首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diurnal carbohydrate metabolism of barley primary leaves   总被引:20,自引:11,他引:9       下载免费PDF全文
The carbohydrate content of barley (Hordeum vulgare L.) leaves was measured over a 24-hour cycle. Nonstructural carbohydrate accumulation was linear after the 1st hour of light, whereas utilization in the dark was fast initially and slowed as stored reserves were depleted. Sucrose was the most abundant storage form of carbohydrate in the primary leaf. Lesser amounts of starch, fructans, and hexoses were also present. Leaf reserves were almost completely remobilized by the end of the dark period. There was a lag in starch degradation following a light to dark transition. Lower rates of starch accumulation were observed at the beginning and at the end of the day. Fructan synthesis occurred primarily towards the end of the light period as rates of sucrose and starch synthesis decreased. The above results suggested that carbohydrate metabolism in primary barley leaves was controlled by light and by endogenous factors such as foliar sucrose levels. Measurements of specific [14C]sucrose activity in steady state labeled 7-day-old barley primary leaves suggested the presence of at least two kinetically separate pools. Sucrose levels were higher and apparent turnover rates were lower in barley leaves in comparison to previous studies with other species.  相似文献   

2.
The main objective of the present work was to examine the effects of the red:far-red ratio (R:FR) prevailing during leaf development on the photosynthetic capacity of mature leaves. Plants of Phaseolus vulgaris L. cv. Balin de Albenga were grown from time of emergence in a controlled environment room, 25 ± 3°C, 12-h photoperiod, with different light treatments:a) high photosynthetic photon flux density (PPFD) = 800 μmol m−1 s−1+ high R:FR= 1.3;b) low PPFD= 300 μmol m−2 s−1+ high R:FR= 1.3; c) high PPFD=800 μmol m−2 s−1+ low R:FR= 0.7; d) low PPFD= 300 μmol m−2s−1+ low R:FR=0.7. With an R:FR ratio of 1.3, a decrease in irradiance during leaf growth reduced photosynthesis when measured at moderate to high PPFD; but when measured at low PPFD, leaves expanded under low irradiance actually had photosynthesis rates higher than those of leaves grown in high irradiance. A low R:FR ratio during development reduced the photosynthetic capacity of the leaves. In leaves expanded under R:FR = 0.7 and high irradiance photosynthesis was reduced by 42 to 89%, depending on the PPFD at which measurements were made, whereas for leaves developed at R:FR = 0.7 and low irradiance photosynthesis decreased by 21 to 24%, compared to leaves under R:FR = 1.3 and similar irradiance. The reduced photosynthetic capacity under R:FR = 0.7 and high irradiance. In natural environments, leaves may experience low R:FR conditions temporarily during their development, and this may affect their future photosynthetic capacity in full sunlight.  相似文献   

3.
The effects of decreased irradiance on fresh and dry weight, root respiration, levels of carbohydrates and N-compounds, and extractable activities of enzymes involved in C and N metabolism were evaluated in maize ( Zea mays L. cv. Plauto) seedlings during the 7 days following transfer from 450 to 200 μmol m−2 s−1 PAR. The fresh weight of roots and stems, the initiation of new leaves, root respiration rate, and the accumulation of dry matter, soluble sugars, starch, malate and amino acids in both leaves and roots were strongly reduced at low irradiance. In contrast, the level of nitrate was increased in leaves and only marginally affected in roots. Leaf phosphoenolpyruvate carboxylase (EC 4.1.1.31) activity started to decrease after 24–34 h, whereas ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) activity and chlorophyll content were unaffected or only slightly reduced. In both leaves and roots, the adjustment of N metabolism to low irradiance occurred through a relatively rapid (30% after 10 h) and large (60% after 3 days) decrease of nitrate reductase (NR; EC 1.6.6.1) activity, followed by slower and smaller changes in the activity of nitrite reductase (EC 1.7.7.1), glutamine synthetase (EC 6.3.1.2) and NAD-dependent glutamate dehydrogenase (EC 1.4.1.2). We suggest that the preferential decrease of NR activity relative to other N-assimilating enzymes may be important for preventing the accumulation of toxic N-compounds like ammonia in both leaf and root tissues.  相似文献   

4.
The daily carbon balance of individual source leaves of Theobroma cacao L. seedlings was measured at 2- to 3-day intervals during a 19-day period of increasing plant water deficit and during an 8-day period of recovery following rewatering. In each case, responses of stressed seedlings were compared to those of irrigated controls. Leaves of irrigated cacao seedlings assimilated approximately 41 mg carbohydrate dm-2 during 12-h photoperiods, and exported an average of 34 mg carbohydrate dm-2 during 24-h measurement cycles. The rate of carbon export from cacao leaves was sharply reduced as leaf water potential (ψ) declined between -0.8 and -2.0 MPa. Further, the rate of export was closely associated with the net assimilation rate (A), with export capacity being severely reduced as A fell to near zero. Net accumulation of dry matter occurred as long as A remained greater than approximately 20 mg carbohydrate dm-2 over the 12-h photoperiod, but at lower assimilation rates, export exceeded concomitant assimilation. Carbon export continued at the expense of leaf carbon reserves as photoassimilation fell to near zero during periods of severe water stress (ψ < -2.0 MPa). Night respiration rate was independent of plant water status.  相似文献   

5.
Rooting ability was studied for cuttings derived from stock plants of wild type pea seedlings and seedings of two mutants deficient in photosystem II activity and chlorophyll. Stock plants were grown at 15, 20, 25 or 30°C at 38 W m-2. Cuttings were rooted at 20°C and at an irradiance of 16 or 38 W m-2. The rooting ability seemed to be correlated with the initial carbohydrate content only at 38 W m-2. Based on the findings of the present study it may be concluded that for pea seedlings the growth temperature is more important than photosynthesis as regards accumulation of extractable carbohydrates. During the rooting period carbohydrates are necessary for root formation, but the effect of the iradiance on the number of roots formed is not mediated by the carbohydrate content. Under specific rooting conditions it is possible to correlate the initial carbohydrate content with the rooting capacity of the cuttings within a phenotype, but not always when different phenotypes are considered. The results indicate a connection between the metabolic activity of the cuttings and their ability to form adventitious roots.  相似文献   

6.
In fully expanded leaves of greenhouse-grown cotton (Gossypium hirsutum L., cv Coker 100) plants, carbon export, starch accumulation rate, and carbon exchange rate exhibited different behavior during the light period. Starch accumulation rates were relatively constant during the light period, whereas carbon export rate was greater in the afternoon than in the morning even though the carbon exchange rate peaked about noon. Sucrose levels increased throughout the light period and dropped sharply with the onset of darkness; hexose levels were relatively constant except for a slight peak in the early morning. Sucrose synthase, usually thought to be a degradative enzyme, was found in unusually high activities in cotton leaf. Both sucrose synthase and sucrose phosphate synthetase activities were found to fluctuate diurnally in cotton leaves but with different rhythms. Diurnal fluctuations in the rate of sucrose export were generally aligned with sucrose phosphate synthase activity during the light period but not with sucrose synthase activity; neither enzyme activity correlated with carbon export during the dark. Cotton leaf sucrose phosphate synthase activity was sufficient to account for the observed carbon export rates; there is no need to invoke sucrose synthase as a synthetic enzyme in mature cotton leaves. During the dark a significant correlation was found between starch degradation rate and leaf carbon export. These results indicate that carbon partitioning in cotton leaf is somewhat independent of the carbon exchange rate and that leaf carbon export rate may be linked to sucrose formation and content during the light period and to starch breakdown in the dark.  相似文献   

7.
Abstract. Steady-state photosynthesis (Pn), post-illumination CO2 release rates (R), sucrose-phosphate synthase (SPS) activities, and levels of starch, sucrose and hexoses were measured in the source leaf of corn ( Zea mays L.) during a 16-h photoperiod at 800 μmol m 2 s 1. Pn and SPS activity remained constant. Carbohydrate pools increased at a linear rate, except the first and last hour of the photoperiod. Both the CO2 evolution rate at the moment of light removal (Rmax) and SPS activity decreased by one half after the onset of darkness (0 60 min). Sucrose diminished during this period by 40%, whereas the starch remained constant. Thereafter, starch mobilization began, followed by a gradual decline in leaf respiration. The average dark export rate was calculated to be 60% less than that during the day. Maintenance respiration (Rm) of an attached leaf after 48 h darkness was determined. Plants were illuminated for different intervals (e.g. 5, 10 or 20 min), each followed by dark periods sufficient for respiration to decline to Rm. The ratio of C assimilated in light to that released in dark was 6:1. After the 48-h dark period, the minimal period of illumination (Tmin) required to restore Pn and Rmax to the original level was determined. A mathematical analysis of the kinetics involved in the recovery of Pn and Rmax provided an estimate of turnover time (0.22h) and pool size 9.15 mmol m 2) for the newly fixed carbon.  相似文献   

8.
Carbon allocation and partitioning were investigated in the first internode of light-grown Sinapís alba L. seedlings exposed to white light (WL) with or without supplementary far-red light (FR). In the internode, supplementary FR increased the rates of extension-growth and the accumulation of radiolabeled carbon (fed through the leaves), reducing sugars (even per unit volume), starch, hemicellulose and cellulose, but had no effect on the levels of sucrose and ammonium oxalate-solubilised cell wall carbohydrates, on invertase activity or on the use of additional sucrose fed through the leaves. In source leaves, supplementary FR had no effect on photosynthesis rates and reduced the accumulation of radiolabeled carbon. Mechanical reduction of stem extension-growth responses to supplementary FR did not affect internode carbohydrate or carbon accumulation responses. Supplementary FR provided only to one leaf had no effect on internode extension growth but increased carbon accumulation in the internode. provided that supplementary FR and radiolabeled carbon were both given to the same leaf. Phytochrome-mediated effects on carbon partitioning are not the mere consequence of internode extension-growth responses. Some additional control point(s) (e.g. leaf-source strength) must be under the direct influence of phytochrome.  相似文献   

9.
Four inbred maize lines differing in chilling tolerance were used to study changes in water status and abscisic acid (ABA) levels before, during and after a chilling period. Seedlings were raised in fertilized soil at 24/22°C (day/night), 70% relative humidity. and a 12-h photoperiod with 200 μmol m−2 s−1 from fluorescent tubes. At an age of 2 weeks the plants were conditioned at 14/12°C for 4 days and then chilled for 5 days at 5/3°C. The other conditions (relative humidity, quantum flux, photoperiod) were unchanged. After the chilling period the plants were transferred to the original conditions for recovery. The third leaves were used to study changes in leaf necrosis, ion efflux, transpiration, water status and ABA accumulation. Pronounced differences in chilling tolerance between the 4 lines as estimated by necrotic leaf areas, ion efflux and whole plant survival were observed. Conditioning significantly increased tolerance against chilling at 5/3°C in all genotypes. The genotypes with low chilling tolerance had lower water and osmotic potentials than the more tolerant genotypes during a chilling period at 5/3°C. These differences were related to higher transpiration rates and lower diffusive resistance values of the more susceptible lines. During chilling stress at 5/3°C ABA levels were quadrupled. Only a small rise was measurable during conditioning at 14/12°C. However, conditioning enhanced the rise of ABA during subsequent chilling. ABA accumulation in the two lines with a higher chilling tolerance was triggered at a higher leaf water potential and reached higher levels than in the less tolerant lines. We conclude that chilling tolerance in maize is related to the ability for fast and pronounced formation of ABA as a protective agent against chilling injury.  相似文献   

10.
The biochemical regulation of photosynthate partitioning was investigated in a starchless mutant (TC7) of Arabidopsts thaliana (L.) Henyh, that was deficient in chloroplast phosphoglucomutase (Caspar et al. 1985. Plant Physiol. 79: 11–17). Plants were raised at 20°C with a 20 h light and 4 h dark period, so that the growth rates of the mutant and wild type were similar. Two or 3 isoforms of phosphoglucomutase were separated by ion-exchange chromatography using mutant and wild type leaf preparations, respectively. Initial rate kinetics of all isoforms were similar. Light-saturated photosynthetic oxygen evolution rates of the mutant and wild type were 224 and 302 nmol g-1 chlorophyll h-1, respectively. Starch, sucrose and hexose concentrations were unchanged in wild type leaves after a dark to light transition, whereas sucrose and hexose increased in mutant leaves. Hexose-phosphates accumulated in both genotypes in the light, although the steady-state leaf concentrations of glucose 6-phosphate were 3-fold higher in mutant than in wild type samples. Fructose 2,6-bisphosphate and glucose 1,6-bisphosphate were lower in the mutant than in the wild type at the end of the dark period when mutant leaves were depleted of carbohydrates. Levels of UTP were lower in the mutant than in the wild type, possibly indicating that growth conditions had induced phosphate limited photosynthesis. These results are discussed in relation to the regulation of photosynthetic carbon metabolism.  相似文献   

11.
In the subarctic moss Dicranum elongatum Schleich & Schwaegr., the level of total lipids and triacylglycerols (TAG) was high in late winter and spring and low in autumn and winter. Four-week exposure of field material to continuous light (135μmol m−2s−1) at 1°C resulted in a considerable increase in the amount of TAG in the autumn material acclimated to low temperatures and rhythmic light in the field. In contrast, the same treatment did not cause any increase in TAG in the spring material, acclimated to low temperatures and continuous light in the field. Results from experiments, in which moss cultivated for 4 months at 9°C on 12-h photoperiods (135μmol m−2s−1) was kept for 3 weeks at low temperatures (9°C and −3°C) either in continuous light (135 or 70 μmol m−2s−1) or with 12-h photoperiods (135 μmol m−2s−1), indicated that the TAG level was higher at higher light intensity. At 9°C it was also higher in continuous light of both intensities than in rhythmic light. These results strongly suggest that decreasing irradiance and decreasing daylength limits the accumulation of TAG in D. elongatum during autumn in the subarctic.  相似文献   

12.
A technique was developed for the in vitro culture of Blumeria graminis f. sp. hordei , an obligate biotrophic pathogen of barley. Optimal growth occurred at pH 5.6 on a medium containing 39 gl–1 potato dextrose agar, 40 gl–1 shredded fresh barley leaves, 20 gl–1 sucrose, 13 mgl–1 kanamycin and 80 mgl–1 benzimidazole. At 20°C (90% relative humidity), conidia germinated 48 h after inoculation, producing an average colony diameter of 1 cm after 10 days. However, numerous colonies were present on the medium after 15 days. Light microscopy showed that there was a positive relationship between the amount of leaf in the medium and fungus growth. The fungus retained its virulence during 60 days of storage in vitro , and was able to infect barley. This is a useful and novel technique that could be beneficial in barley pathology breeding programs.  相似文献   

13.
Geiger DR  Shieh WJ  Yu XM 《Plant physiology》1995,107(2):507-514
A high rate of daytime export of assimilated carbon from leaves of a starch-deficient mutant tobacco (Nicotiana sylvestris L.) was found to be a key factor that enabled shoots to grow at rates comparable to those in wild-type plants under a 14-h light period. Much of the newly fixed carbon that would be used for starch synthesis in leaves of wild-type plants was used instead for sucrose synthesis in the mutant. As a result, export doubled and accumulation of sucrose and hexoses increased markedly during the day in leaves of the mutant plants. The increased rate of export to sink leaves appeared to be responsible for the increase in the proportion of their growth that occurred during the day compared to wild-type plants. Daytime growth of source leaves also increased, presumably as a result of the increased accumulation of recently assimilated soluble carbon in the leaves. Even though starch accumulation did not occur in the leaves of mutant plants, nearly all the sugar that accumulated during the day was exported in the period of decreasing irradiance at the end of the diurnal light period. Changes in carbon allocation that occurred in leaves of wild-type and mutant plants near the end of the light period appeared to result from endogenous diurnal regulation associated with the day-night transition.  相似文献   

14.
The effect of the day length on the accumulation and the degradationof the starch in leaf, stem and root tissues of prefloweringsoybean plants was determined by growing plants under a 7 or14 h light regime. As has been reported previously, the rateof starch accumulation by leaves was inversely related to daylength. High sucrose content was associated with a high rateof starch accumulation. Stem tissue showed diurnal fluctuationsin starch content and the rate of accumulation was also inverselyrelated to day length. This starch resulted from photosynthesiswithin the stem itself. A negligible amount of starch was foundin root tissue of both sets of plants. The rate of starch breakdown in leaves of 7 h plants was significantlyless than that in 14 h plants. Nevertheless, leaf starch inshort day length plants was depleted at least 4 h prior to theend of the dark period. In both sets of plants, degradationof stem starch started simultaneously with that in the leavesand continued throughout the dark period, although at a muchlower rate than that of leaves. Thus, stem starch acted as abuffer once leaf starch was depleted, providing carbohydratesto the plant, although in small quantities. To determine if soybean leaves adjust their rate of starch accumulationduring the light period to different dark period temperatures,plants were grown under temperature regimes of 30/20 °Cand 30/30 °C. Plants did not differ in rate of starch accumulationor CO2 exchange rate, but did show large differences in growthcharacteristics. High temperature plants had significantly greaterleaf area and tended to have greater leaf area ratio. Thus,despite similar rates of starch accumulation on a leaf areabasis, high temperature plants accumulated greater amounts ofstarch on a per plant basis. Glycine max(L.)Merr., soybean reserve carbohydrates, remobilization, source-sink realtionships  相似文献   

15.
16.
Primary leaves of 4-day-old, dark-grown mung bean [ Vigna radiata (L.) Wilczek cv. Berken] seedlings were exposed to 24 h of white light (200 μmol m−2 s−1) which was terminated by a 15 min, phytochrome-saturating red or far-red light exposure. Phytochrome content (in vivo and in vitro) and leaf area were monitored during the subsequent dark period. Red light treatments resulted in lower phytochrome content and greater leaf expansion than did far-red treatments. Phytochrome accumulation and leaf expansion were less in norflurazon- (no carotenoids and very low Chl) than in tentoxin- (very low Chl) treated leaves. After 3 days of darkness, leaf expansion was about 25% greater and phytochrome content was about 50% less in red- than in far-red-treated leaves of all treatments. These effects generally took longer to develop in norflurazon- than in tentoxin-treated tissues. Norflurazon-treated tissues exposed to long white light periods apparently do not as accurately reflect phytochrome-controlled photomorphogenic events of green tissues as do tentoxin-treated tissues of mung bean seedlings.  相似文献   

17.
Rooting ability was studied for cuttings derived from pea plants ( Pisum sativum , L. cv. Alaska) grown in controlled environment rooms. When the cuttings were rooted at 70 μmol m−2 s, 1 (photosynthetic photon flux density) or more, a stock plant irradiance at 100 μmol m−2 s−1 decreased rooting ability in cuttings compared to 5 μmol m−2, s−1, However, cuttings rooted at 160 μmol m−2 s−1 formed more roots compared to 5 (μmol m−2 s−1. Although a high irradiance increased the number of roots formed, it could not overcome a decreased potential for root formation in stock plants grown at high irradiance. Light compensation point and dark respiration of cuttings decreased by 70% during the rooting period, and the final levels were strongly influenced by the irradiance to the cuttings. Respiratory O2 uptake decreased in the apex and the base of the cutting from day 2 onwards, whereas a constant level was found in the leaves. Only the content of extractable fructose, glucose, sucrose and starch varied during the early part of the rooting period. We conclude that the observed changes in the cuttings are initiated by excision of the root system, and are not involved in the initiation of adventitious roots.  相似文献   

18.
Acclimation of plants to an increase in atmospheric carbon dioxide concentration is a well described phenomenon. It is characterized by an increase in leaf carbohydrates and a degradation of ribulose 1, 5-bisphosphate carboxylase protein (Rubisco) leading in the long term to a lower rate of CO2 assimilation than expected from the kinetic constants of Rubisco. This article summarizes studies with transgenic plants grown in elevated pCO2 which are modified in their capacity of CO2 fixation, of sucrose and starch synthesis, of triosephosphate and sucrose transport and of sink metabolism of sucrose. These studies show that a feedback accumulation of carbohydrates in leaves play only a minor role in acclimation, because leaf starch synthesis functions as an efficient buffer for photoassimilates. There is some evidence that in elevated pCO2, plants grow faster and senescence is induced earlier.  相似文献   

19.
Experiments were done to examine the phototrophic response of sun-tracking leaves of Lupinus succulentus Dougl. to fixed beams of white and broad band light. Upon irradiation with 15 W m−2 white light that struck the laminae at an angle of 45°, there was a 45–60 min lag period prior to leaf movement. The greatest rate of movement was 15° h−1, and reorientation ceased when leaves attained a position within 15° of perpendicular to the light beam. Laminar movement was largely pulvinar, and a 60 min inductive light treatment was sufficient to activate a maximum pulvinar response in subsequent darkness. Light striking the lamina at angles between 20 and 70° induced similar maximum pulvinar responses and only light that struck the upper (adaxial) leaf surface was effective. Leaf tracking was fully activated by blue light but not by red or yellow light.  相似文献   

20.
人类活动加剧和全球变化导致植物在生长季同时受到高浓度地表臭氧(O3)和干旱的双重胁迫。为了探究两者对植物非结构性碳水化合物(TNC)积累和分配的影响, 该实验采用开顶式气室研究了2种O3浓度(CF, 过滤空气; NF40, NF (未过滤空气) + 40 nmol·mol -1 O3)和2个水分处理(对照, 充分灌溉; 干旱, 非充分灌溉)及其交互作用对杨树基因型‘546’ (Populus deltoides cv. ‘55/56’ × P. deltoides cv. ‘Imperial’)叶片和细根中TNC及其组分(葡萄糖、果糖、蔗糖、多糖、总可溶性糖和淀粉)含量的影响。结果表明: O3浓度升高显著降低杨树叶片中淀粉和TNC的含量, 增加葡萄糖、果糖和总可溶性糖含量, 但对细根中淀粉和总可溶性糖含量的影响不显著。干旱胁迫显著增加细根中果糖和多糖含量, 降低蔗糖含量, 但对叶片中淀粉和总可溶性糖含量的影响不显著。充分灌溉下O3浓度升高显著增加了杨树叶片多糖和总可溶性糖含量, 而干旱下O3浓度升高显著增加了TNC含量的根叶比。该研究结果发现O3主要影响叶片中TNC及各组分的含量, 而干旱主要影响细根中TNC及各组分的含量。从杨树叶片TNC的响应来看, 适度的水分限制有助于减缓O3的负面伤害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号