more likely to mate within than between populations. Thus, sexual isolation may play an important role in reducing gene flow allowed by early-acting ecological barriers. We also tested how warmer temperatures predicted under climate change could alter sexual isolation and found that sexual isolation was markedly asymmetric under warmer temperatures – apple males and hawthorn females mated randomly while apple females and hawthorn males mated more within populations than between. Our findings provide a window into the early speciation process and the role of sexual isolation after initial ecological divergence, in addition to examining how environmental conditions could shape the likelihood of further divergence.  相似文献   

20.
Studies of mating preferences and pre-mating reproductive isolation have often focused on females, but the potential importance of male preferences is increasingly appreciated. We investigated male behavior in the context of reproductive isolation between divergent anadromous and stream-resident populations of threespine stickleback, Gasterosteus aculeatus, using size-manipulated females of both ecotypes. Specifically, we asked if male courtship preferences are present, and if they are based on relative body size, non-size aspects of ecotype, or other traits. Because male behaviors were correlated with each other, we conducted a principal components analysis on the correlations and ran subsequent analyses on the principal components. The two male ecotypes differed in overall behavioral frequencies, with stream-resident males exhibiting consistently more vigorous and positive courtship than anadromous males, and an otherwise aggressive behavior playing a more positive role in anadromous than stream-resident courtship. We observed more vigorous courtship toward smaller females by (relatively small) stream-resident males and the reverse pattern for (relatively large) anadromous males. Thus size-assortative male courtship preferences may contribute to reproductive isolation in this system, although preferences are far from absolute. We found little indication of males responding preferentially to females of their own ecotype independent of body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号