首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Two central redox enzyme systems exist to reduce eukaryotic P450 enzymes, the P450 oxidoreductase (POR) and the cyt b? reductase-cyt b?. In fungi, limited information is available for the cyt b(5) reductase-cyt b(5) system. Here we characterized the kinetic mechanism of (cyt b?r)-cyt b? redox system from the model white-rot fungus Phanerochaete chrysosporium (Pc) and made a quantitative comparison to the POR system. We determined that Pc-cyt b?r followed a "ping-pong" mechanism and could directly reduce cytochrome c. However, unlike other cyt b? reductases, Pc-cyt b?r lacked the typical ferricyanide reduction activity, a standard for cyt b? reductases. Through co-expression in yeast, we demonstrated that the Pc-cyt b?r-cyt b? complex is capable of transferring electrons to Pc-P450 CYP63A2 for its benzo(a)pyrene monooxygenation activity and that the efficiency was comparable to POR. In fact, both redox systems supported oxidation of an estimated one-third of the added benzo(a)pyrene amount. To our knowledge, this is the first report to indicate that the cyt b?r-cyt b? complex of fungi is capable of transferring electrons to a P450 monooxygenase. Furthermore, this is the first eukaryotic quantitative comparison of the two P450 redox enzyme systems (POR and cyt b?r-cyt b?) in terms of supporting a P450 monooxygenase activity.  相似文献   

2.
To study the modulation of the reductive metabolism of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) by microsomal cytochrome b5, formation of 2-chloro-1,1,1-trifluoroethane (CTE) and 2-chloro-1,1-difluoroethylene (CDE), major reduced metabolites of halothane, was analyzed in vivo and in vitro. Rats were pretreated with both malotilate (diisopropyl-1,3-dithiol-2-ylidenemalonate) and sodium phenobarbital (malotilate-treated rats) or only with sodium phenobarbital (control rats). The microsomes of malotilate-treated rats had significantly more cytochrome b5 than the controls, whereas the cytochrome P-450 content was not different between the two groups. At the end of 2-h exposure to 1% halothane in 14% oxygen, the ratio of CDE to CTE in arterial blood was significantly higher in malotilate-treated rats than in the controls. Under anaerobic conditions, the formation of CDE and the ratio of CDE to CTE were significantly greater in microsomal preparations of malotilate-treated rats than those of the controls. In a reconstituted system containing cytochrome P-450PB purified from rabbit liver, addition of cytochrome b5 to the system enhanced the formation of CDE and increased the ratio of CDE to CTE. These results suggested that cytochrome b5 enhances the formation ratio of CDE to CTE by stimulating the supply of a second electron to cytochrome P-450, which might reduce radical reactions in the reductive metabolism of halothane.  相似文献   

3.
The presence of cytochromes b5, P-450 and P-420 and activities of NADH- and NADPH-cytochrome c reductases were determined in plasma membranes isolated from microvilli of the chick and rat intestinal epithelium and erythrocyte membranes from chick, rat and man. The results are compared with the amounts of these components found in microsomal fractions from intestinal epithelium and in nuclear membranes from chick erythrocytes. Plasma membranes from intestinal microvilli and from erythrocytes contained significant amounts of NADH-cytochrome c reductase activity and of a pigment spectrophotometrically indistinguishable from rat liver microsomal cytochrome b5. In addition, cytochrome b5 fragments were prepared from the membranes by limited trypsin digestion and consisted of two to four components with Mr values in the range 10 000–13 500. In low-temperature difference spectra, the presence of a second cytochrome was noted which was similar to cytochrome P-420. Cytochrome P-450 and NADPH-cytochrome c reductase activities were not detected in plasma membrane fractions in significant concentrations but were present in the corresponding endomembrane fractions. These findings in highly purified, well defined plasma membrane fractions, in which contamination by endomembranes is minimal, strengthen the evidence for the existence of cytochrome-containing redox systems in plasma membranes of various cells and suggest that such redox components are general components of the cell surface. Possible functions and origins of these redox components in plasma membranes are discussed.  相似文献   

4.
Cytochrome b5 (b5) has been shown to modulate many cytochrome P450 (CYP)-dependent reactions. In order to elucidate the mechanism of such modulations, it is necessary to evaluate not only the effect of native b5 on CYP-catalyzed reactions, but also that of the apo-cytochrome b5 (apo-b5). Therefore, the apo-b5 protein was prepared using a heterologous expression in Escherichia coli. The gene for rabbit b5 was constructed from synthetic oligonucleotides using polymerase chain reaction (PCR), cloned into pUC19 plasmid and amplified in DH5α cells. The gene sequence was verified by DNA sequencing. The sequence coding b5 was cleaved from pUC19 by NdeI and XhoI restriction endonucleases and subcloned to the expression vector pET22b. This vector was used to transform E. coli BL-21 (DE3) Gold cells by heat shock. Expression of b5 was induced with isopropyl β-d-1-thiogalactopyranoside (IPTG). The b5 protein, produced predominantly in its apo-form, was purified from isolated membranes of E. coli cells by chromatography on a column of DEAE–Sepharose. Using such procedures, the homogenous preparation of apo-b5 protein was obtained. Oxidized and reduced forms of the apo-b5 reconstituted with heme exhibit the same absorbance spectra as native b5. The prepared recombinant apo-b5 reconstituted with heme can be reduced by NADPH:CYP reductase. The reconstituted apo-b5 is also fully biologically active, exhibiting the comparable stimulation effect on the CYP3A4 enzymatic activity towards oxidation of 1-phenylazo-2-hydroxynaphthalene (Sudan I) as native rabbit and human b5.  相似文献   

5.
Eduard Hurt  Günter Hauska   《BBA》1982,682(3):466-473
(1) Oxidant-induced reduction of cytochrome b6 is completely dependent on a reduced component within the isolated cytochrome b6-f complex. This component can be reduced by dithionite or by NADH/N-methylphenazonium methosulfate. It is a 2H+/2e carrier with a midpoint potential of 100 mV at pH 7.0, which is very similar to the midpoint potential of the plastoquinone pool in chloroplasts. (2) Oxidant-induced reduction of cytochrome b6 is stimulated by plastoquinol-1 as well as by plastoquinol-9. The midpoint potential of the transient reduction of cytochrome b6, however, was not shifted by added plastoquinol. (3) Quinone analysis of the purified cytochrome b6-f complex revealed about one plastoquinone per cytochrome f. The endogenous quinone is heterogeneous, a form more polar than plastoquinone-A, probably plastoquinone-C, dominating, This is different from the thylakoid membrane where plastoquinone-A is the main quinone. (4) The endogenous quinone can be extracted from the lyophilized cytochrome b6-f complex by acetone, but not by hydrocarbon solvents. Oxidant-induced reduction of cytochrome b6 was observed in the lyophilized and hexane-extracted complex, but was lost in the acetone-extracted complex. Reconstitution was achieved either with plastoquinol-1 or plastoquinol-9, suggesting that a plastoquinol molecule is involved in oxidant-induced reduction of cytochrome b6.  相似文献   

6.
Cytochrome P450 2B4 is a microsomal protein with a multi-step reaction cycle similar to that observed in the majority of other cytochromes P450. The cytochrome P450 2B4-substrate complex is reduced from the ferric to the ferrous form by cytochrome P450 reductase. After binding oxygen, the oxyferrous protein accepts a second electron which is provided by either cytochrome P450 reductase or cytochrome b5. In both instances, product formation occurs. When the second electron is donated by cytochrome b5, catalysis (product formation) is ∼10- to 100-fold faster than in the presence of cytochrome P450 reductase. This allows less time for side product formation (hydrogen peroxide and superoxide) and improves by ∼15% the coupling of NADPH consumption to product formation. Cytochrome b5 has also been shown to compete with cytochrome P450 reductase for a binding site on the proximal surface of cytochrome P450 2B4. These two different effects of cytochrome b5 on cytochrome P450 2B4 reactivity can explain how cytochrome b5 is able to stimulate, inhibit, or have no effect on cytochrome P450 2B4 activity. At low molar ratios (<1) of cytochrome b5 to cytochrome P450 reductase, the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios (>1) of cytochrome b5 to cytochrome P450 reductase, cytochrome b5 inhibits activity by binding to the proximal surface of cytochrome P450 and preventing the reductase from reducing ferric cytochrome P450 to the ferrous protein, thereby aborting the catalytic reaction cycle. When the stimulatory and inhibitory effects of cytochrome b5 are equal, it will appear to have no effect on the enzymatic activity. It is hypothesized that cytochrome b5 stimulates catalysis by causing a conformational change in the active site, which allows the active oxidizing oxyferryl species of cytochrome P450 to be formed more rapidly than in the presence of reductase.  相似文献   

7.
Members of the cytochrome P450 (cyt P450) superfamily of enzymes oxidize a wide array of endogenous and xenobiotic substances to prepare them for excretion. Most of the drugs in use today are metabolized in part by a small set of human cyt P450 isozymes. Consequently, cyt P450s have for a long time received a lot of attention in biochemical and pharmacological research. Cytochrome P450 receives electrons from cytochrome P450 reductase and in selected cases from cytochrome b5 (cyt b5). Numerous structural studies of cyt P450s, cyt b5, and their reductases have given considerable insight into fundamental structure-function relationships. However, structural studies so far have had to rely on truncated variants of the enzymes to make conventional X-ray crystallographic and solution-state NMR techniques applicable. In spite of significant efforts it has not yet been possible to crystallize any of these proteins in their full-length membrane bound forms. The truncated parts of the enzymes are assumed to be α-helical membrane anchors that are essential for some key properties of cyt P450s. In the present contribution we set out with a basic overview on the current status of functional and structural studies. Our main aim is to demonstrate how advanced modern solid-state NMR spectroscopic techniques will be able to make substantial progress in cyt P450 research. Solid-state NMR spectroscopy has sufficiently matured over the last decade to be fully applicable to any membrane protein system. Recent years have seen a remarkable increase in studies on membrane protein structure using a host of solid-state NMR techniques. Solid-state NMR is the only technique available today for structural studies on full-length cyt P450 and full-length cyt b5. We aim to give a detailed account of modern techniques as applicable to cyt P450 and cyt b5, to show what has already been possible and what seems to be viable in the very near future.  相似文献   

8.
Eric Lam  Richard Malkin   《BBA》1982,682(3):378-386
Photoreactions of cytochrome b6 have been studied using resolved chloroplast electron-transfer complexes. In the presence of Photosystem (PS) II and the cytochrome b6-f complex, photoreduction of the cytochrome can be observed. No soluble components are required for this reaction. Cytochrome b6 photoreduction was found to be inhibited by quinone analogs, which inhibit at the Rieske iron-sulfur center of the cytochrome complex, by the addition of ascorbate and by depletion of the Rieske center and bound plastoquinone from the cytochrome complex. Photoreduction of cytochrome b6 can also be demonstrated in the presence of the cytochrome complex and PS I. This photoreduction requires plastocyanin and a low-potential electron donor, such as durohydroquinone. Cytochrome b6 photoreduction in the presence of PS I is inhibited by quinone analogs which interact with the Rieske iron-sulfur center. These results are discussed in terms of a Q-cycle mechanism in which plastosemiquinone serves as the reductant for cytochrome b6 via an oxidant-induced reductive pathway.  相似文献   

9.
The involvement of cytochrome b5 in different cytochrome P450 monooxygenase and palmitoyl CoA desaturase activities in microsomes from insecticide-resistant (LPR) house flies was determined using a specific polyclonal antiserum developed against house fly cytochrome b5. Anti-b5 antiserum inhibited the reduction of cytochrome b5 by NADH-cytochrome b5 reductase. The antiserum also inhibited palmitoyl CoA desaturase, methoxycoumarin-O-demethylase (MCOD), ethoxycoumarin-O-deethylase (ECOD), and benzo[a]pyrene hydroxylase (aromatic hydrocarbon hydroxylase, AHH) activities. However, methoxyresorufin-O-demethylase (MROD) and ethoxyresorufin-O-deethy-lase (EROD) activities were not affected by this antiserum. These results demonstrate that cytochrome b5 is involved in fatty acyl CoA desaturase activities and in certain cytochrome P450 monooxygenase activities (i.e., MCOD, ECOD, and AHH) in LPR house fly microsomes. Other cytochrome P450 monooxygenase activities (i.e., MROD and EROD) may not require cytochrome b5. The results suggest that cytochrome b5 involvement with cytochrome P450 monooxygenase activities is dependent upon the cytochrome P450 isoform involved. © 1994 Wiley-Liss, Inc.  相似文献   

10.
The effects of culture variables on the specific content and activity of various enzymes of the drug mmetabolizing system were assessed in colon tumor cell line LS174T. The NADH reduced cytochrome b5 (cyt b5)4 spectrum of these cells was similar to rat liver cyt b5. When released from the membrane by trypsin and concentrated, the cyt b5 was found to cross react with rabbit antibody to rat liver cyt b5 and human liver cyt b5. The enzyme activities were found stable over limited cell passages with control values of 0.03 and 0.13 µol/min/mg protein for NADPH and NADH cytochrome c (cyt c) reducing activity, 0.05 nmol cyt b5 and 0.013 nmol cytochrome P450 per milligram of microsomal protein. Phenobarbital/hydrocortisone showed a consistent, but not always significant increase in the NADPH and NADH cyt c reduction and benzanthracene an increase in the NADH cyt c reducing activity and cyt b5 content. Griseofulvin lowered the NADH cyt c reducing activity. Delta-aminolevulinic acid (0.5 mM) caused a significant decrease in the specific activity of all enzymes, as judged by a student's t test, with a p<0.001.Abbreviations cyt b5 cytochrome b5 - cyt c cytochrome c - cyt P450 cytochrome P450 - PB Phenobarbital - HC Hydrocortisone - ALA -Aminolevulinic acid - GRIS Griseofulvin - PENT Pentagastrin - PASS Cell Passage - DMH Dimethylhydrazine - BA Benzanth Acene  相似文献   

11.
We have shown earlier that microsomal cytochrome b 5 can form a specific complex with mitochondrial cytochrome P450 (cytochrome P450scc). The formation of the complex between these two heme proteins was proved spectrophotometrically, by affinity chromatography on immobilized cytochrome b 5, and by measuring the cholesterol side-chain cleavage activity of cytochrome P450scc in a reconstituted system in the presence of cytochrome b 5. To further study the mechanism of interaction of these heme proteins and evaluate the role of negatively charged amino acid residues Glu42, Glu48, and Asp65 of cytochrome b 5, which are located at the site responsible for interaction with electron transfer partners, we used sitedirected mutagenesis to replace residues Glu42 and Glu48 with lysine and residue Asp65 with alanine. The resulting mutant forms of cytochrome b 5 were expressed in E. coli, and full-length and truncated forms (shortened from the C-terminal sequence due to cleavage of 40 amino acid residues) of these cytochrome b 5 mutants were purified. Addition of the truncated forms of cytochrome b 5 (which do not contain the hydrophobic C-terminal sequence responsible for interaction with the membrane) to the reconstituted system containing cytochrome P450scc caused practically no stimulation of catalytic activity, indicating an important role of the hydrophobic fragment of cytochrome b 5 in its interaction with cytochrome P450scc. However, full-length cytochrome b 5 and the full-length Glu48Lys and Asp65Ala mutant forms of cytochrome b 5 stimulated the cholesterol side-chain cleavage reaction catalyzed by cytochrome P450scc by 100%, suggesting that residues Glu48 and Asp65 of cytochrome b 5 are not directly involved in its interaction with cytochrome P450scc. The replacement of Glu42 for lysine, however, made the Glu42Lys mutant form of cytochrome b 5 about 40% less effective in stimulation of the cholesterol side-chain cleavage activity of cytochrome P450scc, indicating that residue Glu42 of cytochrome b 5 is involved in electrostatic interactions with cytochrome P450scc. Residues Glu42 and Glu48 of cytochrome b 5 appear to participate in electrostatic interaction with microsomal type cytochrome P450.  相似文献   

12.
Trichosporon cutaneum metabolizes glucose purely oxidatively and cytochrome P450 was not detected in the reduced CO-difference spectrum of whole cells. However, in the isolated microsomal fraction the corresponding monooxygenase was present as shown by the appearence of cytochrome P450, NADPH-cytochrome c (P450) reductase and cytochrome b5. The absorption maximum of the terminal oxidase in the reduced CO-difference spectrum shifted between 447 and 448 nm. Derepression of biosynthesis of all components was achieved by transition of the cells from carbon- to oxygen-limited growth in continuous culture. The monooxygenase exhibited aminopyrine demethylation activity but not -hydroxylation activity of lauric acid. With respect to the growth limiting nutrient (carbon and oxygen respectively), mitochondrial cytochrome content showed an analogous behavior as cytochrome P450 and cytochrome b5.  相似文献   

13.
The triphasic course previously reported for the reduction of cytochrome b in the succinate-cytochrome c reductase by either succinate or duroquinol has been shown to be dependent on the redox state of the enzyme preparation. Prior reduction with increasing concentrations of ascorbate leads to partial reduction of cytochrome c1, and a gradual decrease in the magnitude of the oxidation phase of cytochrome b. At an ascorbate concentration sufficient to reduce cytochrome c1 almost completely, the reduction of cytochrome b by either succinate or duroquinol becomes monophasic. Owing to the presence of a trace amount of cytochrome oxidase in the reductase preparation employed, the addition of cytochrome c makes electron flow from substrate to oxygen possible. Under such circumstances, the addition of a limited amount of either succinate or duroquinol leads to a multiphasic reduction and oxidation of cytochrome b. After the initial three phases as described previously, cytochrome b becomes oxidized before cytochrome c1 when the limited amount of added substrate is being used up. However, at the end of the reaction when cytochrome ca is being rapidly oxidized, cytochrome b becomes again reduced. The above observations support a cyclic scheme of electron flow in which the reduction of cytochrome b proceeds by two different routes and its oxidation controlled by the redox state of a component of the respiratory chain.  相似文献   

14.
DNA topoisomerase II (topo II) is the target of many anticancer drugs and is often altered in drug-resistant cell lines. In some tumor cell lines truncated isoforms of topo IIα are localized to the cytoplasm. To study the localization and function of individual enzyme domains, we have epitope-tagged several fragments of human topo IIα and expressed them by retroviral infection of rodent and human cells. We find that fusion of the topo II fragments to the hydrophobic tail of human liver cytochrome b5 anchors the fusion protein to the outer face of cytoplasmic membranes, as determined by colocalization with calnexin and selective detergent permeabilization. Moreover, whereas the minimal ATPase domain (aa 1–266) is weakly and diffusely expressed, addition of the cytb5 anchor (1–266-b5) increases its steady-state level 16-fold with no apparent toxicity. Similar results are obtained with the complete ATPase domain (aa 1–426). A C-terminal domain (aa 1030–1504) of human topo IIα containing an intact dimerization motif is stably expressed and accumulates in the nucleus. Fusion to the cytb5 anchor counteracts the nuclear localization signal and relocalizes the protein to cytoplasmic membranes. In conclusion, we describe a technique that stabilizes and targets retrovirally expressed proteins such that they are exposed on the cytoplasmic surface of cellular membranes. This approach may be of general use for regulating the nuclear accumulation of drugs or proteins in living cells.  相似文献   

15.
16.
The isolation of a cytochrome b6-f complex from spinach, which is depleted of plastoquinone (and lipid), is reported. The depleted complex no longer functions as a plastoquinol-plastocyanin oxidoreductase but can be reconstituted with plastoquinone and exogenous lipids. The lipid classes digalactosyldiacylglycerol, phosphatidylglycerol and phosphatidylcholine were active in reconstitution while monogalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol were not. Neither plastoquinone nor lipid alone fully reconstitutes electron transport in the depleted complex. Saturation of plastoquinol-plastocyanin oxidoreductase activity in the depleted complex occurs at 1 plastoquinone per cytochrome f.  相似文献   

17.
There are currently 25 recognized species of the chipmunk genus Tamias. In this study we sequenced the complete mitochondrial cytochrome b (cyt b) gene of 23 Tamias species. We analyzed the cyt b sequence and then analyzed a combined data set of cyt b along with a previous data set of cytochrome oxidase subunit II (COII) sequence. Maximum-likelihood was used to further test the fit of models of evolution to the cyt b data. Other sciurid cyt b sequence was added to examine the evolution of Tamias in the context of other sciurids. Relationships among Tamias species are discussed, particularly the possibility of a current sorting event among taxa of the southwestern United States and the extreme divergences among the three subgenera (Neotamias, Eutamias, and Tamias).  相似文献   

18.
19.
Cytotoxic lesions, induced by Gram-negative lipopolysaccharides (LPS), occur mainly in liver where the microsomal compartment of hepatocytes is involved in the detoxification mechanisms as well as in the biosynthesis of different active metabolites.The alterations induced by LPS from E. coli 0111: 134 on cytochrome b5 and its correlation with cytochrome P450, have been studied using an in vivo reversible endotoxic shock model and 24 h non-replicative hepatocyte monolayers.Results show that cytochrome b5 is directly affected by LPS that induces also a membrane damage with an active release of lactate dehydrogenase (LDH). The increase of cytochrome b5 levels may enhance the efficiency of the electron transport, thus facilitating the cytochrome P450-associate oxidations and reactions involved in the repair mechanisms of membranes.  相似文献   

20.
【目的】研究表明,细胞色素P450(CYP)在死体营养型真菌的毒素合成代谢中发挥重要作用,预测可能与病原菌致病相关。论文对苹果树腐烂病菌(Valsa mali)毒素合成基因簇中的1个上调表达的CYP基因Vmcyp5进行生物学功能研究,明确CYP基因对病原菌致病力影响,为细胞色素P450基因家族对苹果树腐烂病菌致病机理的进一步研究提供依据。【方法】通过Double-joint PCR和PEG介导的原生质体转化技术获得具有G418抗性的突变体,并对突变体进行PCR检测及Southern blotting验证得到单拷贝敲除突变体。将目的基因片段重新导入敲除突变体,筛选获得互补突变体。最终对野生型菌株及敲除突变体、互补突变体进行菌落、产孢及致病力观察,利用SPSS软件对数据进行差异显著性分析,并利用q RT-PCR技术分析突变体黑色素基因簇的表达水平。【结果】通过基因敲除技术获得1个Vmcyp5基因的敲除突变体。与野生型菌株相比,Vmcyp5基因的敲除突变体菌落呈白色,产孢量减少51.3%。q RT-PCR分析发现敲除突变体黑色素基因簇基因表达量降低。重要的是,敲除突变体致病力较野生型菌株降低24.5%。互补突变体菌落颜色、产孢及致病力近似恢复至野生型菌株水平。【结论】Vmcyp5基因与病原菌黑色素合成、子实体的产生和致病力相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号