首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequential mate choice strategies predict how females should alter their choosiness based on the availability of attractive males. There are many studies on sequential mate choice within species, but few have asked whether females apply these strategies to interactions between species and how these strategies may affect hybridization. We tested how previous interactions with conspecific and heterospecific males affect mate preference and sexual isolation in two threespine stickleback species (benthics and limnetics: Gasterosteus spp.). Consistent with previous work, we found that within species, stickleback females gauge male attractiveness relative to previously encountered males. If females extend these decision rules between species, we predicted that previous interactions with conspecifics should make heterospecifics less attractive, whereas interactions with heterospecifics should make conspecifics more attractive. However, females found heterospecifics less attractive after prior experience, largely independent of the species of male first encountered. Thus, sequential mate choice strategies are used within but not between species in sticklebacks. Further, learning from prior courtship interactions acts to enhance existing sexual isolation between species.  相似文献   

2.
Reproductive isolation restricts genetic exchange between species. Various pre- and post-mating barriers, such as behavior, physiology and gametic incompatibility, have been shown to evolve in sympatry. In certain scenarios, isolation can be asymmetrical, where species differentially prefer conspecifics. We examined sexual isolation via conspecific mate preference between Gambusia affinis and G. geiseri in both sexes. To investigate male contribution to sexual isolation, we compared the number of mating attempts (gonopodial thrusts) directed at either a conspecific or a heterospecific female, in both species. We also examined sperm priming and expenditure in males in the presence of conspecific or heterospecific females. We then measured female preference for either a conspecific or heterospecific male, in both species. We found that males of both species preferred to mate with conspecific females, but showed no difference in sperm production or expenditure between conspecific and heterospecific females. Females of both species did not prefer conspecific over heterospecific males. Our results suggest that sexual isolation might be mediated by male mate choice in this system and not female choice, suggesting that there is asymmetrical reproductive isolation between the sexes in G. affinis and G. geiseri, but symmetrical species isolation.  相似文献   

3.
Reproductive character displacement is the adaptive evolution of traits that minimize deleterious reproductive interactions between species. When arising from selection to avoid hybridization, this process is referred to as reinforcement. Reproductive character displacement generates divergence not only between interacting species, but also between conspecific populations that are sympatric with heterospecifics versus those that are allopatric. Consequently, such conspecific populations can become reproductively isolated. We compared female mate preferences in, and evaluated gene flow between, neighbouring populations of spadefoot toads that did and did not occur with heterospecifics (mixed- and pure-species populations, respectively). We found that in mixed-species populations females significantly preferred conspecifics. Such females also tended to prefer a conspecific call character that was dissimilar from heterospecifics. By contrast, females from pure-species populations did not discriminate conspecific from heterospecific calls. They also preferred a more exaggerated conspecific call character that resembles heterospecific males. Moreover, gene flow was significantly reduced between mixed- and pure-species population types. Thus, character displacement (and, more specifically, reinforcement) may initiate reproductive isolation between conspecific populations that differ in interactions with heterospecifics.  相似文献   

4.
Sexual conflict can result in coercive mating. Because males bear low costs of heterospecific mating, coercive males may engage in misdirected mating attempts toward heterospecific females. In contrast, sexual selection through consensual mate choice can cause mate recognition cues among species to diverge, leading to more accurate species recognition. Some species show both coercive mating and mate choice‐associated courtship behaviors as male alternative reproductive tactics. We hypothesized that if the selection pressures on each tactic differ, then the accuracy of species recognition would also change depending on the mating tactic adopted. We tested this hypothesis in the guppy (Poecilia reticulata) and mosquitofish (Gambusia affinis) by a series of choice experiments. Poecilia reticulata and Gaffinis males both showed imperfect species recognition and directed all components of mating behavior toward heterospecific females. They tended to direct courtship displays more frequently toward conspecific than heterospecific females. With male Preticulata, however, accurate species recognition disappeared when they attempted coercive copulation: they directed coercions more frequently toward heterospecific females. We also found that heterospecific sexual interaction had little effect on the fecundity of gravid females, which suggests that prepregnancy interactions likely underpin the exclusion of Gaffinis by P. reticulata in our region.  相似文献   

5.
Males and females of Prokelisia marginata (Van Duzee) and Prokelisia dolusWilson communicate through substrate-transmitted vibrations. The acoustic signals (attraction and courtship calls) of these planthoppers are effective in mate location, attraction, and mate choice. Attraction calls are structurally distinct for both species and differ in pulse type, pulse repetition rate, and pulse duration. Using playback of prerecorded calls, individuals discriminated between conspecific and heterospecific signals. Depending on the sex and species, response calls were produced three to eight times more frequently to conspecifics than to heterospecifics. However, acoustic signals alone did not explain reproductive isolation and hybridization failure in these two congeners. Some heterospecific pairs called, courted, and attempted to join genitalia, but no connections were successful and no progeny were produced. Thus, acoustic behavior is not a guaranteed premating isolating mechanism in no-choice situations. Other courtship behaviors and possibly morphological differences in genitalia also contributed to their isolation. Females displayed a variety of rejection behaviors to conspecific and heterospecific males, suggesting that sexual selection (female choice), in addition to species recognition, may be an important force in the evolution of the acoustic signals of planthoppers. Although signal structure was not dependent on wing form (planthoppers exhibit wing dimorphism), the age when females first began to call was related to wing form. Brachypterous (flightless) females of both species began calling early in adult life (day 2), whereas macropterous (migratory) females began calling later in adult life (day 6). This pattern is consistent with the oogenesis-flight syndrome, in which reproductive maturity is delayed until after migration occurs.  相似文献   

6.
Speciation by sexual selection is commonly modeled as the divergent co-evolution of male signals and female preferences in geographically isolated populations. Upon secondary contact, females fail to recognize divergent males as suitable mates and exhibit a strong preference for their own type. The result is behavioral isolation and, if behavioral isolation is strong enough, there is an absence of gene flow between two species. Growing evidence of both mutual and male choice challenges the conventional role of females as primary regulators of species boundaries; however, to date, few studies have explicitly compared males and females for conspecific preference. The relative contribution of the two sexes to species boundaries therefore remains poorly understood. We examined the strength of preference for conspecifics in both males and females using two closely related species of darters. Males in these species exhibit substantial parental investment; therefore, we hypothesized that selection for male choosiness would result in male preference for conspecifics comparable to females’. Results show that females exhibited strong and significant preference for conspecific males; whereas, male preference for conspecific females was highly variable. Some males showed a strong preference for conspecifics while others preferred heterospecifics or showed no preference, resulting in a non-significant mean preference for conspecifics. Therefore, despite considerable parental investment by males in this system, our results suggest females play a larger role in regulating species boundaries.  相似文献   

7.
Sexual selection of high-quality mates can conflict with species recognition if traits that govern intraspecific mate preferences also influence interspecific recognition. This conflict might be resolved by developmental plasticity and learned mate preferences, which could drive preference divergence in populations that differ in local species composition. We integrate field and laboratory experiments on two calopterygid damselfly species with population genetic data to investigate how sex differences in developmental plasticity affect population divergence in the face of gene flow. Whereas male species recognition is fixed at emergence, females instead learn to recognize heterospecifics. Females are therefore more plastic in their mate preferences than males. We suggest that this results from sex differences in the balance between sexual selection for high-quality mates and selection for species recognition. As a result of these sex differences, females develop more pronounced population divergence in their mate preferences compared with males. Local ecological community context and presence of heterospecifics in combination with sex differences in plasticity and canalization therefore shape population divergence in mate preferences. As ongoing environmental change and habitat fragmentation bring formerly allopatric species into secondary contact, developmental plasticity of mate preferences in either or both sexes might facilitate coexistence and prevent local species extinction.  相似文献   

8.
Females increase their risk of mating with heterospecifics whenthey prefer the traits of conspecifics that overlap with traitsfound in heterospecifics. Xiphophorus pygmaeus females havea strong preference for larger males, which could lead to femalespreferring to mate with heterospecific males; almost all sympatricX. cortezi males are larger than X. pygmaeus males. In thisstudy, we show that X. pygmaeus females preferred the chemicalcues from conspecifics over those of X. cortezi males. However,preference for the chemical cues of conspecifics could not reversethe preference for larger heterospecific males. Only when femaleswere presented with two species-specific cues (vertical barsand chemical cues) did more females spend more time on averagewith the smaller conspecific males. These results support the"backup signal" hypothesis for the evolution of multiple preferences;together, the two species-specific cues increased the accuracywith which females were able to avoid heterospecific males.In addition, the results suggest that in those situations inwhich the traits of conspecifics overlap with traits found inheterospecifics, females can use the assessment of multiplecues to avoid mating with heterospecifics without compromisingtheir preference for the highest-quality conspecific.  相似文献   

9.
Co‐occurrence of closely related species can cause behavioral interference in mating and increase hybridization risk. Theoretically, this could lead to the evolution of more species‐specific mate preferences and sexual signaling traits. Alternatively, females can learn to reject heterospecific males, to avoid male sexual interference from closely related species. Such learned mate discrimination could also affect conspecific mate preferences if females generalize from between species differences to prefer more species‐specific mating signals. Female damselflies of the banded demoiselle (Calopteryx splendens) learn to reject heterospecific males of the beautiful demoiselle (C. virgo) through direct premating interactions. These two species co‐occur in a geographic mosaic of sympatric and microallopatric populations. Whereas C. virgo males have fully melanized wings, male C. splendens wings are partly melanized. We show that C. splendens females in sympatry with C. virgo prefer smaller male wing patches in conspecific males after learning to reject heterospecific males. In contrast, allopatric C. splendens females with experimentally induced experience with C. virgo males did not discriminate against larger male wing patches. Wing patch size might indicate conspecific male quality in allopatry. Co‐occurrence with C. virgo therefore causes females to prefer conspecific male traits that are more species specific, contributing to population divergence and geographic variation in female mate preferences.  相似文献   

10.
We know much less about the evolutionary forces and constraints that maintain similar mating displays in females and males than we do about sexually dimorphic mating displays. Both female and male green lacewings have sexually monomorphic vibrational mating signals and are equally choosy against heterospecific mating signals. This similarity in between‐species sex roles may explain a large part of the presence of species‐specific female signals in these species, but does not necessarily predict why female and male signals are similar. We tested for within‐species sex‐specific similarities in mate preferences in Chrysoperla lucasina that may contribute to the maintenance of sexually monomorphic mating signals in this species. We found weak preferences and low levels of discrimination for signals with varying fine‐scale temporal features (volley duration, period, and volley‐duty cycle). The longer signals that both sexes produced in response to playback were sexually monomorphic, but some females and most males also produced shorter signals with significantly reduced volley durations and periods. Notably, all of these signals had indistinguishable volley‐duty cycles, the ratio of volley duration to volley period. We propose that mating signals in C. lucasina are maintained in both sexes because of similar between‐species mate preferences, but the sexually monomorphic mating signals cannot be attributed to significant within‐species mate preferences. What differences are present in within‐species sex roles may be resolved by a male‐biased signal polymorphism, in long and short signals that are hypothesized to have distinct functions during mate calling and courtship.  相似文献   

11.
Abstract. The courtship song emitted by male wing vibration has been regarded as one of the most important signals in sexual isolation in the species of the Drosophila melanogaster complex. Inter- and intraspecific crosses were observed using males whose wings were removed (mute) or females whose aristae were removed (deaf). Females of D. melanogaster, D. simulans , and D. mauritiana mated with heterospecific males in the song-present condition (cross between normal females and winged males) more often than in the no-song condition (cross between normal females and wingless males or between aristaless females and winged males) or they showed no preference between the two conditions. It is possible that in these females heterospecific courtship songs play a role as if they were conspecific. In contrast, the females of D. sechellia mated with D. melanogaster or D. simulans males in the no-song condition more often than in the song-present condition, suggesting that they reject males with heterospecific song. Female mate recognition depending on the courtship song in D. melanogaster, D. simulans , and D. mauritiana is considered to be relatively broader and that in D. sechellia narrower.  相似文献   

12.
Courtship is an elaborate behavior that conveys information about the identity of animal species and suitability of individual males as mates. In Drosophila, there is extensive evidence that females are capable of evaluating and comparing male courtships, and accepting or rejecting males as mates. These relatively simple responses minimize random sexual encounters involving subpar conspecific males and heterospecific males, and over generations can potentially select novel physical and behavioral traits. Despite its evolutionary and behavioral significance, little is still known about the genes involved in mating choice and how choices for novel males and females arise during evolution. Drosophila simulans and Drosophila sechellia are two recently diverged species of Drosophila in which females have a preference for conspecific males. Here we analyzed a total of 1748 F2 hybrid females between these two species and found a small number of dominant genes controlling the preference for D. simulans males. We also mapped two redundant X‐linked loci of mating choice, Macho‐XA and Macho‐XB, and show that neither one is required for female attractiveness. Together, our results reveal part of the genetic architecture that allows D. simulans females to recognize, mate, and successfully generate progenies with D. simulans males.  相似文献   

13.
Mutual mate choice occurs when members of each sex will reject some potential mates in efforts to encounter better prospects later. The decision to reject may represent the interaction between mate preferences, mate availability, and temporal constraints. Theory predicts that mutual mate choice will favor relaxed choosiness as mate availability and time for courtship decline. We explored mutual mate choice in the soldier beetle, Chauliognathus pennsylvanicus (Cantharidae), where courtship consisted of males attempting to secure evasive females. We employed field observations, laboratory experiments, and stochastic simulations to investigate the decline in choosiness over the daily courtship period, during which individuals can mate at most once. We found that reproductive success of males and females increases with mate size and mating frequency. Females biased copulations toward larger mates by attempting to evade suitors, while males biased copulations by releasing the smaller females they capture. However, late in the day males and females may increase reproductive success by accepting rather than rejecting lower quality mates to maintain high mating rates. Stochastic simulations indicated that reproductive success, the product of mating frequency and mean mate size, was maximized in males and females by incrementally reducing mate standards across daily courtship periods. In the field, large males who rejected small females early in the daily courtship period rarely did so later. Large females used less effective evasive maneuvers later in the courtship period, resulting in copulations with progressively smaller males. These results support models of mutual mate choice that predict that individuals of high quality will maximize reproductive success by relaxing choosiness as the courtship period wanes.  相似文献   

14.
Predation risk can alter female mating decisions because the costs of mate searching and selecting attractive mates increase when predators are present. In response to predators, females have been found to plastically adjust mate preference within species, but little is known about how predators alter sexual isolation and hybridization among species. We tested the effects of predator exposure on sexual isolation between benthic and limnetic threespine sticklebacks (Gasterosteus spp.). Female discrimination against heterospecific mates was measured before and after females experienced a simulated attack by a trout predator or a control exposure to a harmless object. In the absence of predators, females showed increased aversion to heterospecifics over time. We found that predator exposure made females less discriminating and precluded this learned aversion to heterospecifics. Benthic and limnetic males differ in coloration, and predator exposure also affected sexual isolation by weakening female preferences for colourful males. Predator effects on sexual selection were also tested but predators had few effects on female choosiness among conspecific mates. Our results suggest that predation risk may disrupt the cognitive processes associated with mate choice and lead to fluctuations in the strength of sexual isolation between species.  相似文献   

15.
The evolution of male mate choice is constrained by costs of choice in species with a male‐biased operational sex ratio (OSR). Previous theoretical studies have shown that significant benefits of male choice are required, for example, by mating with more fecund females, in order for these costs to be offset and a male preference to spread. In a series of population genetic models we show the novel effect that male mating preference, expressed as a bias in courtship, can spread when females prefer, and thus are more likely to mate with, males who court more. We explore two female preference functions for levels of male courtship, one representing a threshold and the other a weighted female preference. The basic finding generally holds for both preference functions. However, the preference function greatly affects the spread of a male preference allele after the addition of competing males who can court more in total. Our results thus stress that a thorough understanding of the response of females to male courtship is a critical component to understanding male preference evolution in polygynous species.  相似文献   

16.
Because mating entails both costs and potential benefits to both sexes, males and females should be under selection to make optimal choices from among available potential mates. For example, in some cases, individuals may benefit by using information on potential mates' previous sexual histories to make mate choices. In such cases, the form and direction of these benefits may vary both between the sexes and based on the sexual history of the choosing individuals themselves. We investigated the effects of recent previous sexual history on the mate choice and mating behavior of both males and females of the crayfish Orconectes limosus. In one experiment, we found that opposite‐sex dyads comprising crayfish that had both mated 7–8 d previously with other conspecifics were significantly less likely to mate than dyads in which at least one crayfish was unmated. In a second experiment, we found that, when presented with a choice of tethered (but free to move) opposite‐sex conspecifics, only virgin females discriminated between males based on sexual history, showing a preference for virgin males over recently mated males. Mated females, mated males, and virgin males showed no preferences based on the sexual histories of potential mates. We discuss the implications of these inferences in the context of what was previously known about mating behavior and potential sperm limitation in crustaceans and other taxa.  相似文献   

17.
Female and male mate choices can reinforce reproductive isolation after sympatric speciation. Using a binary choice design, we examine the importance of visual cues in female mate choice in all three sympatric species of pupfish on San Salvador Island. We also examine the importance of olfactory cues in female choice of the hard‐shelled invertebrate specialist (Cyprinodon brontotheroides). We examine male mate choice in two of the three species, the scale eater (C. desquamator) and the detritivore (C. variegatus). Females of all three species use visual cues and prefer conspecific males. C. brontotheroides females do not use olfactory cues to discriminate between conspecific and heterospecific males. Males of C. desquamator and C. variegatus also preferentially court conspecific females. Thus, mutual mate choice, where both females and males exhibit mate choice, acts as a strong behavioral pre‐mating isolation mechanism in these sympatrically speciated pupfish.  相似文献   

18.
The evolution of mate preferences can be critical for the evolution of reproductive isolation and speciation. Heterospecific interference may carry substantial fitness costs and result in preferences where females are most responsive to the mean conspecific trait with low response to traits that differ from this value. However, when male traits are unbounded by heterospecifics, there may not be selection against females that respond to extreme trait values in the unbounded direction. To test how heterospecifics affected the shape of female response functions, I presented female Oecanthus tree crickets with synthetic calls representing a range of male calls, then measured female phonotaxis to construct response functions. The species with the fastest pulse rates in the community consistently responded to pulse rates faster than those produced by their males, whereas in the intermediate and slowest pulse rate species there was no significant difference between the male trait and the female response. This work suggests that species with the most extreme signal in the community respond to a greater range of signals, potentially resulting in a higher probability of hybridization during secondary contact, and revealing interactions between mate recognition and other aspects of sexual selection.  相似文献   

19.
Prolonged periods of allopatry might result in loss of the ability to discriminate against other formerly sympatric species, and can lead to heterospecific matings and hybridization upon secondary contact. Loss of premating isolation during prolonged allopatry can operate in the opposite direction of reinforcement, but has until now been little explored. We investigated how premating isolation between two closely related damselfly species, Calopteryx splendens and C. virgo , might be affected by the expected future northward range expansion of C. splendens into the allopatric zone of C. virgo in northern Scandinavia. We simulated the expected secondary contact by presenting C. splendens females to C. virgo males in the northern allopatric populations in Finland. Premating isolation toward C. splendens in northern allopatric populations was compared to sympatric populations in southern Finland and southern Sweden. Male courtship responses of C. virgo toward conspecific females showed limited geographic variation, however, courtship attempts toward heterospecific C. splendens females increased significantly from sympatry to allopatry. Our results suggest that allopatric C. virgo males have partly lost their ability to discriminate against heterospecific females. Reduced premating isolation in allopatry might lead to increased heterospecific matings between taxa that are currently expanding and shifting their ranges in response to climate change.  相似文献   

20.
Preferences for mates within and between species are often harmonious, as traits that females prefer are usually more developed in conspecifics than heterospecifics. This need not be the case, however. When it is not, conflict between these arenas of mate choice can be resolved if females attend to different cues for each task. But this raises the potential for correlations among preferences to limit the opportunity for these two processes to operate independently. Here, we show that, within individual female pygmy swordtails (Xiphophorus pygmaeus), directional preferences for conspicuous ornamentation are inversely associated with discrimination against a sympatric heterospecific, Xiphophorus cortezi. Thus, mate choice among and within species need not be separate, independent processes; instead, they can be mechanistically intertwined. As a consequence, different arenas of mate choice can constrain one another, even when females assess multiple cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号