首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The MET proto-oncogene encodes a 190-kDa disulfide-linked heterodimeric receptor (p190 alpha beta) whose tyrosine kinase activity is triggered by the hepatocyte growth factor. The mature receptor is made of two subunits: an alpha chain of 50 kDa and a beta chain of 145 kDa, arising from proteolytic cleavage of a single-chain precursor of 170 kDa (pr170). In a colon carcinoma cell line (LoVo), the precursor is not cleaved and the Met protein is exposed at the cell surface as a single-chain polypeptide of 190 kDa (p190NC). The expression of the uncleaved Met protein is due to defective posttranslational processing, since in this cell line (i) the proteolytic cleavage site Lys-303-Arg-Lys-Lys-Arg-Ser-308 is present in the precursor, (ii) p190NC is sensitive to mild trypsin digestion of the cell surface, generating alpha and beta chains of the correct size, and (iii) the 205-kDa insulin receptor precursor is not cleaved as well. p190NC is a functional tyrosine kinase in vitro and is activated in vivo, as shown by constitutive autophosphorylation on tyrosine. The MET gene is neither amplified nor rearranged in LoVo cells. Overlapping cDNA clones selected from a library derived from LoVo mRNA were sequenced. No mutations were present in the MET-coding region. These data indicate that the tyrosine kinase encoded by the MET proto-oncogene can be activated as a consequence of a posttranslational defect.  相似文献   

2.
The met proto-oncogene is a member of the family of tyrosine kinase growth factor receptors. We describe the isolation and characterization of a cDNA clone (pOK) for the met receptor from a gastric carcinoma cell line. This clone differs from the published cDNA clone by the absence of 54 bp predicted to encode 18 amino acids in the extracellular domain. The pOK cDNA corresponds to the most abundant met RNA species of 8 kb expressed in human cell lines and tissue, and we show that there are in fact two 8-kb met receptor tyrosine kinase (RTK) isoforms that are generated by alternative splicing. This newly described met isoform when transiently expressed in COS cells encodes a protein of 190 kDa which corresponds in size to the p190 met alpha beta heterodimer expressed in human cell lines. Furthermore, we show that the 190-kDa product of pOK consists of the 140-kDa met beta subunit associated with the 50-kDa met alpha subunit. This finding suggests that both the alpha and beta met chains are encoded by this construct and confirms the hypothesis that a single chain precursor is cleaved to produce both subunits of met. In contrast, the previously characterized met isoform corresponds to a minor met RNA species and encodes a protein of 170 kDa that is not cleaved yet is processed in a manner that allows cell surface expression. Both met RTK isoforms are autophosphorylated in the in vitro kinase assay. These results suggest that different isoforms of the met RTK may have distinct biological activities.  相似文献   

3.
The receptor for hepatocyte growth factor, also known as scatter factor (HGF/SF), has recently been identified as the 190-kDa heterodimeric tyrosine kinase encoded by the MET proto-oncogene (p190MET). The signaling pathway(s) triggered by HGF/SF are unknown. In A549 cells, a lung epithelial cell line, nanomolar concentrations of HGF/SF induced tyrosine phosphorylation of the p190MET receptor. The autophosphorylated receptor coprecipitated with phosphatidylinositol 3-kinase (PI 3-kinase) activity. In GTL16 cells, a cell line derived from a gastric carcinoma, the p190MET receptor, overexpressed and constitutively phosphorylated on tyrosine, coprecipitated with PI 3-kinase activity and with the 85-kDa PI 3-kinase subunit. In these cells activation of protein kinase C or the increase of intracellular [Ca2+] inhibits tyrosine phosphorylation of the p190MET receptor as well as the association with both PI 3-kinase activity and the 85-kDa subunit of the enzyme. In an in vitro assay, tyrosine phosphorylation of the immobilized p190MET receptor was required for binding of PI 3-kinase from cell lysates. These data strongly suggest that the signaling pathway activated by the HGF/SF receptor includes generation of D-3-phosphorylated inositol phospholipids.  相似文献   

4.
The MET proto-oncogene encodes a transmembrane tyrosine kinase receptor for HGF (p190MET). In this work, p190MET was immunoprecipitated, allowed to phosphorylate in the presence of [gamma-32P]ATP, and digested with trypsin. A major phosphopeptide was purified by reverse phase chromatography. The phosphorylated tyrosine was identified as residue 1235 (Tyr1235) by Edman covalent radiosequencing. A synthetic peptide derived from the corresponding MET sequence was phosphorylated by p190MET in an in vitro assay and coeluted in reverse phase chromatography. Tyr1235 lies within the tyrosine kinase domain of p190MET, within a canonical tyrosine autophosphorylation site that shares homology with the corresponding region of the insulin, CSF-1 and platelet-derived growth factor receptors, and of p60src and p130gag-fps. The p190MET kinase is constitutively phosphorylated on tryosine in a gastric carcinoma cell line (GTL16), due to the amplification and overexpression of the MET gene. Metabolic labeling of GTL-16 cells with [32P]orthophosphate followed by immunoprecipitation and tryptic phosphopeptide mapping of p190MET showed that Tyr1235 is a major site of tyrosine phosphorylation in vivo as well. Since phosphorylation activates p190MET kinase, we propose a regulatory role for Tyr1235.  相似文献   

5.
The role of integrin-mediated signaling events in T cell function remains incompletely characterized. We report here that alpha4beta1 integrin stimulation of H9 T cells and normal human T cell blasts results in rapid and transient tyrosine phosphorylation of the adapter protein, SH2 domain-containing 76-kDa protein (SLP-76)-associated phosphoprotein of 130 kDa (SLAP-130)/FYB at levels comparable to those observed following TCR stimulation. Stimulation of T cells via the alpha4beta1 integrin enhances the association of tyrosine phosphorylated SLAP-130/FYB with the SH2 domain of the src tyrosine kinase p59fyn. Activation of normal T cells, but not H9 T cells, via alpha4beta1 leads to tyrosine phosphorylation of SLP-76 as well as SLAP-130/FYB. Overexpression of SLAP-130/FYB in normal T cells enhances T cell migration through fibronectin-coated filters in response to the chemokine stromal cell-derived factor (SDF)-1alpha. These results identify SLAP-130/FYB as a new tyrosine phosphorylated substrate in beta1 integrin signaling and suggest a novel function for SLAP-130/FYB in regulating T lymphocyte motility.  相似文献   

6.
Although most L-type calcium channel alpha(1C) subunits isolated from heart or brain are approximately 190-kDa proteins that lack approximately 50 kDa of the C terminus, the C-terminal domain is present in intact cells. To test the hypothesis that the C terminus is processed but remains functionally associated with the channels, expressed, full-length alpha(1C) subunits were cleaved in vitro by chymotrypsin to generate a 190-kDa C-terminal truncated protein and C-terminal fragments of 30-56 kDa. These hydrophilic C-terminal fragments remained membrane-associated. A C-terminal proline-rich domain (PRD) was identified as the mediator of membrane association. The alpha(1C) PRD bound to SH3 domains in Src, Lyn, Hck, and the channel beta(2) subunit. Mutant alpha(1C) subunits lacking either approximately 50 kDa of the C terminus or the PRD produced increased barium currents through the channels, demonstrating that these domains participate in the previously described (Wei, X., Neely, a., Lacerda, A. E. Olcese, r., Stefani, E., Perez-Reyes, E., and Birnbaumer, L. (1994) J. Biol. Chem. 269, 1635-1640) inhibition of channel function by the C terminus.  相似文献   

7.
The integrin alpha 3 beta 1 is a multiligand extracellular matrix receptor found on many cell types. Immunoprecipitations of 125I-surface-labeled prostate carcinoma cell lines, DU145 and PC-3, with the anti-alpha 3 integrin monoclonal antibodies J143 or PIB5, resulted in the coimmunoprecipitation, along with the expected alpha 3 beta 1 heterodimer, of a polypeptide with a molecular mass of 225 kDa. This protein could also be copurified with the 155-kDa alpha 3 and 115-kDa beta 1 subunits upon affinity chromatography of 125I-surface-labeled cell extracts on anti-alpha 3 antibody-Sepharose columns. Upon reduction, this 225-kDa protein generated 130- and 95-kDa polypeptides, while the 155-kDa alpha 3 subunit generated 130- and 25-kDa polypeptides. The 225-kDa protein did not generate a 25-kDa polypeptide. Deglycosylation and reduction of the 225-kDa protein resulted in the generation of 110- and 95-kDa polypeptides, while deglycosylation and reduction of the 155-kDa alpha 3 resulted in a 110-kDa polypeptide identical in size to the 110-kDa polypeptide generated from the 225-kDa protein. Peptide maps generated from the 110-kDa components of the 225-kDa polypeptide and the 155-kDa alpha 3 integrin subunit were identical, as were their N-terminal amino acid sequences. An antibody directed against the cytoplasmic domain of the alpha 3 subunit immunoprecipitated the 225-kDa polypeptide in addition to the 155-kDa alpha 3 subunit. Furthermore, Northern blot analysis of RNA from DU145 and PC-3 cells with a human alpha 3 cDNA probe identified an mRNA species of 6.2 kb in addition to a major mRNA species of 4.3 kb. The larger mRNA species, which is of an appropriate size for encoding a polypeptide of approximately 220-kDa, was not detectable in cells which did not express the 225-kDa protein. These data demonstrate that the 225-kDa polypeptide represents a novel integrin alpha 3 subunit consisting of the alpha 3 integrin heavy chain disulfide-bonded to a 95-kDa polypeptide which may represent an alternative "light" chain to the 25-kDa light chain of the alpha 3 subunit.  相似文献   

8.
9.
Activation of the MET tyrosine kinase receptor by hepatocyte growth factor/scatter factor is classically associated with cell survival. Nonetheless, stress stimuli can lead to a caspase-dependent cleavage of MET within its juxtamembrane region, which generate a proapoptotic 40 kDa fragment (p40 MET). We report here that p40 MET is in fact generated through an additional caspase cleavage of MET within its extreme C-terminal region, which removes only few amino acids. We evidenced a hierarchical organization of these cleavages, with the C-terminal cleavage favoring the juxtamembrane one. As a functional consequence, the removal of the last amino acids of p40 MET increases its apoptotic capacity. Finally, cells expressing a MET receptor mutated at the C-terminal caspase site are unable to generate p40 MET and are resistant to apoptosis, indicating that generation of p40 MET amplifies apoptosis. These results revealed a two-step caspase cleavage of MET resulting in the reshaping of this survival receptor to a proapoptotic factor.  相似文献   

10.
11.
We report the cloning and primary structure of the Drosophila insulin receptor gene (inr), functional expression of the predicted polypeptide, and the isolation of mutations in the inr locus. Our data indicate that the structure and processing of the Drosophila insulin proreceptor are somewhat different from those of the mammalian insulin and IGF 1 receptor precursors. The INR proreceptor (M(r) 280 kDa) is processed proteolytically to generate an insulin-binding alpha subunit (M(r) 120 kDa) and a beta subunit (M(r) 170 kDa) with protein tyrosine kinase domain. The INR beta 170 subunit contains a novel domain at the carboxyterminal side of the tyrosine kinase, in the form of a 60 kDa extension which contains multiple potential tyrosine autophosphorylation sites. This 60 kDa C-terminal domain undergoes cell-specific proteolytic cleavage which leads to the generation of a total of four polypeptides (alpha 120, beta 170, beta 90 and a free 60 kDa C-terminus) from the inr gene. These subunits assemble into mature INR receptors with the structures alpha 2(beta 170)2 or alpha 2(beta 90)2. Mammalian insulin stimulates tyrosine phosphorylation of both types of beta subunits, which in turn allows the beta 170, but not the beta 90 subunit, to bind directly to p85 SH2 domains of PI-3 kinase. It is likely that the two different isoforms of INR have different signaling potentials. Finally, we show that loss of function mutations in the inr gene, induced by either a P-element insertion occurring within the predicted ORF, or by ethylmethane sulfonate treatment, render pleiotropic recessive phenotypes that lead to embryonic lethality. The activity of inr appears to be required in the embryonic epidermis and nervous system among others, since development of the cuticle, as well as the peripheral and central nervous systems are affected by inr mutations.  相似文献   

12.
Previously, we characterized a 140-kDa protein from Entamoeba histolytica as a beta1-integrin-like molecule that binds fibronectin. In this work we present data showing that the amoebic receptor is associated with another surface molecule, the 220-kDa lectin, and with protein tyrosine kinase activity. By immunoprecipitation with the alphabeta1Eh antibody, we demonstrated by immune complex assays for tyrosine protein kinases that the amoebic fibronectin receptor was associated with two phosphorylated proteins of 50 and 70 kDa when internal membranes were used as the source of antigen. When cells were stimulated with fibronectin, two proteins of 55 and 90 kDa were tyrosine phosphorylated, as shown by Western blot with alphaPY20, its phosphorylation being time dependent after fibronectin stimulation. However, when the actin cytoskeleton of fibronectin-stimulated trophozoites was stabilized with phalloidin, the level and the pattern of phosphorylated proteins were different. In this case, a high-molecular-weight component, heavily phosphorylated, was present, which may include the 220-kDa lectin. We also present data confirming that the signaling pathway that is activated by fibronectin is specific. This was demonstrated by comparing the pattern of phosphoproteins obtained in immune complexes prepared with alphabeta1Eh, alphaL220, and alphaPY20 from total extracts obtained in the presence of phalloidin, from cells that had been exposed to fibronectin, soluble concanavalin A, or concanavalin-A-coated substrate. The presence of tyrosine kinases associated with the beta1-integrin-like amoebic molecule was confirmed by immunoprecipitation assays along with the combined use of a tyrosine kinase-specific substrate, the peptide RR-SRC, and a tyrosine kinase inhibitor, genistein.  相似文献   

13.
Interleukin 2 (IL-2) has been shown to stimulate tyrosine phosphorylation of a number of proteins requiring only the p75 beta chain of the IL-2 receptor. Unlike the receptors for epidermal growth factor, insulin, and other growth factors, the p55-alpha and p75-beta chains of the IL-2 receptor have no tyrosine protein kinase domain suggesting that the IL-2 receptor complex activates protein kinases by a unique mechanism. The activation of tyrosine kinases by IL-2 in situ was studied and using a novel methodology has shown tyrosine kinase activity associated with the purified IL-2R complex in vitro. IL-2 stimulated the in situ tyrosine phosphorylation of 97 kDa and 58 kDa proteins which bound to poly(Glu,Tyr)4:1, a substrate for tyrosine protein kinases, suggesting these proteins had characteristics found in almost all tyrosine kinases. IL-2 was found to stimulate tyrosine protein kinase activity in receptor extracts partially purified from human T lymphocytes and the YT cell line. Biotinylated IL-2 was used to precipitate the high-affinity-receptor complex and phosphoproteins associated with it. The data indicated that the 97-kDa and 58-kDa phosphotyrosyl proteins were tightly associated with the IL-2 receptor complex. These proteins were phosphorylated on tyrosine residues by IL-2 stimulation of intact cells and ligand treatment of in vitro receptor extracts. Furthermore, the 97-kDa and 58-kDa proteins were found in streptavidin-agarose/biotinylated IL-2 purified receptor preparations and showed high affinity for tyrosine kinase substrate support matrixes. The experiments suggest that these two proteins are potential candidates for tyrosine kinases involved in the IL-2R complex signal transduction process.  相似文献   

14.
The primary (alpha 1) subunit of purified skeletal muscle dihydropyridine-sensitive calcium channels is present in full-length (212 kDa) and truncated (190 kDa) forms which are both phosphorylated by cAMP-dependent protein kinase (cA-PK) in vitro. In the present study, phosphorylation of the purified calcium channel by cA-PK followed by immunoprecipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two-dimensional phosphopeptide mapping revealed differential phosphorylation of the related 190- and 212-kDa forms. The 190-kDa form of the alpha 1 subunit was phosphorylated on three major and three minor tryptic phosphopeptides; the 212-kDa form was phosphorylated on all six of these phosphopeptides plus two that were unique. Time course experiments showed that a single site on the COOH-terminal portion of the full-length form of the alpha 1 subunit is most intensely and rapidly (within 10 s) phosphorylated. Phosphorylation occurs almost exclusively on this COOH-terminal site unless harsh conditions such as treatment with denaturing detergents are employed to expose phosphorylation sites within the 190-kDa segment of the molecule. Elution of phosphopeptides from the second dimension chromatograph followed by immunoprecipitation with an anti-peptide antibody (anti-CP1) directed against the COOH-terminal amino acid sequence enabled us to identify this major phosphorylation site as serine 1854. The nearby consensus sites for cA-PK phosphorylation at serines 1757 and 1772 were phosphorylated only after denaturation or proteolytic cleavage. Phosphorylation of serine 1854 may play a pivotal role in the regulation of calcium channel function by cA-PK.  相似文献   

15.
16.
Previous work (Gandino, L., Di Renzo, M. F., Giordano, S., Bussolino, F., and Comoglio, P.M. (1990) Oncogene 5, 721-725) has shown that the tyrosine kinase activity of the receptor encoded by the MET protooncogene is negatively modulated by protein kinase C (PKC). We now show that an increase of intracellular Ca2+ has a similar inhibitory effect in vivo, via a PKC-independent mechanism. In GTL-16 cells the p145MET kinase is overexpressed and constitutively phosphorylated on tyrosine. A rapid and reversible decrease of p145MET tyrosine phosphorylation was induced by treatment with the calcium ionophores A23187 or ionomycin. Experiments performed with the ionophores in absence of extracellular calcium showed that a rise in cytoplasmic Ca2+ concentration to 450 nM (due to release from intracellular stores) resulted in a similar effect. These Ca2+ concentrations had no effect on p145MET autophosphorylation in an in vitro kinase assay. This suggests that the effect of Ca2+ on p145MET tyrosine phosphorylation is not direct but may be mediated by Ca(2+)-activated proteins(s). Involvement of Ca(2+)-dependent tyrosine phosphatases was ruled out by experiments carried out in presence of Na2VO4. In vivo labeling with [32P]orthophosphate showed that the rise of intracellular Ca2+ induces serine phosphorylation of p145MET on a specific phosphopeptide. This suggests that Ca2+ negatively modulates p145MET kinase through the phosphorylation of a critical serine residue by a Ca(2+)-activated serine kinase distinct from PKC.  相似文献   

17.
To facilitate structure-function relationship studies of the V2 vasopressin receptor, a prototypical G(s)-coupled receptor, we generated V2 receptor-expressing yeast strains (Saccharomyces cerevisiae) that required arginine vasopressin-dependent receptor/G protein coupling for cell growth. V2 receptors heterologously expressed in yeast were unable to productively interact with the endogenous yeast G protein alpha subunit, Gpa1p, or a mutant Gpa1p subunit containing the C-terminal G alpha(q) sequence (Gq5). In contrast, the V2 receptor efficiently coupled to a Gpa1p/G alpha(s) hybrid subunit containing the C-terminal G alpha(s) sequence (Gs5), indicating that the V2 receptor retained proper G protein coupling selectivity in yeast. To gain insight into the molecular basis underlying the selectivity of V2 receptor/G protein interactions, we used receptor saturation random mutagenesis to generate a yeast library expressing mutant V2 receptors containing mutations within the second intracellular loop. A subsequent yeast genetic screen of about 30,000 mutant receptors yielded four mutant receptors that, in contrast to the wild-type receptor, showed substantial coupling to Gq5. Functional analysis of these mutant receptors, followed by more detailed site-directed mutagenesis studies, indicated that single amino acid substitutions at position Met(145) in the central portion of the second intracellular loop of the V2 receptor had pronounced effects on receptor/G protein coupling selectivity. We also observed that deletion of single amino acids N-terminal of Met(145) led to misfolded receptor proteins, whereas single amino acid deletions C-terminal of Met(145) had no effect on V2 receptor function. These findings highlight the usefulness of combining receptor random mutagenesis and yeast expression technology to study mechanisms governing receptor/G protein coupling selectivity and receptor folding.  相似文献   

18.
Murine interleukin-3 (mIL-3) stimulates the rapid and transient tyrosine phosphorylation of a number of proteins in mIL-3-dependent B6SUtA1 cells. Two of these proteins, p68 and p140, are maximally phosphorylated at tyrosine residues within 2 min of addition of mIL-3. Because 125I-mIL-3 can be cross-linked to both 70- and 140-kDa proteins on intact B6SUtA1 cells, we investigated whether the tyrosine phosphorylated p68 and p140 were these two mIL-3 receptor proteins. Addition of antiphosphotyrosine antibodies (alpha PTyr Abs) to cell lysates from B6SUtA1 cells, to which 125I-mIL-3 had been disuccinimidyl suberate-cross-linked, resulted in the immunoprecipitation of 125I-mIL-3 complexed to both 70- and 140-kDa proteins. To determine if the observed immunoprecipitation pattern was due to the direct interaction of alpha-PTyr Abs with these two mIL-3 receptor proteins or with tyrosine-phosphorylated proteins that were associated with the receptor proteins, cell lysates were treated with 2% sodium dodecyl sulfate, 5% 2-mercaptoethanol, and boiled for 1 min. After removal of sodium dodecyl sulfate and 2-mercaptoethanol, alpha PTyr Abs immunoprecipitated 125I-mIL-3 cross-linked to only the 140-kDa protein. To confirm this finding, 32P-labeled B6SUtA1 cells were treated with biotinylated or fluoresceinated mIL-3. Addition of immobilized streptavidin or antifluorescein antibodies, respectively, to cell lysates from these cells resulted in the enrichment of only a 140-kDa tyrosine phosphorylated protein. Taken together, these results strongly suggest that only the 140-kDa receptor protein is tyrosine phosphorylated upon mIL-3 binding.  相似文献   

19.
Here we provide evidence to show that the platelet-derived growth factor beta receptor is tethered to endogenous G-protein-coupled receptor(s) in human embryonic kidney 293 cells. The tethered receptor complex provides a platform on which receptor tyrosine kinase and G-protein-coupled receptor signals can be integrated to produce more efficient stimulation of the p42/p44 mitogen-activated protein kinase pathway. This was based on several lines of evidence. First, we have shown that pertussis toxin (which uncouples G-protein-coupled receptors from inhibitory G-proteins) reduced the platelet-derived growth factor stimulation of p42/p44 mitogen-activated protein kinase. Second, transfection of cells with inhibitory G-protein alpha subunit increased the activation of p42/p44 mitogen-activated protein kinase by platelet-derived growth factor. Third, platelet-derived growth factor stimulated the tyrosine phosphorylation of the inhibitory G-protein alpha subunit, which was blocked by the platelet-derived growth factor kinase inhibitor, tyrphostin AG 1296. We have also shown that the platelet-derived growth factor beta receptor forms a tethered complex with Myc-tagged endothelial differentiation gene 1 (a G-protein-coupled receptor whose agonist is sphingosine 1-phosphate) in cells co-transfected with these receptors. This facilitates platelet-derived growth factor-stimulated tyrosine phosphorylation of the inhibitory G-protein alpha subunit and increases p42/p44 mitogen-activated protein kinase activation. In addition, we found that G-protein-coupled receptor kinase 2 and beta-arrestin I can associate with the platelet-derived growth factor beta receptor. These proteins play an important role in regulating endocytosis of G-protein-coupled receptor signal complexes, which is required for activation of p42/p44 mitogen-activated protein kinase. Thus, platelet-derived growth factor beta receptor signaling may be initiated by G-protein-coupled receptor kinase 2/beta-arrestin I that has been recruited to the platelet-derived growth factor beta receptor by its tethering to a G-protein-coupled receptor(s). These results provide a model that may account for the co-mitogenic effect of certain G-protein-coupled receptor agonists with platelet-derived growth factor on DNA synthesis.  相似文献   

20.
Various laminin isoforms have specific biological functions depending on their structures. Laminin 5A, which consists of the three truncated chains alpha3A, beta3, and gamma2, is known to have strong activity to promote cell adhesion and migration, whereas a laminin 5 variant consisting of a full-sized alpha3 chain (alpha3Beta) and the beta3 and gamma2 chains, laminin 5B, has not been characterized yet. In the present study, we for the first time cloned a full-length human laminin alpha3B cDNA and isolated the human laminin 5B protein. The molecular size of the mature alpha3B chain (335 kDa) was approximately twice as large as the mature alpha3A chain in laminin 5A. Laminin 5B had significantly higher cell adhesion and cell migration activities than laminin 5A. In addition, laminin 5B potently stimulated cell proliferation when added into the culture medium directly. Furthermore, we found that the alpha3B chain undergoes proteolytic cleavage releasing a 190-kDa NH(2)-terminal fragment. The 190-kDa fragment had activities to promote cellular adhesion, migration, and proliferation through its interaction with integrin alpha(3)beta(1). These activities of the NH(2)-terminal structure of the alpha3B chain seem to contribute to the prominent biological activities and the physiological functions of laminin 5B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号