首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We investigated whether algal osmotrophy in naturally acidic Lake Caviahue is an important process for acquisition of organic carbon and organic nitrogen. To accomplish this, we quantified algal assimilation of organic compounds, measured the specific growth rate and biomass yield, and documented incorporation of organic compounds by phytoplankton in situ using microautoradiography. Substrate uptake quantification and microautoradiographic investigations were performed using 3H-leucine, 3H-glucose, 3H-thymidine, 14C-aspartic acid, 14C-acetic acid and 14C-bicarbonates. The results showed that the most important species of the phytoplankton community, Keratococcus rhaphidioides and Watanabea sp., took up various sources of organic carbon and nitrogen under both light and dark conditions. They were also able to assimilate leucine, thymidine, aspartic acid and acetate under high levels of inorganic nitrogen and phosphorus, while they could use leucine, arginine, glutamine and glucose under low levels of nitrogen and phosphorus. The assimilation rates were higher in light than in darkness, and the algal specific growth rates increased when organic sources were added. We proposed that osmotrophy complements the main photosynthetic process of the phytoplankton in Lake Caviahue, which helps to overcome the scarcity of light and inorganic nitrogen and carbon in the water column.  相似文献   

2.
There is increasing evidence that nitrogen limitation is of widespread occurrence in tropical lakes. Nonetheless, data on the deep tropical Lake Alchichica (Mexico) show that dissolved inorganic nitrogen (DIN) to soluble reactive phosphorus (SRP) ratio fluctuates widely. To elucidate further the role of nitrogen and phosphorus limitation on the phytoplankton growth in tropical saline lakes, we present the results of a series of nutrient enrichment experiments with natural assemblages of Lake Alchichica phytoplankton conducted monthly for a year. Our assays indicate that phosphorus and nitrogen alternate in limiting Lake Alchichica phytoplankton biomass. Phosphorous limited phytoplankton growth most (41.7%) of the time, followed by nitrogen (33.3% of the time), and both nutrients for the rest of the time (25.0%). This alternation in nitrogen and phosphorus responsible for phytoplankton growth limitation in Lake Alchichica is attributed to the combination of natural conditions (e.g., young volcanic terrain rich in phosphorus) that would favor nitrogen limitation and anthropogenic impacts (e.g., agricultural nitrogen fertilization) which would cause phosphorus limitation. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

3.
The aim of this research was to examine nutrient limitation of phytoplankton in solar salt ponds of varying salinity at Useless Inlet in Western Australia. These ponds use solar energy to evaporate seawater for the purpose of commercial salt production. A combination of techniques involving water column nutrient ratios, comparisons of nutrient concentrations to concentration of magnesium ions and bioassays were used in the investigation. Comparisons of changes in dissolved inorganic nitrogen to phosphorus ratios and concentrations of dissolved inorganic nutrients against changes in concentrations of the conservative cation Mg2+ indicated that phytoplankton biomass was potentially nitrogen limited along the entire pond salinity gradient. Nutrient addition bioassays indicated that in low salinity ponds, phytoplankton was nitrogen limited but in high salinity ponds, phosphorus limited. This may be due to isolation of phytoplankton in bioassay bottles from in situ conditions as well as to changes in phytoplankton species composition between ponds, and the variable availability of inorganic and organic nutrient sources. The differences in limiting nutrient between methods indicate that phytoplankton cells may be proximally limited by nutrients that are not theoretically limiting at the pond scale. Dissolved organic nutrients constituted a large proportion of total nutrients, with concentrations increasing through the pond sequence of increasing salinity. From the change in nutrient concentrations in bioassay bottles, sufficient dissolved organic nitrogen may be available for phytoplankton uptake in low salinity ponds, potentially alleviating the dissolved inorganic nitrogen limitation of phytoplankton biomass. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected Papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

4.
1. The influence of inorganic nitrogen and phosphorus enrichment on phytoplankton photosynthesis was investigated in Lakes Bonney (east and west lobes), Hoare, Fryxell and Vanda, which lie in the ablation valleys adjacent to McMurdo Sound, Antarctica. Bioassay experiments were conducted during the austral summer on phytoplankton populations just beneath the permanent ice cover in all lakes and on populations forming deep-chlorophyll maxima in the east and west lobes of Lake Bonney. 2. Phytoplankton photosynthesis in surface and mid-depth (13 m) samples from both lobes of Lake Bonney were stimulated significantly (P < 0.01) by phosphorus enrichment (2 μM) with further stimulation by simultaneous phosphorus plus NH4+ (20 μM) enrichment. Similar trends were observed in deeper waters (18 m) from the east lobe of Lake Bonney, although they were not statistically significant at P < 0.05. Photosynthesis in this lake was never enhanced by the addition of 20 μM NH4+ alone. Simultaneous addition of phosphorus plus nitrogen stimulated photosynthesis significantly (P < 0.01) in both Lake Hoare and Lake Fryxell. No nutrient response occurred in Lake Vanda, where activity in nutrient-enriched samples was below unamended controls; results from Lake Vanda are suspect owing to excessively long sample storage in the field resulting from logistic constraints. 3. Ambient dissolved inorganic nitrogen (DIN) (NH4++ NO2?+ NO3?): soluble reactive phosphorus (SRP) ratios partially support results from bioassay experiments indicating strong phosphorus deficiency in Lake Bonney and nitrogen deficiency in Lakes Hoare and Fryxell. DIN : SRP ratios also imply phosphorus deficiency in Lake Vanda, although not as strong as in Lake Bonney. Particulate carbon (PC): particulate nitrogen (PN) ratios all exceed published ratios for balanced phytoplankton growth, indicative of nitrogen deficiency. 4. Vertical nutrient profiles in concert with low advective flux, indicate that new (sensu Dugdale & Goering, 1967) phytoplankton production in these lakes is supported by upward diffusion of nutrients from deep nutrient pools. This contention was tested by computing upward DIN : SRP flux ratios across horizontal planes located immediately beneath each chlorophyll maximum and about 2 m beneath the ice (to examine flux to the phytoplankton immediately below the ice cover). These flux ratios further corroborated nutrient bioassay results and bulk DIN : SRP ratios indicating phosphorus deficiency in Lakes Bonney and Vanda and potential nitrogen deficiency in Lakes Hoare and Fryxell. 5. Neither biochemical reactions nor physical processes appear to be responsible for differences in nutrient deficiency among the study lakes. The differences may instead be related to conditions which existed before or during the evolution of the lakes.  相似文献   

5.
Major nutrients (N and P) and phytoplankton from 19 large lakes from southern (61°) to northern (69°) Finland were analyzed to detect long-term trends and regional differences. The data sets from June, July and August cover the period from the early 1980s to the present. Altogether >700 phytoplankton and >4000 N, P and Chl a results were used for the study. In 40% of the lakes, the total phosphorus (TP) concentration decreased significantly and in >25% of the lakes a significant reduction was found in the total nitrogen (TN) concentration. At the same time, the phytoplankton biomass declined only in 15% of the lakes and the long-term trends in chlorophyll a more often increased than decreased. A clear gradient from southern to northern Finland and western to eastern Finland was found in the phytoplankton biomass. During the study period, the biomasses of cyanobacteria and centrales (diatoms) decreased whilst there was an increase in the biomass of pennales (diatoms) in one-third of the lakes. The proportion of chlorophytes in the total biomass also increased in >20% of the study lakes. In southern and western Finland, the total biomass and the contribution of cyanobacteria were higher. Centrales made a higher contribution to the total biomass in the north. Pennales and chlorophytes were less abundant and chrysophytes more abundant in the east. Differences in the community composition reflected the gradients in the total nutrients, and particularly in TP. The observations support the assumed role of phosphorus as the key limiting nutrient in large Finnish lakes irrespective of lake′s location. The N:P ratio proved to be a poor predictor of cyanobacteria occurrence in the study lakes.  相似文献   

6.
The epilimnetic phytoplankton and its relations to nutrient content in Lake Verevi through the whole vegetation period in 2000 were studied. Lake Verevi (surface 12.6 ha, mean depth 3.6 m, maximum depth 11 m) is a hypertrophic hard-water lake, where the so-called spring meromixis occurs due to an extremely warm spring. Most dissolved nutrients in the epilimnion were low already in spring, and their concentrations were quite stable during the study period. The concentration of total silicon was very low in spring but increased rapidly in summer. Total phosphorus followed the pattern for stratified eutrophic lakes, and total nitrogen was quite high. The stoichiometric N:P ratio fluctuated between 25 and 81. The dynamics of phytoplankton biomass with a spring peak from April to May and a late summer peak from July to August is typical of Estonian eutrophic lakes. Green algae and chrysophytes occurred in the phytoplankton throughout the vegetation period. The spring peak was dominated by diatoms (Synedra ulna and Synedra acus var. angustissima) and the summer peak was caused by Aphanizomenon klebahnii and Ceratium hirundinella. The study showed that in physically stratified systems, the total concentration of limiting resources and plain physical factors (light and temperature) may be more important in the determination of phytoplankton dominants than different resource ratios. A combination of light and temperature optimum, along with nutrient utilization and transport capacity, effectively segregates phytoplankton species and can be used for the explanation of seasonal succession pattern.  相似文献   

7.
基于2003-2012年太湖竺山湖和西部沿岸区水体理化指标与浮游植物丰度的逐月监测数据,分析了两个湖区氮磷营养盐状态和浮游植物丰度以及浮游植物主要类群的年际变化趋势及季节变化特征,探讨了浮游植物群落变化与水温及营养盐指标间的关系。结果表明:10年间两个湖区氮磷营养盐浓度总体呈下降趋势,以竺山湖TN、NH3-N浓度和西部沿岸区NO3-N浓度下降最为显著;浮游植物丰度总体呈上升趋势,蓝藻在群落结构中日益占据绝对优势;季节变化上,氮营养盐浓度表现为春冬季节高于夏秋季节,TP浓度和浮游植物丰度呈相反的变化趋势。Pearson相关分析显示,水温、NH3-N浓度和TN/TP是影响蓝藻丰度及其在浮游植物群落中所占比例的主要因素。在温度和营养盐结构的共同作用下,10年间两个湖区蓝藻水华暴发时间逐渐提前,而消退时间逐渐滞后,水华持续时间逐年上升。在全球变暖背景下,太湖水华治理需执行更加严格的氮磷限制阈值,且在重污染的西北湖区控磷依然是关键。  相似文献   

8.
1. Two small humic lakes in northern Sweden with concentrations of dissolved organic carbon (DOC) between 15 and 20 mg L–1 were fertilized with inorganic phosphorus (P) and inorganic nitrogen (N), respectively. A third lake was unfertilized and served as a control. In addition to this lake fertilization experiment, data from different regional surveys were used to assess the role of different limiting factors.
2. The P fertilization had no effects on bacterioplankton or phytoplankton, while phytoplankton were significantly stimulated by N fertilization. Inorganic nutrient limitation of bacterioplankton was a function of DOC concentration in water of the investigated region and nutrient-limited bacteria were found only in lakes with DOC concentrations less than around 15 mg L–1
3. The fertilization experiments demonstrated that the DOC-rich experimental lakes contained a bioavailable pool of P that was not utilized to its full potential under natural conditions. The overall mobilization of energy (bacterioplankton plus phytoplankton) in the experimental lakes was restricted by lack of inorganic N.  相似文献   

9.
Question: Which nutrient limits primary production in a lake created by flooding industrial cutaway peatland? Location: Clongawny Lake (53°10’N, 07°53’W), County Offaly, Ireland Methods: Nutrient concentrations in lake water and the dynamics of phytoplankton populations were monitored over a 38‐month period. The ratio of dissolved inorganic nitrogen to total phosphorus (DIN:TP) and nutrient enrichment bio‐assays were used to investigate temporal changes in nutrient limitation. Results: Primary production in the new lake was phytoplankton‐driven due to the scarcity of recolonizing macrophytes. Phytoplankton growth was initially phosphorus‐limited. The runoff of phosphate fertilizer from an adjacent coniferous forestry plantation raised the TP concentration of lake water 5.5‐fold. Consequently, the biovolume of phytoplankton increased 30‐fold, and chlorophyll‐a concentrations increased eightfold, reaching hyper‐eutrophic levels. A concurrent depletion of nitrogen in lake water reduced the DIN:TP ratio from 17.8 to 0.6, and phytoplankton growth rapidly became nitrogen‐limited. Phytoplankton composition shifted from dinoflagellates to minute, unicellular chlorophytes, with a coincident decline in species diversity. Cyanobacteria did not proliferate, most likely due to the acidic nature of the lake. Conclusions: Results illustrated the vulnerability of newly created cutaway peatland lakes to developing severe phytoplankton blooms and coincident secondary nitrogen limitation in the presence of moderate external phosphorus inputs.  相似文献   

10.
Nutrient limitation of phytoplankton and periphyton growth in upland lakes   总被引:9,自引:0,他引:9  
SUMMARY 1. Thirty small upland lakes in Cumbria, Wales, Scotland and Northern Ireland were visited three times between April and August 2000. On each occasion water chemistry was measured and phytoplankton bioassays were performed in the laboratory to assess growth‐rate and yield limitation by phosphorus and nitrogen. In addition, yield limitation of periphyton growth was investigated twice, in situ, using nutrient‐diffusing substrata. 2. Over the whole season the percentage frequency of P, N and co‐limitation was 24, 13 and 63%, respectively, for phytoplankton rate limitation and 20, 22 and 58%, respectively, for phytoplankton yield limitation. 3. A clear response of periphyton yield to nutrient additions was found in 75% of all cases and of these, co‐limitation was most common (54%). Average percentage frequency for P and N limitation was 26 and 20%, respectively. 4. Phytoplankton and periphyton showed seasonal changes in nutrient limitation within sites. In particular, co‐limitation became progressively more common as the season progressed. 5. The response of phytoplankton growth rate to ammonium and nitrate addition was identical, but ammonium was a slightly better source of nitrogen than nitrate for phytoplankton yield on 7% and for periphyton yield on 10% of the occasions. However, the magnitude of the effect was small. 6. The concentration of dissolved inorganic nitrogen (DIN) and the molar ratio of DIN to total dissolved phosphorus (TDP), appeared to be the main environmental factors controlling the extent of nitrogen or phosphorus limitation at a given site. Nitrogen limitation was more likely than phosphorus limitation where the DIN was <6.5 mmol m?3 and the ratio of DIN : TDP was <53. Co‐limitation was the most likely outcome at a DIN concentration <13 mmol m?3 and at a DIN : TDP molar ratio <250. Above these values phosphorus limitation was most likely. 7. The relatively high frequency of nitrogen limitation and co‐limitation at higher N : P ratios than previously reported, may result from the inability of nitrogen‐fixing cyanobacteria to thrive in these upland lakes where pH and the concentration of phosphorus tended to be low and where flushing rates tended to be high.  相似文献   

11.
We determined the limiting nutrient of phytoplankton in 21 lakes and ponds in Wapusk National Park, Canada, using nutrient enrichment bioassays to assess the response of natural phytoplankton communities to nitrogen and phosphorus additions. The goal was to determine whether these Subarctic lakes and ponds were nutrient (N or P) limited, and to improve the ability to predict future impacts of increased nutrient loading associated with climate change. We found that 38% of lakes were not limited by nitrogen or phosphorus, 26% were co-limited by N and P, 26% were P-limited and 13% were N-limited. TN/TP, DIN/TP and NO3 /TP ratios from each lake were compared to the Redfield ratio to predict the limiting nutrient; however, these predictors only agreed with 29% of the bioassay results, suggesting that nutrient ratios do not provide a true measure of nutrient limitation within this region. The N-limited lakes had significantly different phytoplankton community composition with more chrysophytes and Anabaena sp. compared to all other lakes. N and P limitation of phytoplankton communities within Wapusk National Park lakes and ponds suggests that increased phytoplankton biomass may result in response to increased nutrient loading associated with environmental change.  相似文献   

12.
Ola Broberg 《Hydrobiologia》1987,150(1):11-24
The acidified lakes Lake Gårdsjön and Lake Stora Hästevatten the reference lake have been monitored since 1979 and 1980 respectively. The lakes are situated in SW Sweden; in an area severly affected by acid deposition. Lake Gårdsjön was limed in spring 1982. This paper analyses changes in nutrient concentrations upon liming of Lake Gårdsjön. The liming of Lake Gårdsjön was followed by a slight increase in ammonium, nitrate, and dissolved organic nitrogen concentrations. A drastic decrease occurred in particulate nitrogen and particulate carbon, whereas dissolved organic carbon increased. Total phosphorus and particulate phosphorus concentrations were similar to pre-limed conditions. The long-term decrease in phosphorus concentration, exhibited by the reference lake, was not identified in Lake Gårdsjön after liming, but total phosphorus concentration was still less than half compared to Lake Gårdsjön in the early 1970's. Additional measures such as phosphorus fertilization, should in certain cases be considered in addition to liming if the goal is to restore lakes to their pre-acidic conditions.  相似文献   

13.
Experiments involving low-dose additions of phosphate, ammonium, nitrate and ADP, one by one and in combination, were performed in small (350 litre) in-situ enclosures in a moderately acid (pH 5.4) lake. Before manipulation, all large filter-feeding animals were removed by filtration. Phytoplankton responded to the nutrient additions only when both phosphorus and nitrogen were added, thus indicating a close balance between phosphorus and nitrogen limitation in the system. Variation of the inorganic nitrogen-source resulted in species-specific responses by phytoplankton. With ammonium as the nitrogen source Merismopedia tenuissima was favoured, regardless of whether this species was dominant in the phytoplankton community at the beginning of the experiment or not. With nitrate as nitrogen source Peridinium inconspicuum, which was never particularly common at the beginning of the experiments, was favoured. No other species of phytoplankton present in the bags was able to outcompete these two species as long as inorganic nutrients were added. With ADP as phosphorus source together with nitrate, a third species, Dictyosphaerium cf. botrytella, was favoured and reached dominance. The zooplankton community remaining in the bags, dominated by rotifers and calanoid nauplii, did not respond to the fertilization-induced increases in the total biomass of phytoplankton.  相似文献   

14.
Karjalainen  Heli  Seppälä  Satu  Walls  Mari 《Hydrobiologia》1997,363(1-3):309-321
The role of nitrogen as a factor controllingphytoplankton biomass was studied in nutrientenrichment incubations in the laboratory using waterfrom pelagic region of two mesotrophic lakes ineastern Finland, Lake Kallavesi (in year 1994) andLake Juurusvesi (in year 1995). We used differentcombinations of phosphorus and nitrogen additions ina total of eight experiments. Furthermore, we includedDaphnia grazing treatment to the experimentaldesign in Lake Juurusvesi experiments. The nitrogentreatments did not increase chlorophyll aconcentration in any of the experiments compared withthe controls. Chlorophyll a content was highestin those nutrient treatments where phosphorus wasadded with or without nitrogen. Daphnia grazingdecreased chlorophyll a concentration comparedwith non-grazed treatments. In some cases grazing alsocaused higher ammonium concentrations. Theseexperiments, as well as the nutrient ratio of the lakewater used, suggest that phosphorus is likely tocontrol the amount of phytoplankton biomass. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
1. The impacts of nutrients (phosphorus and nitrogen) and planktivorous fish on phytoplankton composition and biomass were studied in six shallow, macrophyte‐dominated lakes across Europe using mesocosm experiments. 2. Phytoplankton biomass was more influenced by nutrients than by densities of planktivorous fish. Nutrient addition resulted in increased algal biomass at all locations. In some experiments, a decrease was noted at the highest nutrient loadings, corresponding to added concentrations of 1 mg L?1 P and 10 mg L?1 N. 3. Chlorophyll a was a more precise parameter to quantify phytoplankton biomass than algal biovolume, with lower within‐treatment variability. 4. Higher densities of planktivorous fish shifted phytoplankton composition toward smaller algae (GALD < 50 μm). High nutrient loadings selected in favour of chlorophytes and cyanobacteria, while biovolumes of diatoms and dinophytes decreased. High temperatures also may increase the contribution of cyanobacteria to total phytoplankton biovolume in shallow lakes.  相似文献   

16.
An in vitro nutrient addition bioassay was performed to testthe relative inorganic nitrogen (N) and phosphorus (P) limitationof phytoplankton in a Spanish karst lake (El Tejo) during thelast part of the stratification period, when nutrient limitationis most pronounced. Nutrient deficiency was tested in samplesfrom three different layers of the lake: the epilimnion, metalimnionand oxic hypolimnion. Nitrogen additions, either without orcombined with P, increased phytoplankton growth in all threestrata, compared with controls or P treatments. This showedthat N was the nutrient limiting phytoplankton growth in latesummer–early fall. Since both hypolimnetic diffusion andgroundwater fluxes of N-rich waters into the lake are much reducedduring summer, N becomes the limiting nutrient as stratificationadvances. We suggest that in this Mediterranean area with lowatmospheric deposition of anthropogenic N and in lakes relativelyfree of surface run-off, nutrient supply by atmospheric depositionmight be a key factor in controlling nutrient deficiency forphytoplankton growth.  相似文献   

17.
Phytoplankton dynamics in Lake Müggelsee, a eutrophic and polymictic lake in Berlin, and in the inflowing lowland River Spree have been comprehensively investigated during the last two decades. Zooplankton dynamics, nutrient supply, light climate, duration of ice cover and of summer stratification have also been regularly measured to help to explain phytoplankton development. The first period (1978–1990) was characterised by high nutrient loads and dominance of cyanobacteria from spring to autumn. Since then, loads of phosphorus and nitrogen have been lowered by 40–50%. Oscillatoria-like cyanobacteria (Limnothrix redekei, Planktothrix agardhii) were favoured under hypertrophic conditions in both the polymictic lake and the river, but they have disappeared nearly completely after nutrient reduction. Development of these species depended on meteorological conditions and nutrient supply in spring rather than on seasonal averages of nutrient concentrations. Diatoms have became dominant and chlorophytes have increased their share of the biomass since the nutrient load was reduced. Species com- position changed even within the algal groups. Retention time of water and duration of thermal stratification of the water column modified phytoplankton structure. Mobile algae like Microcystisor Ceratium occurred in the lake during stratification periods. Otherwise, species composition in the shallow, polymictic lake was very similar to that in the inflowing lowland river. Species with high starting biomass, fed by high riverine import, resting stages or perennation were selected in this flushed system.  相似文献   

18.
The significance of nitrogen for algal growth was studied in Lake Vesijärvi in 1979 and 1980 by algal bioassay, using Selenastrum capricornutum and Anabaena cylindrica as test organisms. Nitrogen limited the growth of Selenastrum for the major part of the investigation period, while phosphorus seemed to be the most limiting factor for Anabaena. This difference was reflected in the in situ succession of phytoplankton. As the ratio of inorganic nitrogen to phosphate phosphorus became smaller, nitrogen-fixing blue-green algae became dominant. Nitrogen fixation was greatest at the beginning of July, coinciding with maximum heterocyst numbers.  相似文献   

19.
1. The restoration of deep lakes has traditionally focused on reducing the external phosphorus loading. 2. Following the diversion of sewage effluent, that led to marked reductions in nutrient concentrations in its main inflow, Rostherne Mere has shown no reduction in phosphorus or chlorophyll a concentrations. A shallow lake upstream (Little Mere), however, has shown a marked response to effluent diversion. 3. Nutrient budgets for Rostherne Mere reveal that sewage effluent was by far the most significant external source of total phosphorus and that diffuse drainage from the catchment was the most significant external source of dissolved inorganic nitrogen. Phosphorus loads from groundwater and a bird roost were insignificant. Internal sources of phosphorus were, however, considerable and were largely responsible for the observed delay in recovery. 4. Phosphorus limitation of phytoplankton biomass may never be attainable because of substantial internal and diffuse sources of phosphorus, combined with a long retention time. Nitrogen is likely to be more important in limiting phytoplankton biomass. Control of diffuse nitrogen sources may therefore be more effective in the restoration of the deeper lakes of this region.  相似文献   

20.
In contrast to extensive studies of phosphorus, widely considered the main nutrient limiting phytoplankton biomass in freshwater ecosystems, there have been few studies on the role of nitrogen in controlling phytoplankton populations. This situation may be due partly to the complexity in estimating its utilization and bioavailability. In an attempt to provide a novel tool for this purpose, we fused the promoter of the glutamine synthetase-encoding gene, P glnA, from Synechococcus sp. strain PCC7942 to the luxAB luciferase-encoding genes of the bioluminescent bacterium Vibrio harveyi. The resulting construct was introduced into a neutral site on the Synechococcus chromosome to yield the reporter strain GSL. Light emission by this strain was dependent upon ambient nitrogen concentrations. The linear response range of the emitted luminescence was 1 mM to 1 micro M for the inorganic nitrogen species tested (ammonium, nitrate, and nitrite) and 10- to 50-fold lower for glutamine and urea. When water samples collected from along a depth profile in Lake Kinneret (Israel) were exposed to the reporter strain, the bioluminescence of the reporter strain mirrored the total dissolved nitrogen concentrations determined for the same samples and was shown to be a sensitive indicator of the concentration of bioavailable nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号