首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
MntR is a metalloregulatory protein that helps to modulate the level of manganese in Bacillus subtilis. MntR shows a metal-response profile distinct from other members of the DtxR family of metalloregulatory proteins, which are generally considered to be iron(II)-activated. As part of an ongoing effort to elucidate the mechanism and metal-selectivity of MntR, several biophysical studies on wild-type MntR and two active site mutants, MntR E99C and MntR D8M, have been performed. Using circular dichroism (CD) spectroscopy, the thermal stability of these proteins has been examined in the presence of various divalent metal ions. Fluorescence intensity measurements of 8-anilino-1-naphthalenesulfonic acid (ANS) were monitored to examine the folding of these proteins in the presence of different metal ions. These experiments indicate that MntR undergoes a significant conformational change upon metal binding that results in stabilization of the protein structure. These studies also show that the MntR D8M active site mutation causes a detrimental effect on the metal-responsiveness of this protein. Fluorescence anisotropy experiments have been performed to quantify the extent of metal-activated DNA binding by these proteins to two different cognate recognition sequences. Binding of MntR and MntR E99C to the mntA cognate sequence closely parallels that of the mntH operator, confirming that the proteins bind both sequences with comparable affinity depending on the activating metal ion. Fluorescence anisotropy experiments on MntR D8M indicate significantly impaired DNA binding, providing additional evidence that MntR D8M is a dysfunctional regulator.  相似文献   

3.
4.
5.
6.
The manganese transport regulator (MntR) of Bacillus subtilis is a metalloregulatory protein responsible for regulation of genes involved in manganese uptake by this organism. MntR belongs to the iron-responsive DtxR family, but is allosterically regulated by manganese and cadmium ions. Having previously characterized the metal binding affinities of this protein as well as the DNA-binding activation profiles for the relevant metal ions, we have focused the current study on investigating the structural changes of MntR in solution upon binding divalent transition metal ions. Deuterium exchange mass spectrometry was utilized to investigate the deuterium exchange dynamics between apo-MntR, Co2+-MntR, Cd2+-MntR, and Mn2+-MntR. Comparing the rates of deuteration of each metal-bound form of MntR reveals that the N-terminal DNA-binding motif is more mobile in solution than the C-terminal dimerization domain. Furthermore, significant protection from deuterium exchange is observed in the helices that contribute metal-chelating amino acids to form the metal binding site of MntR. In contrast, the bulk of the DNA-binding winged helix–turn–helix motif shows no difference in deuterium exchange upon metal binding. Mapping of the deuteration patterns onto the crystal structures of MntR yields insight into how metal binding affects the protein structure and complements earlier studies on the mechanism of MntR. Metal binding acts to rigidify MntR, thereby limiting the mobility of the protein and reducing the entropic cost of DNA binding. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Wakabayashi H  Koszelak ME  Mastri M  Fay PJ 《Biochemistry》2001,40(34):10293-10300
Factor VIII circulates as a divalent metal ion-dependent heterodimer comprised of a light chain (LC) and a heavy chain (HC). Reassociation of factor VIII subunits was assessed using fluorescence energy transfer where LC and HC were labeled with acrylodan (Ac; fluorescence donor) and fluorescein-5-maleimide (Fl; fluorescence acceptor), respectively. The reduction of donor fluorescence due to the acceptor was used as an indicator of binding. Subunits associated with high affinity (K(d) = 53.8 nM) in the absence of metal ion and presence of EDTA. However, this product showed no cofactor activity, as measured by a factor Xa generation assay. In the presence of 25 mM Ca(2+), no increase in the intersubunit affinity was observed (K(d) = 48.7 nM) but specific activity of the cofactor was approximately 30% that of native factor VIII. At saturating levels of Fl-HC relative to Ac-LC, donor fluorescence decreased to 79.3 and 73.5% of its original value in the absence and presence of Ca(2+), respectively. Thrombin cleaved the heterodimers that were associated in the absence or presence of Ca(2+) with similar efficiency, indicating that the lack of activity was not the result of a defect in activation. Cu(2+) (0.5 microM) increased the intersubunit affinity by approximately 100 fold (K(d) = 0.52 nM) and the specific activity to approximately 60% of native factor VIII. The former effect was independent of Ca(2+), whereas the latter effect required Ca(2+). These results indicate that the intersubunit association in factor VIII is primarily metal-ion independent while divalent metal ions serve specific roles. Ca(2+) appears essential to promote the active conformation of factor VIII while Cu(2+) primarily enhances the intersubunit affinity.  相似文献   

8.
9.
10.
Type 4 phosphodiesterases (PDE4s) are metallohydrolases that catalyze the hydrolysis of cAMP to AMP. At the bottom of its active site lie two divalent metal ions in a binuclear motif which are involved in both cAMP binding and catalysis [(2000) Science 288, 1822-1825; (2000) Biochemistry 39, 6449-6458]. Using a SPA-based equilibrium [(3)H]rolipram binding assay, we have determined that Mg(2+), Mn(2+), and Co(2+) all mediated a high-affinity (K(d) between 3 and 8 nM) and near stoichiometric (R)-rolipram binding to PDE4. In their absence, (R)-rolipram binds stoichiometrically to the metal ion-free apoenzyme with a K(d) of approximately 150 nM. The divalent cation dose responses in mediating the high-affinity rolipram/PDE4 interaction mirror their efficacy in catalysis, suggesting that both metal ions of the holoenzyme are involved in mediating the high-affinity (R)-rolipram/PDE4 interaction. The specific rolipram binding to the apo- and holoenzyme is differentially displaced by cAMP, AMP, and other inhibitors, providing a robust tool to dissect the components of metal ion-dependent and independent PDE4/ligand interactions. cAMP binds to the holoenzyme with a K(s) of 1.9 microM and nonproductively to the apoenzyme with a K(d) of 179 microM. In comparison, AMP binds to the holo- and apoenzyme with K(d) values of 7 and 11 mM, respectively. The diminished Mg(2+)-dependent component of AMP binding to PDE4 suggests that most of the Mg(2+)/phosphate interaction in the cAMP/PDE4 complex is disrupted upon the hydrolysis of the cyclic phosphoester bond, leading to the rapid release of AMP.  相似文献   

11.
The ability of Li(+), Na(+), K(+), Rb(+), Cs(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Cu(2+), Cd(2+), Al(3+), V(4+), Hg(2+), Pd(2+), Au(3+), and Pt(4+) to provoke liquid crystalline (LC) phases in high molecular weight DNA was investigated. The alkali and alkaline earth metal ions provoked typical cholesteric/columnar structures, whereas transition metal ions precipitated DNA into solid/translucent gel-like aggregates. Heavy metal ions reduced viscosity of DNA solution, disrupting rigid, rod-like DNA structure necessary for LC textures. Three-layer quantum mechanical-molecular mechanical (QM/MM) studies of Li(+), Na(+), K(+), Mg(2+), and Ca(2+) binding DNA fragment suggested several possible binding modes of these ions to the phosphate groups. The dianion mode of metal binding, involving the phosphate groups of both strands of DNA, allowed for higher DNA binding affinity of the alkaline earth metal ions. These results have implications in understanding the biological role of metal ions and developing DNA-based sensors and nanoelectronic devices.  相似文献   

12.
Hung HC  Chang GG  Yang Z  Tong L 《Biochemistry》2000,39(46):14095-14102
Pigeon liver malic enzyme was inhibited by lutetium ion through a slow-binding process, which resulted in a concave down tracing of the enzyme activity assay. The fast initial rates were independent of lutetium ion concentration, while the slow steady-state rates decreased with increasing Lu(3+) concentration. The observed rate constant for the transition from initial rate to steady-state rate, k(obs), exhibited saturation kinetics as a function of Lu(3+) concentration, suggesting the involvement of an isomerization process between two enzyme forms (R-form and T-form). The binding affinity of Lu(3+) to the R-form is weaker (K(d,Lu) = 14 microM) than that of Mn(2+) (K(m,Mn) = 1.89 microM); however, Lu(3+) has much tighter binding affinity with the T-form ( = 0.83 microM). Lu(3+) was shown to be a competitive inhibitor with respect to Mn(2+), which suggests that Lu(3+) and Mn(2+) are competing for the same metal binding site of the enzyme. These observations are in accordance with the available crystal structure information, which shows a distorted active site region of the Lu(3+)-containing enzyme. Other divalent cations, i.e., Fe(2+), Cu(2+), or Zn(2+), also act as time-dependent slow inhibitors for malic enzyme. The dynamic quenching constants of the intrinsic fluorescence for the metal-free and Lu(3+)-containing enzymes are quite different, indicating the conformational differences between the two enzyme forms. The secondary structure of these two enzyme forms, on the other hand, was not changed. The above results indicated that replacement of the catalytically essential Mn(2+) by other metal ions leads to a slow conformational change of the enzyme and consequently alters the geometry of the active site. The transformed enzyme conformation, however, is unfavorable for catalysis. Both the chemical nature of the metal ion and its correct coordination in the active site are essential for catalysis.  相似文献   

13.
Lead(II)-induced cleavage can be used as a tool to probe conformational changes in RNA. In this report, we have investigated the conformation of M1 RNA, the catalytic subunit of Escherichia coli RNase P, by studying the lead(II)-induced cleavage pattern in the presence of various divalent metal ions. Our data suggest that the overall conformation of M1 RNA is very similar in the presence of Mg(2+), Mn(2+), Ca(2+), Sr(2+) and Ba(2+), while it is changed compared to the Mg(2+)-induced conformation in the presence of other divalent metal ions, Cd(2+) for example. We also observed that correct folding of some M1 RNA domains is promoted by Pb(2+), while folding of other domain(s) requires the additional presence of other divalent metal ions, cobalt(III) hexamine or spermidine. Based on the suppression of Pb(2+) cleavage at increasing concentrations of various divalent metal ions, our findings suggest that different divalent metal ions bind with different affinities to M1 RNA as well as to an RNase P hairpin-loop substrate and yeast tRNA(Phe). We suggest that this approach can be used to obtain information about the relative binding strength for different divalent metal ions to RNA in general, as well as to specific RNA divalent metal ion binding sites. Of those studied in this report, Mn(2+) is generally among the strongest RNA binders.  相似文献   

14.
15.
16.
17.
18.
C2 domains regulate numerous eukaryotic signaling proteins by docking to target membranes upon binding Ca(2+). Effective activation of the C2 domain by intracellular Ca(2+) signals requires high Ca(2+) selectivity to exclude the prevalent physiological metal ions K(+), Na(+), and Mg(2+). The cooperative binding of two Ca(2+) ions to the C2 domain of cytosolic phospholipase A(2) (cPLA(2)-alpha) induces docking to phosphatidylcholine (PC) membranes. The ionic charge and size selectivities of this C2 domain were probed with representative mono-, di-, and trivalent spherical metal cations. Physiological concentrations of monovalent cations and Mg(2+) failed to bind to the domain and to induce docking to PC membranes. Superphysiological concentrations of Mg(2+) did bind but still failed to induce membrane docking. In contrast, Ca(2+), Sr(2+), and Ba(2+) bound to the domain in the low micromolar range, induced electrophoretic mobility shifts in native polyacrylamide gels, stabilized the domain against thermal denaturation, and induced docking to PC membranes. In the absence of membranes, the degree of apparent positive cooperativity in binding of Ca(2+), Sr(2+), and Ba(2+) decreased with increasing cation size, suggesting that the C2 domain binds two Ca(2+) or Sr(2+) ions, but only one Ba(2+) ion. These stoichiometries were correlated with the abilities of the ions to drive membrane docking, such that micromolar concentrations of Ca(2+) and Sr(2+) triggered docking while even millimolar concentrations of Ba(2+) yielded poor docking efficiency. The simplest explanation is that two bound divalent cations are required for stable membrane association. The physiological Ca(2+) ion triggered membrane docking at 20-fold lower concentrations than Sr(2+), due to both the higher Ca(2+) affinity of the free domain and the higher affinity of the Ca(2+)-loaded domain for membranes. Kinetic studies indicated that Ca(2+) ions bound to the free domain are retained at least 5-fold longer than Sr(2+) ions. Moreover, the Ca(2+)-loaded domain remained bound to membranes 2-fold longer than the Sr(2+)-loaded domain. For both Ca(2+) and Sr(2+), the two bound metal ions dissociate from the protein-membrane complex in two kinetically resolvable steps. Finally, representative trivalent lanthanide ions bound to the domain with high affinity and positive cooperativity, and induced docking to PC membranes. Overall, the results demonstrate that both cation charge and size constraints contribute to the high Ca(2+) selectivity of the C2 domain and suggest that formation of a cPLA(2)-alpha C2 domain-membrane complex requires two bound multivalent metal ions. These features are proposed to stem from the unique structural features of the metal ion-binding site in the C2 domain.  相似文献   

19.
We report the first stopped-flow fluorescence analysis of transition metal binding (Co(2+), Ni(2+), Cu(2+), and Zn(2+)) to the H-N-H endonuclease motif within colicin E9 (the E9 DNase). The H-N-H consensus forms the active site core of a number of endonuclease groups but is also structurally homologous to the so-called treble-clef motif, a ubiquitous zinc-binding motif found in a wide variety of metalloproteins. We find that all the transition metal ions tested bind via multistep mechanisms. Binding was further dissected for Ni(2+) and Zn(2+) ions through the use of E9 DNase single tryptophan mutants, which demonstrated that most steps reflect conformational rearrangements that occur after the bimolecular collision, many common to the two metals, while one appears specific to zinc. The kinetically derived equilibrium dissociation constants (K(d)) for transition metal binding to the E9 DNase agree with previously determined equilibrium measurements and so confirm the validity of the derived kinetic mechanisms. Zn(2+) binds tightest to the enzyme (K(d) approximately 10(-)(9) M) but does not support endonuclease activity, whereas the other metals (K(d) approximately 10(-)(6) M) are active in endonuclease assays implying that the additional step seen for Zn(2+) traps the enzyme in an inactive but high affinity state. Metal-induced conformational changes are likely to be a conserved feature of H-N-H/treble clef motif proteins since similar Zn(2+)-induced, multistep binding was observed for other colicin DNases. Moreover, they appear to be independent both of the conformational heterogeneity that is naturally present within the E9 DNase at equilibrium, as well as the conformational changes that accompany the binding of its cognate inhibitor protein Im9.  相似文献   

20.
The Staphylococcus aureus DtxR-like protein, MntR, controls expression of the mntABC and mntH genes, which encode putative manganese transporters. Mutation of mntABC produced a growth defect in metal-depleted medium and increased sensitivity to intracellularly generated superoxide radicals. These phenotypes resulted from diminished uptake of manganese and were rescued by the addition of excess Mn(II). Resistance to superoxide was incompletely rescued by Mn(II) for STE035 (mntA mntH), and the strain had reduced virulence in a murine abscess model of infection. Expression of mntABC was repressed by Mn(II) in an MntR-dependent manner, which contrasts with the expression of mntH that was not repressed in elevated Mn(II) and was decreased in an mntR mutant. This demonstrates that MntR acts as a negative and positive regulator of these loci respectively. PerR, the peroxide resistance regulon repressor, acts with MntR to control the expression of mntABC and manganese uptake. The expression of the PerR-regulated genes, katA (catalase), ftn (ferritin) and fur (ferric uptake regulator), was diminished in STE031 (mntR) when grown in excess Mn(II). Therefore, the control of Mn(II)-regulated members of the PerR regulon and the Fur protein is modulated by MntR through its control of Mn(II) uptake. The co-ordinated regulation of metal ion homeostasis and oxidative stress resistance via the regulators MntR, PerR and Fur of S. aureus is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号