首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 551 毫秒
1.
The development of ketogenesis at birth in the rat.   总被引:1,自引:1,他引:0       下载免费PDF全文
The manner in which human liver cathepsin B (EC 3.4.22.1) digests glucagon was determined. After reaction of the proteinase with the substrate for 24h, more than 15 products were formed. During the first 7 h of reaction, eight products were formed; seven of these were dipeptides that originated from the C-terminal portion of the glucagon molecule, whereas the eighth peptide was the remaining large fragment of the hormone, consisting of residues 1-19. Measurement of the rate of formation of the products showed that cathepsin B degraded glucagon by a sequential cleavage of dipeptides from the C-terminal end of the molecule. Cathepsin B from both rat liver and bovine spleen was shown to hydrolyse glucagon by the same mechanism.  相似文献   

2.
The specificity of compound CA074 [N-(L-3-trans-propylcarbamoyloxirane-2-carbonyl)-L-isoleucyl-L-pro line] for the inactivation of cathepsin B was quantified in in vitro measurements with cysteine endopeptidases from cattle, it being found that the compound is a very rapid inactivator of cathepsin B (rate constant 112,000 M-1.s-1), with barely detectable action on cathepsins H, L, and S or m-calpain. Conversion of the proline carboxyl group of the inhibitor to the methyl ester virtually abolished the effect on cathepsin B, and a possible explanation for the importance of the carboxyl is presented on the basis of the tertiary structure of cathepsin B. It was found that CA074 methyl ester (1 microM, 3 h) caused selective inactivation of the intracellular cathepsin B of human gingival fibroblasts in culture, in contrast to other available agents, and we suggest that CA074 methyl ester will be of value in the elucidation of the biological functions of cathepsin B.  相似文献   

3.
The prodomains of several cysteine proteases of the papain family have been shown to be potent inhibitors of their parent enzymes. An increased interest in cysteine proteases inhibitors has been generated with potential therapeutic targets such as cathepsin K for osteoporosis and cathepsin S for immune modulation. The propeptides of cathepsin S, L and K were expressed as glutathione S-transferase-fusion proteins in Escherichia coli. The proteins were purified on glutathione affinity columns and the glutathione S-transferase was removed by thrombin cleavage. All three propeptides were tested for inhibitor potency and found to be selective within the cathepsin L subfamily (cathepsins K, L and S) compared with cathepsin B or papain. Inhibition of cathepsin K by either procathepsin K, L or S was time-dependent and occurred by an apparent one-step mechanism. The cathepsin K propeptide had a Ki of 3.6-6.3 nM for each of the three cathepsins K, L and S. The cathepsin L propeptide was at least a 240-fold selective inhibitor of cathepsin K (Ki = 0.27 nM) and cathepsin L (Ki = 0.12 nM) compared with cathepsin S (Ki = 65 nM). Interestingly, the cathepsin S propeptide was more selective for inhibition of cathepsin L (Ki = 0.46 nM) than cathepsin S (Ki = 7.6 nM) itself or cathepsin K (Ki = 7.0 nM). This is in sharp contrast to previously published data demonstrating that the cathepsin S propeptide is equipotent for inhibition of human cathepsin S and rat and paramecium cathepsin L [Maubach, G., Schilling, K., Rommerskirch, W., Wenz, I., Schultz, J. E., Weber, E. & Wiederanders, B. (1997), Eur J. Biochem. 250, 745-750]. These results demonstrate that limited selectivity of inhibition can be measured for the procathepsins K, L and S vs. the parent enzymes, but selective inhibition vs. cathepsin B and papain was obtained.  相似文献   

4.
Guo ZY  Shen L  Feng YM 《Biochemistry》2002,41(34):10585-10592
Insulin and insulin-like growth factor 1 (IGF-1) share homologous sequence, similar three-dimensional structure, and weakly overlapping biological activity, but different folding information is stored in their homologous sequences: the sequence of insulin encodes one unique thermodynamically stable three-dimensional structure while that of IGF-1 encodes two disulfide isomers with different three-dimensional structure but similar thermodynamic stability. Their different folding behavior probably resulted from the different energetic state of the intra A-chain/domain disulfide: the intra A-chain disulfide of insulin is a stable bond while that of IGF-1 is a strained bond with high energy. To find out the sequence determinant of the different energetic state of their intra A-chain/domain disulfide, the following experiments were carried out. First, a local chimeric single-chain insulin (PIP) with the A8-A10 residues replaced by the corresponding residues of IGF-1 was prepared. Second, the disulfide stability of two global hybrids of insulin and IGF-1, Ins(A)/IGF-1(B) and Ins(B)/IGF-1(A), was investigated. The local segment swap had no effect on the fidelity of disulfide pairing and the disulfide stability of PIP molecule although the swapped segment is close to the intra A-chain/domain disulfide. In redox buffer which favors the disulfide formation for most proteins, Ins(A)/IGF-1(B) cannot form and maintain its native disulfides just like that of IGF-1, while the disulfides of Ins(B)/IGF-1(A) are stable in the same condition. One major equilibrium intermediate with two disulfides of Ins(A)/IGF-1(B) was purified and characterized. V8 endoproteinase cleavage and circular dichroism analysis suggested that the intra A-chain/domain disulfide was reduced in the intermediate. Our present results suggested that the energetic state of the intra A-chain/domain disulfide of insulin and IGF-1 was not controlled by the A-chain/domain sequence close to this disulfide but was mainly controlled by the sequence of the B-chain/domain.  相似文献   

5.
Cathepsins have been found to have important physiological roles. The implication of cathepsin L in various types of cancers is well established. In a search for selective cathepsin L inhibitors as anticancer agents, a series of 2-cyanoprrolidine peptidomimetics, carrying a nitrile group as warhead, were designed. Two series of compounds, one with a benzyl moiety and a second with an isobutyl moiety at P(2) position of the enzyme were synthesized. The synthesized compounds were evaluated for inhibitory activity against human cathepsin L and cathepsin B. Although, none of the compounds showed promising inhibitory activity, (E)N-{(S)1-[(S)2-cyano-1-pyrrolidinecarbonyl]-3-methylbutyl}-2,3-diphenylacrylamide (24) with an isobutyl moiety at P(2) was found to show selectivity as a cathepsin L inhibitor (Ki 5.3 microM for cathepsin L and Ki > 100 microM for cathepsin B). This compound could act as a new lead for the further development of improved inhibitors within this inhibitor type.  相似文献   

6.
The mechanism of degradation of fructose-1,6-bisphosphate aldolase from rabbit muscle by the lysosomal proteinase cathepsin B was determined. Treatment of aldolase with cathepsin B destroys up to 90% of activity with fructose 1,6-bisphosphate as substrate, but activity with fructose 1-phosphate is slightly increased. Cathepsin L, another lysosomal thiol proteinase, and papain are also potent inactivators of aldolase, whereas inactivation is not caused by cathepsins D or H even at high concentrations, or by cathepsin B inhibited by leupeptin or iodoacetate. The cathepsin-B-treated aldolase shows no detectable change in subunit molecular weight, oligomer molecular weight or subunit interactions. Cathepsin B cleaves dipeptides from the C-terminus of th aldolase subunits. Four dipeptides are released sequentially: Ala-Tyr, Asn-His, Ile-Ser and Leu-Phe, and a maximum of five additional dipeptides may be released. There are indications that this peptidyldipeptidase activity of cathepsin B may be an important aspect of its action on protein substrates generally.  相似文献   

7.
The only dipeptide found to serve as a leucine source for a Salmonella strain lacking peptidases N, A, B, D, P, and Q was alpha-L-aspartyl-L-leucine. A peptidase (peptidase E) that specifically hydrolyzes Asp-X peptides was identified and partially purified from cell extracts. The enzyme (molecular weight, 35,000) is inactive toward dipeptides with N-terminal asparagine or glutamic acid. Mutants (pepE) lacking this enzyme were isolated by screening extracts for loss of the activity. Genetic mapping placed the pepE locus at 91.5 map units and established the gene order metA pepE zja-861::Tn5 malB. Duplications of the pepE locus showed a gene dosage effect on levels of peptidase E, suggesting that pepE is the structural gene for this enzyme. Mutations in pepE resulted in the loss of the ability to grow on Asp-Pro as a proline source but did not affect utilization of other dipeptides with N-terminal aspartic acid. Loss of peptidase E did not cause a detectable impairment in protein degradation. Two other peptidases present in cell extracts of mutants lacking peptidases N, A, B, D, P, Q, and E also hydrolyze many Asp-X dipeptides.  相似文献   

8.
Purified rat brain cathepsin B (EC 3.4.22.1) converted prodynorphins or proenkephalins to shorter active forms by the preferential removal of C-terminal dipeptides. The substrate affinities for Met-enkephalin-Arg-Phe or -Arg-Gly-Leu were Km 46 and 117 microM, and kcat/Km ratios were 67 and 115 microM-1, min-1, respectively. Met-Enkephalin was inactivated by the same mechanism (Km-450 microM; kcat/Km = 0.12 microM-1 min-1). The comparison of cathepsin B hydrolysis for pro-opioids, a synthetic hexapeptide and its fragments, C-blocked peptides (pro-opioid amides, Met-enkephalin amide, substance P), and bovine myelin basic protein, provided information on the influence of the C-terminal residues on dipeptide release, the rates as correlated to peptide length, and the optimal arrangement of residues favoring scission at the P1-P'1 sites. The brain enzyme was stereospecific and did not act on peptides with C-terminal D-amino acid substituents. Arg hindered and Pro blocked the release of C-terminal dipeptides when in the P'2 positions. The suppression of dipeptide release by agents inhibiting endopeptidase actions such as E-64 and leupeptin, and the endogenous brain factor (cerebrocystatin) point to similar catalytic mechanisms for the exopeptidase action.  相似文献   

9.
Besides its physiological role in lysosomal protein breakdown, extralysosomal cathepsin B has recently been implicated in apoptotic cell death. Highly specific irreversible cathepsin B inhibitors that are readily cell-permeant should be useful tools to elucidate the effects of cathepsin B in the cytosol. We have covalently functionalised the poorly cell-permeant epoxysuccinyl-based cathepsin B inhibitor [R-Gly-Gly-Leu-(2S,3S)-tEps-Leu-Pro-OH; R=OMe] with the C-terminal heptapeptide segment of penetratin (R=epsilonAhx-Arg-Arg-Nle-Lys-Trp-Lys-Lys-NH2). The high inhibitory potency and selectivity for cathepsin B versus cathepsin L of the parent compound was not affected by the conjugation with the penetratin heptapeptide. The conjugate was shown to efficiently penetrate into MCF-7 cells as an active inhibitor, thereby circumventing an intracellular activation step that is required by other inhibitors, such as the prodrug-like epoxysuccinyl peptides E64d and CA074Me.  相似文献   

10.
The substrate specificities of two different molecular sizes of cathepsin A, A,L (large form) and A,S (small form), for synthetic substrates were examined kinetically. Both enzymes showed a similar broad substrate specificity against various acyl dipeptides, amino acid esters, and amino acid amides. Z-Phe-Ala and Ac-Phe-OEt were good substrates. Peptides containing hydrophobic amino acids were hydrolyzed rapidly. The presence of hydrophobic amino acid residues, not only at the C-terminal position but also at the second position and probably the third position from the C-terminal, resulted in an increase in the rate of hydrolysis. Peptides containing glycine and proline were hydrolyzed slowly. Inhibition studies with Z-D-Phe-D-Ala and Z-Phe suggested that the peptidase and esterase activities of the enzymes are both catalyzed by the same site of the enzyme molecule, but it remains to be elucidated whether or not the binding sites for peptides and esters are the same.  相似文献   

11.
Lecaille F  Choe Y  Brandt W  Li Z  Craik CS  Brömme D 《Biochemistry》2002,41(26):8447-8454
The primary specificity of papain-like cysteine proteases (family C1, clan CA) is determined by S2-P2 interactions. Despite the high amino acid sequence identities and structural similarities between cathepsins K and L, only cathepsin K is capable of cleaving interstitial collagens in their triple helical domains. To investigate this specificity, we have engineered the S2 pocket of human cathepsin K into a cathepsin L-like subsite. Using combinatorial fluorogenic substrate libraries, the P1-P4 substrate specificity of the cathepsin K variant, Tyr67Leu/Leu205Ala, was determined and compared with those of cathepsins K and L. The introduction of the double mutation into the S2 subsite of cathepsin K rendered the unique S2 binding preference of the protease for proline and leucine residues into a cathepsin L-like preference for bulky aromatic residues. Homology modeling and docking calculations supported the experimental findings. The cathepsin L-like S2 specificity of the mutant protein and the integrity of its catalytic site were confirmed by kinetic analysis of synthetic di- and tripeptide substrates as well as pH stability and pH activity profile studies. The loss of the ability to accept proline in the S2 binding pocket by the mutant protease completely abolished the collagenolytic activity of cathepsin K whereas its overall gelatinolytic activity remained unaffected. These results indicate that Tyr67 and Leu205 play a key role in the binding of proline residues in the S2 pocket of cathepsin K and are required for its unique collagenase activity.  相似文献   

12.
Suban D  Zajc T  Renko M  Turk B  Turk V  Dolenc I 《Biochimie》2012,94(3):719-726
The release of a thyroid hormone from thyroglobulin is controlled by a complex regulatory system. We focused on the extracellular action of two lysosomal enzymes, cathepsin C (catC, dipeptidyl peptidase I) and PGCP (lysosomal dipeptidase), on thyroglobulin, and their ability to liberate the hormone thyroxin. Cathepsin C, an exopeptidase, removes dipeptides from the N-terminus of substrates, and PGCP hydrolyses dipeptides to amino acids. In vitro experiments proved that cathepsin C removes up to 12 amino acids from the N-terminus of porcine thyroglobulin, including a dipeptide with thyroxin on position 5. The newly formed N-terminus, Arg-Pro-, was not hydrolysed further by cathepsin C. Cell culture experiments with FRTL-5 cell line showed localization of cathepsin C and PGCP and their secretion into the medium. Secretion of the active cathepsin C from FRTL-5 cells is stimulated by TSH, insulin, and/or somatostatin. The released enzymes liberate thyroxin from porcine thyroglobulin added to media. The hormone liberation can be reduced by synthetic inhibitors of cysteine proteinases and metalloproteinases. Additionally, we show that TSH, insulin, and/or somatostatin induce up-regulation of N-acetylglucosaminyltransferase 1, the enzyme responsible for the initiation of biosynthesis of hybrid and complex N-glycosylation of proteins.  相似文献   

13.
In order to elucidate the substrate specificity of the Sn subsites (n=1-3) of cathepsin B, its crystal structure inhibited by E64c [(+)-(2S,3S)-3-(1-[N-(3-methylbutyl)amino]-leucylcarbonyl)oxirane-2-carboxylic acid] was analyzed by the X-ray diffraction method. Iterative manual rebuilding and convenient conjugate refinement of structure decreased R- and free R-factors to 19.7% and to 23.9%, respectively, where 130 water molecules were included for the refinement using 14,759 independent reflections from 10 to 2.3 A resolution. The epoxy carbonyl carbon of E64c was covalently bonded to the Cys(29) S(gamma) atom and the remaining parts were located at Sn subsites (n=1-3). The substrate specificity of these subsites was characterized based on their interactions with the inhibitor. Base on these structural data, we developed a novel cathepsin B-specific noncovalent-type inhibitor, which may bind to S2'-S3. The molecular design of possessing structural elements of both CA074 and E64c, assisted by energy minimization and molecular dynamics (MD) simulation, may lead to a new lead noncovalent-type inhibitor.  相似文献   

14.
1-Cyanopyrrolidines have previously been reported to inhibit cysteinyl cathepsins (Falgueyret, J.-P. et al., J. Med. Chem. 2001, 44, 94). In order to optimize binding interactions for a given cathepsin and simultaneously reduce interactions with the other closely related enzymes, small peptidic substituents were introduced to the 1-cyanopyrrolidine scaffold, either at the 2-position starting with proline or at the 3-position of aminopyrrolidines. The resulting novel compounds proved to be micromolar inhibitors of cathepsin B (Cat B) but nanomolar to picomolar inhibitors of cathepsins K, L, and S (Cat K, Cat L, Cat S). Several of the compounds were >20-fold selective versus the other three cathepsins. SAR trends were observed, most notably the remarkable potency of Cat L inhibitors based on the 1-cyano-D-proline scaffold. The selectivity of one such compound, the 94 picomolar Cat L inhibitor 12, was demonstrated at higher concentrations in DLD-1 cells. Although none of the compounds in the proline series that was tested proved to be submicromolar in the in vitro bone resorption assay, two Cat K inhibitors in the 3-substituted pyrrolidine series, 24 and 25 were relatively potent in that assay.  相似文献   

15.
The trematode Fasciola hepatica secretes a number of cathepsin L-like proteases that are proposed to be involved in feeding, migration, and immune evasion by the parasite. To date, six full cDNA sequences encoding cathepsin L preproproteins have been identified. Previous studies have demonstrated that one of these cathepsins (L2) is unusual in that it is able to cleave substrates with a proline in the P2 position, translating into an unusual ability (for a cysteine proteinase) to clot fibrinogen. In this study, we report the sequence of a novel cathepsin (L5) and compare the substrate specificity of a recombinant enzyme with that of recombinant cathepsin L2. Despite sharing 80% sequence identity with cathepsin L2, cathepsin L5 does not exhibit substantial catalytic activity against substrates containing proline in the P2 position. Molecular modeling studies suggested that a single amino acid change (L69Y) in the mature proteinases may account for the difference in specificity at the S2 subsite. Recombinant cathepsin L5/L69Y was expressed in yeast and a substantial increase in the ability of this variant to accommodate substrates with a proline residue in the P2 position was observed. Thus, we have identified a single amino acid substitution that can substantially influence the architecture of the S2 subsite of F. hepatica cathepsin L proteases.  相似文献   

16.
目的:研究E1A激活基因阻遏子(Cellular repressor of E1A-stimulated genes,CREG)对小鼠腹腔巨噬细胞溶酶体发生及溶酶体组织蛋白酶表达的影响。方法:应用loss-of-function和gain-of-function模型,Lysotracker Red染色和透射电镜观察CREG对小鼠腹腔巨噬细胞溶酶体发生的影响,并通过细胞免疫荧光染色和Western blot方法,观察CREG对小鼠腹腔巨噬细胞溶酶体组织蛋白酶表达的影响。结果:Lysotracker Red染色和透射电镜证实CREG可促进小鼠腹腔巨噬细胞溶酶体发生;细胞免疫荧光染色和Western blot方法证实CREG可促进小鼠腹腔巨噬细胞溶酶体组织蛋白酶cathepsin B及cathepsin S表达。结论:CREG可促进小鼠腹腔巨噬细胞溶酶体发生及组织蛋白酶cathepsin B及cathepsin S表达。  相似文献   

17.
Abstract Phosphono dipeptides based on 4-amino-4-phosphonobutyric acid (phosphonic acid analogue of glutamic acid, GluP) were synthesized and evaluated for their antibacterial activity. Dipeptides containing N-terminal alanine, leucine, isoleucine, phenylalanine or lysine showed marked antibacterial activity against Escherichia coli , whilst those containing alanine, leucine, valine or proline were active against Serratia marcescens . AlaGluP and LeuGluP were nearly equipotent with the respective dipeptides based on 1-aminoethylphosphonic acid (phosphonic acid analogue of alanine). The structure-activity relationship, i.e. dependence of the activity of phosphono dipeptides on the nature of their N-terminal component, indicated that transport of the peptide through the bacterial cytoplasmic membrane constitutes a crucial step in its antibacterial activity.  相似文献   

18.
A proline dipeptidase (EC 3.4.13.9) from guinea pig brain was purified to over 90% homogeneity by a combination of ammonium sulfate fractionation, DEAE-cellulose chromatography, calcium phosphate-cellulose chromatography, chromatofocusing, and gel filtration on Sephadex G-200. A purification factor of 2718-fold was obtained with a yield of 7%. The purified enzyme was found to have an apparent molecular weight of 132,000 and to consist of two dissimilar subunits of molecular weights 64,000 and 68,000. The substrate specificity of the enzyme is not that of a strict proline dipeptidase. Although it preferentially hydrolyzes proline dipeptides (Leu-Pro) it also hydrolyzes prolyl dipeptides (Pro-Leu) and dipeptides not containing proline (Leu-Leu). The purified enzyme preparation exhibited weak aminoacylproline aminopeptidase activity against Arg-Pro-Pro but it did not exhibit any post-proline dipeptidyl aminopeptidase, post-proline cleaving endopeptidase, proline iminopeptidase, prolyl carboxypeptidase or carboxypeptidase P activities when tested with a large variety of peptides and arylamides. With all of the proline and prolyl dipeptides examined the enzyme exhibited biphasic kinetics (two distinct slopes on Lineweaver-Burk plots). However, with Leu-Leu as substrate normal Michaelis-Menten kinetics were obeyed.  相似文献   

19.
Des-Gly-A-chain-tetra-S-sulphonate was prepared by Edman degradation following two different routes. A) Via complete reaction of A-chain from bovine insulin with 150 equivalents of phenylisothiocyanate in pyridine/water and trifluoroacetic acid cleavage of the resulting phenylthiocarbamoyl A-chain. B) Via reaction of bovine insulin with about 20 equivalents of phenylisothiocyanate until a substitution degree of 2.3-2.5 was reached, trifluoroacetic acid cleavage of the crude derivatives and oxidative sulphitolysis of the resulting desaminoacyl insulins. Preparative electrophoresis (pH 2) or ion exchange chromatography using DEAE-Sephadex gave des-Gly-A-chain in a yield of 60-65% of theory according to method B, containing less than 1% of glycine. Des-GlyA1-insulin was prepared by combination with 0.67 equivalents of B-chain-bis-S-sulphonate and isolated in yields of 5-13%, based on B-chain, after gel filtration (pH 8) and ion exchange chromatography (CM-cellulose, pH 3-2). The electrophoretically (pH 2 and 8.6) homogeneous analogue did not crystallize in the presence of zinc ions. Its blood sugar lowering potency is 10-25%, its in vitro insulin activity (fat cell assay) only 1-2%. The immunoreactivity against anti-insulin sera in different test systems is markedly reduced. There are clear differences between the CD-spectra of des-Gly-insulin and insulin, indicating a loss of ordered secondary structure. From the results it is concluded that structure-stabilizing non covalent bonds are abolished by the removal of the invariant A1-glycine. This leads to conformational alterations which cause the far-going inactivation of the molecule.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号