首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma.  相似文献   

3.
GM-CSF plays an important role in inflammation by promoting the production, activation, and survival of granulocytes and macrophages. In this study, GM-CSF knockout (GM-CSF(-/-)) mice were used to investigate the role of GM-CSF in a model of allergic airway inflammation. In allergic GM-CSF(-/-) mice, eosinophil recruitment to the airways showed a striking pattern, with eosinophils present in perivascular areas, but almost completely absent in peribronchial areas, whereas in wild-type mice, eosinophil infiltration appeared in both areas. In the GM-CSF(-/-) mice, mucus production in the airways was also reduced, and eosinophil numbers were markedly reduced in the bronchoalveolar lavage (BAL)(3) fluid. IL-5 production was reduced in the lung tissue and BAL fluid of GM-CSF(-/-) mice, but IL-4 and IL-13 production, airway hyperresponsiveness, and serum IgE levels were not affected. The presence of eosinophils in perivascular but not peribronchial regions was suggestive of a cell migration defect in the airways of GM-CSF(-/-) mice. The CCR3 agonists CCL5 (RANTES) and CCL11 (eotaxin-1) were expressed at similar levels in GM-CSF(-/-) and wild-type mice. However, IFN-gamma mRNA and protein were increased in the lung tissue and BAL fluid in GM-CSF(-/-) mice, as were mRNA levels of the IFN-gamma-inducible chemokines CXCL9 (Mig), CXCL10 (IP-10), and CXCL11 (I-Tac). Interestingly, these IFN-gamma-inducible chemokines are natural antagonists of CCR3, suggesting that their overproduction in GM-CSF(-/-) mice contributes to the lack of airway eosinophils. These findings demonstrate distinctive abnormalities to a model of allergic asthma in the absence of GM-CSF.  相似文献   

4.
5.
6.
7.
Pulmonary inflammation in asthma is orchestrated by the activity of NF-kappaB. NO and NO synthase (NOS) activity are important modulators of inflammation. The availability of the NOS substrate, l-arginine, is one of the mechanisms that controls the activity of NOS. Arginase also uses l-arginine as its substrate, and arginase-1 expression is highly induced in a murine model of asthma. Because we have previously described that arginase affects NOx content and interferes with the activation of NF-kappaB in lung epithelial cells, the goal of this study was to investigate the impact of arginase inhibition on the bioavailability of NO and the implications for NF-kappaB activation and inflammation in a mouse model of allergic airway disease. Administration of the arginase inhibitor BEC (S-(2-boronoethyl)-l-cysteine) decreased arginase activity and caused alterations in NO homeostasis, which were reflected by increases in S-nitrosylated and nitrated proteins in the lungs from inflamed mice. In contrast to our expectations, BEC enhanced perivascular and peribronchiolar lung inflammation, mucus metaplasia, NF-kappaB DNA binding, and mRNA expression of the NF-kappaB-driven chemokine genes CCL20 and KC, and lead to further increases in airways hyperresponsiveness. These results suggest that inhibition of arginase activity enhanced a variety of parameters relevant to allergic airways disease, possibly by altering NO homeostasis.  相似文献   

8.
Resistin-like molecule alpha (Retnla), also known as ‘Found in inflammatory zone 1’, is a secreted protein that has been found in bronchoalveolar lavage (BAL) fluid of ovalbumin (OVA)-induced asthmatic mice and plays a role as a regulator of T helper (Th)2-driven inflammation. However, the role of Retnla in the progress of Th2-driven airway inflammation is not yet clear. To better understand the function of Retnla in Th2-driven airway inflammation, we generated Retnla-overexpressing (Retnla-Tg) mice. Retnla-Tg mice showed increased expression of Retnla protein in BAL fluid and airway epithelial cells. Retnla overexpression itself did not induce any alteration in lung histology or lung function compared to non-Tg controls. However, OVA-sensitized/challenged Retnla-Tg mice had decreased numbers of cells in BAL and inflammatory cells accumulating in the lung. They also showed a reduction in mucus production in the airway epithelium, concomitant with a decreased Muc5ac level. These results were accompanied by reduced levels of Th2 cytokines, including interleukin (IL)-4, IL-5, and IL-13, with no effect on levels of OVA-specific immunoglobulin isotypes. Furthermore, phosphorylation of ERK was markedly reduced in the lungs of OVA-challenged Retnla-Tg mice. Taken together, these results indicates that Retnla protects against Th2-mediated inflammation in an experimental mouse model of asthma, suggesting that therapeutic approaches to enhance the production of Retnla or Retnla-like molecules could be valuable for preventing allergic lung inflammation.  相似文献   

9.
IL-5 is a pleiotropic cytokine that promotes eosinophil differentiation and survival. While naïve bronchial epithelial cells (BEC) produce low levels of IL-5, the role of BEC-derived IL-5 in allergic airway inflammation is unknown. We now show that BEC, isolated from mice with OVA-induced allergic airway disease (AAD), produced elevated levels of IL-5 mRNA and protein as compared to BEC from naïve mice. To determine the contribution of BEC-derived IL-5 to effector responses in the airways, IL-5 deficient bone marrow chimeric mice were generated in which IL-5 expression was restricted to stromal (e.g. BEC) or hematopoietic cells. When subjected to AAD, IL-5 produced by BECs contributed to mucous metaplasia, airway eosinophilia, and OVA-specific IgA levels. Thus, IL-5 production by BEC can impact the microenvironment of the lung, modifying pathologic and protective immune responses in the airways.  相似文献   

10.
11.
Concomitant infection of murine CMV (MCMV), an opportunistic respiratory pathogen, altered Th1/Th2 cytokine expression, decreased bronchoalveolar lavage (BAL) fluid eosinophilia, and increased mucus production in a murine model of OVA-induced allergic airway disease. Although no change in the total number of leukocytes infiltrating the lung was observed between challenged and MCMV/challenged mice, the cellular profile differed dramatically. After 10 days of OVA-aerosol challenge, eosinophils comprised 64% of the total leukocyte population in BAL fluid from challenged mice compared with 11% in MCMV/challenged mice. Lymphocytes increased from 11% in challenged mice to 30% in MCMV/challenged mice, and this increase corresponded with an increase in the ratio of CD8(+) to CD4(+)TCRalphabeta lymphocytes. The decline in BAL fluid eosinophilia was associated with a change in local Th1/Th2 cytokine profiles. Enhanced levels of IL-4, IL-5, IL-10, and IL-13 were detected in lung tissue from challenged mice by RNase protection assays. In contrast, MCMV/challenged mice transiently expressed elevated levels of IFN-gamma and IL-10 mRNAs, as well as decreased levels of IL-4, IL-5, and IL-13 mRNAs. Elevated levels of IFN-gamma and reduced levels of IL-5 were also demonstrated in BAL fluid from MCMV/challenged mice. Histological evaluation of lung sections revealed extensive mucus plugging and epithelial cell hypertrophy/hyperplasia only in MCMV/challenged mice. Interestingly, the development of airway hyperresponsiveness was observed in challenged mice, not MCMV/challenged mice. Thus, MCMV infection can modulate allergic airway inflammation, and these findings suggest that enhanced mucus production may occur independently of BAL fluid eosinophilia.  相似文献   

12.
The mouse UGRP gene family consists of two genes, Ugrp1 and Ugrp2. In this study, the genomic structure and expression patterns of Ugrp2 and its alternative spliced form were characterized. The authentic Ugrp2 gene has three exons and two introns, similar to the Ugrp1 gene, which produces a secreted protein. The Ugrp2 variant uses a sequence located between authentic exons 1 and 2, resulting in a cytoplasmic form due to a termination codon within the inserted sequence. Both mouse and human UGRP2 mRNAs are expressed in lung. In the case of human, the mRNA is expressed at the highest level in trachea, followed by salivary gland at a level similar to lung. Weak expression was also found in fetal lung and mammary gland. Ugrp2 was mapped by fluorescence in situ hybridization to mouse chromosome 11A5-B1 and human chromosome 5q35. These regions are known to be homologous. Interspecific mouse backcross mapping was also performed to obtain further detailed localization of mouse Ugrp1 and Ugrp2.  相似文献   

13.
Allergic asthma is an inflammatory disease of the airways characterized by eosinophilic inflammation and airway hyper-reactivity. Cytokines and chemokines specific for Th2-type inflammation predominate in asthma and in animal models of this disease. The role of Th1-type inflammatory mediators in asthma remains controversial. IFN-gamma-inducible protein 10 (IP-10; CXCL10) is an IFN-gamma-inducible chemokine that preferentially attracts activated Th1 lymphocytes. IP-10 is up-regulated in the airways of asthmatics, but its function in asthma is unclear. To investigate the role of IP-10 in allergic airway disease, we examined the expression of IP-10 in a murine model of asthma and the effects of overexpression and deletion of IP-10 in this model using IP-10-transgenic and IP-10-deficient mice. Our experiments demonstrate that IP-10 is up-regulated in the lung after allergen challenge. Mice that overexpress IP-10 in the lung exhibited significantly increased airway hyperreactivity, eosinophilia, IL-4 levels, and CD8(+) lymphocyte recruitment compared with wild-type controls. In addition, there was an increase in the percentage of IL-4-secreting T lymphocytes in the lungs of IP-10-transgenic mice. In contrast, mice deficient in IP-10 demonstrated the opposite results compared with wild-type controls, with a significant reduction in these measures of Th2-type allergic airway inflammation. Our results demonstrate that IP-10, a Th1-type chemokine, is up-regulated in allergic pulmonary inflammation and that this contributes to the airway hyperreactivity and Th2-type inflammation seen in this model of asthma.  相似文献   

14.

Background

Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice.

Methods

BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge.

Results

Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice.

Conclusion

These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor reduced AHR to inhaled methacholine indicating the potential for its use as a modulator of the immune/inflammatory response in both the neutrophil- and eosinophil-dominant phases of the response to secondary allergen challenge.  相似文献   

15.

Background

The mechanisms by which viruses cause asthma exacerbations are not precisely known. Previously, we showed that, in ovalbumin (OVA)-sensitized and -challenged mice with allergic airway inflammation, rhinovirus (RV) infection increases type 2 cytokine production from alternatively-activated (M2) airway macrophages, enhancing eosinophilic inflammation and airways hyperresponsiveness. In this paper, we tested the hypothesis that IL-4 signaling determines the state of macrophage activation and pattern of RV-induced exacerbation in mice with allergic airways disease.

Methods

Eight week-old wild type or IL-4 receptor knockout (IL-4R KO) mice were sensitized and challenged with OVA and inoculated with RV1B or sham HeLa cell lysate.

Results

In contrast to OVA-treated wild-type mice with both neutrophilic and eosinophilic airway inflammation, OVA-treated IL-4R KO mice showed increased neutrophilic inflammation with few eosinophils in the airways. Like wild-type mice, IL-4R KO mice showed OVA-induced airway hyperreactivity which was further exacerbated by RV. There was a shift in lung cytokines from a type 2-predominant response to a type 1 response, including production of IL-12p40 and TNF-α. IL-17A was also increased. RV infection of OVA-treated IL-4R KO mice further increased neutrophilic inflammation. Bronchoalveolar macrophages showed an M1 polarization pattern and ex vivo RV infection increased macrophage production of TNF-α, IFN-γ and IL-12p40. Finally, lung cells from OVA-treated IL-4R KO mice showed reduced CD206+ CD301+ M2 macrophages, decreased IL-13 and increased TNF-α and IL-17A production by F4/80+, CD11b+ macrophages.

Conclusions

OVA-treated IL-4R KO mice show neutrophilic airway inflammation constituting a model of allergic, type 1 cytokine-driven neutrophilic asthma. In the absence of IL-4/IL-13 signaling, RV infection of OVA-treated mice increased type 1 cytokine and IL-17A production from conventionally-activated macrophages, augmenting neutrophilic rather than eosinophilic inflammation. In mice with allergic airways inflammation, IL-4R signaling determines macrophage activation state and the response to subsequent RV infection.  相似文献   

16.

Background

CD8+ T cells participate in airway hyperresponsiveness (AHR) and allergic pulmonary inflammation that are characteristics of asthma. CXCL10 by binding to CXCR3 expressed preferentially on activated CD8+ T cells, attracts T cells homing to the lung. We studied the contribution and limitation of CXCR3 to AHR and airway inflammation induced by ovalbumin (OVA) using CXCR3 knockout (KO) mice.

Methods

Mice were sensitized and challenged with OVA. Lung histopathological changes, AHR, cellular composition and levels of inflammatory mediators in bronchoalveolar lavage (BAL) fluid, and lungs at mRNA and protein levels, were compared between CXCR3 KO mice and wild type (WT) mice.

Results

Compared with the WT controls, CXCR3 KO mice showed less OVA-induced infiltration of inflammatory cells around airways and vessels, and less mucus production. CXCR3 KO mice failed to develop significant AHR. They also demonstrated significantly fewer CD8+ T and CD4+ T cells in BAL fluid, lower levels of TNFα and IL-4 in lung tissue measured by real-time RT-PCR and in BAL fluid by ELISA, with significant elevation of IFNγ mRNA and protein expression levels.

Conclusions

We conclude that CXCR3 is crucial for AHR and airway inflammation by promoting recruitment of more CD8+ T cells, as well as CD4+ T cells, and initiating release of proinflammatory mediators following OVA sensitization and challenge. CXCR3 may represent a novel therapeutic target for asthma.  相似文献   

17.
Sauchinone, a lignan compound isolated from the root of Saururus chinensis, has been recently demonstrated to exhibit anti-inflammatory activity via the suppression of NF-kB p65 activity in vitro. In an effort to evaluate the in vivo anti-inflammatory function of sauchinone, we have evaluated the effects of sauchinone on allergen-induced airway inflammation using a murine model of allergic asthma. We observed that marked eosinophilic and lymphocyte infiltration in the BAL fluid were suppressed to a significant degree by sauchinone, and that mucus-secreting goblet cell hyperplasia and collagen deposition in the airways were also ameliorated by administration of sauchinone treatment. Moreover, gene expression of the inflammatory cytokines, IL-13, and IL-5 and eotaxin in the lung, and IL-5 in the draining lymph node were significantly decreased in sauchinone-treated mice. We demonstrated that sauchinone repressed Th2 cell development in vitro and IL-4 production by Th2 cells, and also inhibited GATA-3-mediated IL-5 promoter activity in a dose-dependent manner. Collectively, sauchinone ameliorated allergen-induced airway inflammation, in part, by repressing GATA-3 activity for Th2 cell development, indicating the possible therapeutic potential of sauchinone in airway inflammatory diseases including allergic asthma and rhinitis.  相似文献   

18.
Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. Viticis Fructus (VF) has long been used in China and Korea as a traditional herbal remedy for treating various inflammatory diseases. Previously, we have isolated a novel phytochemical, pyranopyran-1, 8-dione (PPY), from VF. This study was conducted to evaluate the ability of PPY to prevent airway inflammation and to attenuate airway responses in a cockroach allergen-induced asthma model in mice. The mice sensitized to and challenged with cockroach allergen were treated with oral administration of PPY. The infiltration of total cells, eosinophils and lymphocytes into the BAL fluid was significantly inhibited in cockroach allergen-induced asthma mice treated with PPY (1, 2, or 10 mg/kg). Th2 cytokines and chemokine, such as IL-4, IL-5, IL-13 and eotaxin in BAL fluid were also reduced to normal levels following treatment with PPY. In addition, the levels of IgE were also markedly suppressed after PPY treatment. Histopathological examination demonstrated that PPY substantially inhibited eosinophil infiltration into the airway, goblet cell hyperplasia and smooth muscle hypertrophy. Taken together, these results demonstrate that PPY possesses a potent efficacy on controlling allergic asthma response such as airway inflammation and remodeling.  相似文献   

19.

Background

Connexin (Cx)-based gap junction channels play important roles in the inflammatory response. Cx43 is involved in the pathogenesis of some lung diseases such as acute lung injury. However, the Cx43 expression in asthma is unclear. In the present study, we used a murine model of ovalbumin (OVA)-induced allergic airway disease to examine the levels of Cx43 and analyze the relationship between Cx43 and airway inflammation in allergic airway disease.

Methods

Asthma was induced in mice via sensitization and challenge with OVA. Cx43 mRNA and protein expression levels were investigated via QT-PCR, western blot, and immunohistochemistry 0 h, 8 h, 1 d, 2 d and 4 d after the first challenge. The relationship between Cx43 protein levels and inflammatory cell infiltration, cytokine levels was analyzed.

Results

The OVA-induced mice exhibited typical pathological features of asthma, including airway hyper-responsiveness; strong inflammatory cell infiltration surrounding the bronchia and vessels; many inflammatory cells in the bronchoalveolar lavage fluid (BALF); higher IL-4, IL-5 and IL-13 levels; and high OVA specific IgE levels. Low Cx43 expression was detected in the lungs of control (PBS) mice. A dramatic increase in the Cx43 mRNA and protein levels was found in the asthmatic mice. Cx43 mRNA and protein expression levels increased in a time-dependent manner in asthma mice, and Cx43 was mostly localized in the alveolar and bronchial epithelial layers. Moreover, lung Cx43 protein levels showed a significant positive correlation with inflammatory cell infiltration in the airway and IL-4 and IL-5 levels in the BALF at different time points after challenge. Interestingly, the increase in Cx43 mRNA and protein levels occurred prior to the appearance of the inflammatory cell infiltration.

Conclusion

Our data suggest that there is a strong upregulation of Cx43 mRNA and protein levels in the lungs in asthma. Cx43 levels also exhibited a positive correlation with allergic airway inflammation. Cx43 may represent a target to treat allergic airway diseases in the future.  相似文献   

20.
Respiratory infections, including Mycoplasma pneumoniae (Mp), contribute to asthma pathobiology. To date, the mechanisms underlying the increased susceptibility of asthmatics to airway Mp infection remain unclear. Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) protein is a recently described large airway epithelial cell-derived molecule that was predicted to exert host defense activities. However, SPLUNC1 function and regulation in an infectious or allergic milieu are still unknown. We determined host defense and anti-inflammatory functions of SPLUNC1 protein in Mp infection and the regulation of SPLUNC1 by Mp and allergic inflammation (e.g., IL-13). SPLUNC1 function was examined in Mp or human airway epithelial cell cultures by using SPLUNC1 recombinant protein, overexpression and RNA interference. Human and mouse bronchial epithelial SPLUNC1 was examined using immunostaining, Western blotting, ELISA, laser capture microdissection, and real-time PCR. Mouse models of Mp infection and allergic inflammation and air-liquid interface cultures of normal human primary bronchial epithelial cells were used to study SPLUNC1 regulation by Mp and IL-13. We found that: 1) SPLUNC1 protein decreased Mp levels and inhibited epithelial IL-8 production induced by Mp-derived lipoproteins; 2) normal human and mouse large airway epithelial cells expressed high levels of SPLUNC1; and 3) although Mp infection increased SPLUNC1, IL-13 significantly decreased SPLUNC1 expression and Mp clearance. Our results suggest that SPLUNC1 serves as a novel host defense protein against Mp and that an allergic setting markedly reduces SPLUNC1 expression, which may in part contribute to the persistent nature of bacterial infections in allergic airways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号