首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Manduca sexta larvae, radioactive free cholesterol is absorbed directly from the midgut into mucosal cells where it is stored both in the free form (87% in males and 93% in females) and esterified form (13% in males and 7% in females). Subsequently, cholesterol is transported to fat body via lipophorin in the hemolymph exclusively in the free form. In fat body, the distribution of cholesterol between the free and esterified form varied significantly between genders and developmental stages. Except for the larval stage, males and females were able to store cholesterol in both free and esterified forms in the fat body and in the adult stage cholesterol ester accounted for more than 75% of the stored cholesterol. Placement of radioactive cholesterol at different locations in the gut-foregut, midgut, and hindgut-demonstrated that the midgut is the site where cholesterol is absorbed and released into the hemolymph. Cholesterol-labeled lipophorin injected into larval hemolymph was cleared from the hemolymph with a half-life of 10.2 h. After 17 h, most of the cleared radioactivity was recovered in the fat body (38%). Arch.  相似文献   

2.
The major Musca domestica hemolymph lipoprotein, lipophorin, was purified from larval and from adult animals. The housefly lipophorin is composed of two apoproteins, apolipophorin I (Mr ∽ 253,000) and apolipophorin II (Mr ∽ 85,000). The lipophorin contains about 3.9% carbohydrates and reacts positively with concanavalin A. The density of larval lipophorin is equal to 1.152 g/ml and of adult lipophorin to 1.106 g/ml. The amount of lipophorin per animal increases during the larval stage, is constant during pupal stage, and suffers a great reduction at the pharate adult stage. The amount of lipophorin remains stable during the whole first gonotrophic cycle of the housefly. Lipophorin is not detected in the eggs of this insect.  相似文献   

3.
Although the lepidopteran larva Pseudaletia separata is attacked by the gregarious ectoparasitoid Euplectrus separatae, it continues to feed and grow. Lipid concentration in the hemolymph of the parasitized host was higher than that of the nonparasitized host from 3 to 8 days after parasitization. Artificial injection of parasitoid venom also elevated lipid concentration in the host hemolymph. One day after venom injection the host's fat body contained many lipid particles, but most of the lipid particles disappeared 7 days later. Light microscopy and transmission electron microscopy showed the lipid particles leaving the fat body cells as a result of the lysis of the fat body cells. These results suggest that the venom elevated the lipid concentration in the host hemolymph by provoking the release of lipid particles from the fat body. Though most of the lipid particles were freely floating in the host hemolymph, a portion of the released lipid particles were phagocytized by hemocytes. The amount of lipid that was loaded to lipophorin in the hemolymph of the venom-injected host was measured, but it was not sufficient to explain the high lipid titer in the hemolymph of parasitized and venom-injected host larvae. The fact that parasitoid larva consumed many hemocytes as evidenced by their presence in the midgut supported the hypothesis that the parasitoid larvae fed on the host hemolymph containing the free lipid particles, the hemocytes phagocytizing the lipid particles, and the lipid-loaded lipophorin. The possibility of the venom contribution to the disruption of the intercellular matrix was examined. The venom showed high activity of matrix metalloproteinase (MMP), especially when it was mixed with the hemolymph of non-parasitized 5th instar larvae. We suggest that the MMP in the venom was activated by some components of the host hemolymph. On the other hand, the venom mixed with hemolymph could not decompose gelatin on zymography, suggesting that the venom-MMP is a different type from gelatinase. Activity of phospholipases A(2), B, C and hyaluronidase were measured with agar plates. High activities of phospholipase B and hyaluronidase were detected. These results suggest that the venom-MMP initially attacked the specific site of the intercellular-matrix of the fat body, and then the hyaluronidase and the phospholipase B cause lysis of the fat body cell, allowing lipid particles to be released into the host hemolymph.  相似文献   

4.
In this paper we review the current status of research on fatty acid absorption and conversion to diacylglycerol in the midgut. We further discuss how diacylglycerol may leave the midgut and associate with lipophorin in hemolymph. We review the present understanding of the role of the lipid transfer particle and lipophorin receptors in lipid delivery between lipophorin and tissues. Finally, we discuss recent studies on the mobilization of diacylglycerol from the fat body in response to adipokinetic hormone. Several suggestions for exciting areas of future research are described.  相似文献   

5.
《Insect Biochemistry》1988,18(2):211-214
Manduca sexta larvae were raised on diets containing either 1.2% fat (control diet), 5.9% fat (high-fat diet) or on a fat-free diet. Insects raised on the control and high-fat diets did not differ significantly in body weight, whereas animals raised on the fat-free diet were significantly smaller. The fat content of the diet had no effect on the hemolymph concentration of lipophorin. During the larval period, lipophorin isolated from animals on the high-fat diet contained more lipid, and lipophorin isolated from animals on the fat-free diet contained less lipid than lipophorin isolated from control animals. However, lipophorin isolated from animals during the prepupal period had the same composition regardless of diet. Compared to controls, animals on the high-fat diet had a larger mass of fat body which contained more stored triacylglycerol, while animals on the fat-free diet had a smaller mass of fat body which contained less stored triacylglycerol. As the fat content of the diet was increased, the fatty acid composition of fat body triacylglycerols reflected more closely that of the dietary lipid.  相似文献   

6.
7.
The density of lipophorin was determined in adult females of Rhodnius prolixus on different days after a meal. Several populations of lipophorins, differing in density but always in the range of HDL, were found in the hemolymph. The density of the major population was analyzed and a complex profile of density variation was found associated with the principal metabolic events in these insects digestion and oogenesis. During the initial three days after the blood meal, with the onset of the digestive process, the density of lipophorin decreased from 1.1185 g/l to 1.1095 g/l, associated with the transfer of lipids from midgut to the lipophorin particles. During the period of intense vitellogenesis and lipid uptake by the ovary, the lipophorin density started to increase and reached the value, 1.1322 g/l, and remained stable up to the end of oogenesis. As soon as the requirement of lipids to build up the oocytes ceased, the density of lipophorin decreased to its initial value associated with the transfer of lipids from fat body to lipophorin. Soon after the blood meal the midgut was the main source of lipids capable of replenishing the lipophorin particles, while the fat body assumed this function during the succeeding days and reached its maximum capacity around day 10, as estimated by the rate of lipid transfer. The principal lipids transferred were phospholipids and diacylglycerols. Except in the protein/lipid ratio no major changes were observed among different lipids isolated from lipophoin of different densities. Arch. Insect Biochem. Physiol. 35:301-313, 1997.© 1997 Wiley-Liss, Inc.  相似文献   

8.
The pathway for the synthesis of diacylglycerol in larval Manduca sexta midgut was studied. Fifth instar larvae were fed with [9,10–3H]–oleic acid–labeled triolein and the incorporation of the label into lipid intermediates was analyzed as a function of time. The results showed that the triacylglycerol was hydrolyzed to fatty acids and glycerol in the midgut lumen. In midgut tissue, the labeled fatty acids were rapidly incorporated into phosphatidic acid, diacylglycerol and triacylglycerol, but no significant labeling of monoacylglycerol was observed. Dual-labeling experiments were performed in order to characterize the kinetics of diacylglycerol biosynthesis in the midgut, its incorporation into hemolymph lipophorin and its clearance from hemolymph. The results were best described by a model in which the rate-limiting step in diacylglycerol biosynthesis was the uptake of fatty acid from the lumen of the midgut. Once in the cell the fatty acid was rapidly incorporated in phosphatidic acid and diacylglycerol. Diacylglycerol was converted to triacylglycerol or exported into hemolymph. The interconversion of diacylglycerol and triacylglycerol was fairly rapid, suggesting that triacylglycerol serves as a reservoir from which diacylglycerol can be produced. This mechanism permits the cell to maintain a low steady-state concentration of diacylglycerol and yet efficiently absorb fatty acids from the lumen of the midgut.  相似文献   

9.
Structurally, the milk gland of the sheep ked, Melophagus ovinus, is quite similar to that of the tsetse fly, Glossina morsitans. In both insects the highly branched gland consists of two cell layers. An extracellular reservoir associated with each secretory cell initially receives the secreted milk. Milk then passes into the gland lumen through a dense cuticular rete. Gram-negative bacteria, presumably symbionts, are abundant in the lumen. Unlike tsetse, the secretory reservoir of the sheep ked is bi-lobed, and the secretory cell nucleus remains centrally located throughout the pregnancy cycle. Lipid droplets are much more abundant in the cytoplasm of the ked secretory cell, and analysis of larval milk shows 5–6% higher lipid content in the sheep ked. Results of histochemical analysis of ked milk are consistent with the analysis of tsetse milk. Four major milk proteins are detectable with polyacrylamide gel electrophoresis. Changes in abundance of ER and sizes of the secretory cell nucleus and secretory reservoir reflect a dramatic cycle of glandular activity during pregnancy. Unlike tsetse, the sheep ked remains constantly on its host and appears to take frequent, but small, blood meals. This strategy implies that the demand for nutrient storage is less than in tsetse.  相似文献   

10.
Using in vitro methods, we investigated the transfer of cholesterol from larval Manduca sexta midgut to the hemolymph lipoprotein, lipophorin, and the transfer of cholesterol from lipophorin to larval fat body. In the midgut, transfer of free cholesterol shows saturation kinetics, but the apparent Km is higher than the measured Kd for the midgut lipophorin-receptor complex. In addition, the transfer is unaffected by suramin, which binds to the receptor and inhibits lipophorin binding, and by antibodies to the lipid transfer particle, which is required for export of diacylglycerol from the midgut to lipophorin. In the fat body, transfer of free cholesterol also shows saturation kinetics, and the apparent Km is higher than the measured Kd for the fat body lipophorin-receptor complex. Suramin and anti-lipid transfer particle antibodies exert only a small (20%) inhibitory effect. In both tissues it seems that the most likely mode of cholesterol transfer is via aqueous diffusion, which is also an important mechanism in vertebrate cells. Based on these results, we propose that cholesterol homeostasis in larval M. sexta is maintained by a mass action mechanism in which cholesterol is freely transferred between lipophorin and tissues depending on the needs of the tissues. This simple mechanism is ideally suited to insects, which can neither make cholesterol nor internalize lipophorin, the two mechanisms that vertebrate cells use to control their cholesterol content.  相似文献   

11.
《Insect Biochemistry》1989,19(4):361-365
The release of lipophorin and total protein was examined from the fat body of nondiapause and diapause larvae of the southwestern corn borer, Diatraea grandiosella, incubated in vitro in Grace's medium. The characteristics of the released lipophorin were compared to those of the high-density lipophorin present in the hemolymph of nondiapause and diapause larvae. Over a 4 h incubation period, the fat body of nondiapause larvae released about 1.5 times more total protein and 2 times more lipophorin per mg dry weight than did that of diapause larvae. Lipophorin isolated from the medium in which fat bodies of nondiapause and diapause larvae had been incubated and from the plasma of nondiapause and diapause larvae had similar mean densities of 1.115, 1.112, 1.117 and 1.119 g/ml, respectively. Although the lipid classes detected in lipophorin isolated from the fat body incubation medium and hemolymph were identical, more polar lipids and less diacylglycerol were associated with lipophorin isolated from fat body incubation medium then were associated with lipophorin isolated from the hemolymph. Sterols accounted for about 11% of the total lipids of lipophorin isolated from the fat body incubation medium, whereas they accounted for about 20% of the total lipids of lipophorin from hemolymph. We conclude that the fat body of feeding nondiapause larvae and nonfeeding diapause larvae releases high-density lipophorin.  相似文献   

12.
The importance of midgut diverticula (M-diverticula) and hemolymph lipoproteins in the lipid homeostasis of Polybetes phythagoricus was studied. Radioactivity distribution in tissues and hemolymph was analyzed either after feeding or injecting [1-14C]-palmitate. In both experiments, radioactivity was mostly taken up by M-diverticula that synthesized diacylglycerols, triacylglycerols and phospholipids in a ratio close to its lipid class composition. M-diverticula total lipids represent 8.08% (by wt), mostly triacylglycerols (74%) and phosphatidylcholine (13%). Major fatty acids were (in decreasing order of abundance) 18:1n − 9, 18:2n − 6, 16:0, 16:1n − 7, 18:0, 18:3n − 3. Spider hemocyanin-containing lipoprotein (VHDL) transported 83% of the circulating label at short incubation times. After 24 h, VHDL and HDL-1 (comparable to insect lipophorin) were found to be involved in the lipid uptake and release from M-diverticula, HDL-2 playing a negligible role. Lipoprotein's labelled lipid changed with time, phospholipids becoming the main circulating lipid after 24 h. These results indicate that arachnid M-diverticula play a central role in lipid synthesis, storage and movilization, analogous to insect fat body or crustacean midgut gland. The relative contribution of HDL-1 and VHDL to lipid dynamics indicated that, unlike insects, spider VHDL significantly contributes to the lipid exchange between M-diverticula and hemolymph.  相似文献   

13.
14.
The mature flightless grasshopper Barytettix psolus shows a very small adipokinetic response when injected with extracts of its own corpora cardiaca, although the fat body contains enough lipid for a strong response. When these extracts were injected into Melanoplus differentialis, a grasshopper capable of flight, or the moth Manduca sexta, much stronger adipokinetic responses were observed. Upon analysis of B. psolus extracts by HPLC, two components with adipokinetic activity were obtained. The major component appears to be identical to locust adipokinetic hormone (AKH) I. Extracts of B. psolus corpora cardiaca also activated fat body glycogen phosphorylase in B. psolus. This activation, however, did not result in an increase in hemolymph sugar, probably because of low levels of glycogen in the fat body. B. psolus hemolymph contains a high-density lipophorin (HDLp) consisting of the apolipophorins (apoLp) I and II and lipid. Both apoproteins are glycosylated. The hemolymph also contains apoLp-III, although this apoprotein apparently does not associate with HDLp to form a low-density lipophorin (LDLp) following AKH or corpora cardiaca extract injections. When B. psolus lipophorin and AKH were injected into Schistocerca americana, lipophorin took up lipids and combined with apoLp-III, forming LDLp. ApoLp-III from B. psolus injected into S. americana can also form LDLp, demonstrating that the components are functional. A lipid transfer particle isolated from M. sexta and injected into B. psolus does not improve the adipokinetic response. Thus, it appears that the adipokinetic response of B. psolus is not deficient because of the lack of AKH or functional lipophorins, but may be caused by the lack of a full response to AKH by fat body or the deficiency in hemolymph of some as yet unknown factor.  相似文献   

15.
16.
Although lysis of invading organisms is a major innate form of immunity used by invertebrates, it remains unclear whether herbivorous insects have hemolysin or not. To address this general question, we tested the hemolytic (HL) activity of the hemolymph and tissue extracts from various stages of the polyphagous insect Helicoverpa armigera (Hübner) against the erythrocytes from chicken, duck, and rabbit. An HL activity was identified in the hemolymph of H. armigera larvae. Further studies demonstrated that the HL activity is proteinaceous as it was precipitable by deproteinizing agents. Hemolysins were found in Helicoverpa egg, larva, pupa, and adult, but the activity was higher in feeding larvae than in molting or newly molted larvae. Hemolysins were distributed among a variety of larval tissues including salivary gland, fat body, epidermis, midgut, or testes, but the highest activity was found in salivary gland and fat body. Relative to nonparasitized larvae, parasitization of H. armigera larvae by the endoparasitoid Campoletis chlorideae Uchida induced a 3.4‐fold increase in the HL activity in the plasma of parasitized host at day two postparasitization. The present study shows the presence of a parasitoid inducible HL factor in the parasitized insect. The HL activity increased significantly in H. armigera larvae at 12 and 24 h postinjection with Escherichia coli. We infer the HL factor(s) is inducible or due to de novo synthesis, which means that the HL factor(s) is associated with insect immune response by inhibiting or clearance of invading organisms.  相似文献   

17.
《Insect Biochemistry》1987,17(8):1173-1180
The source of the lipophorin present in the larval haemolymph of the southwestern corn borer, Diatraea grandiosella, was examined in vitro. Although lipophorin was shown to be one of several proteins released from cultured fat body and midgut, only fat body was shown to synthesize lipophorin. Fat body, incubated in a medium containing [3H]leucine, was shown to release radiolabelled lipophorin using immunoprecipitation. Similar studies using midguts incubated in a medium containing [3H]leucine did not reveal any synthesis of lipophorin. Lipophorin was isolated by density-gradient ultracentrifugation from media in which the fat bodies of about 600 diapausing larvae had been incubated for 4 hr. The isolated lipophorin had a peak density of 1.11 g/ml, and contained various lipids including diacylglycerol, triacylglycerol, sterol, hydrocarbon, free fatty acid, phosphatidyl choline, phosphatidyl ethanolamine and sphingomyelin.  相似文献   

18.
The effects of juvenile hormone on the milk gland, ovaries, and fat body of adult female G. austeni were studied by allatectomy and hormone replacement therapy. In the absence of juvenile hormone, milk synthesis is slow, leading to the production, in a few cases, of small larvae over a prolonged inter-larval period. In most cases, no viable larva is produced and the fat body hypertrophies. Replacement of the corpus allatum with C16JH leads to a rapid synthesis of milk, production of normal-sized larvae and a reversal of the effect on the fat body. It is therefore suggested that the milk gland activity is directly influenced by JH. Allatectomy in most cases also results in only one egg being matured. The others do not enter vitellogenesis. Similarly, this effect on the ovaries can be reversed by topical application of C16JH.  相似文献   

19.
We examined expression of the lipophorin (Lp) gene, lipophorin (Lp) synthesis and secretion in the mosquito fat body, as well as dynamic changes in levels of this lipoprotein in the hemolymph and ovaries, during the first vitellogenic cycle of females of the yellow fever mosquito, Aedes aegypti. Lipophorin was purified by potassium bromide (KBr) density gradient ultracentrifugation and sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). Polyclonal antibodies were produced against individual Lp apoproteins, apolipoprotein-I (apoLp-I) and apolipoprotein-II (apoLp-II), with molecular weights of 240 and 75 kDa, respectively. We report here that in the mosquito A. aegypti, Lp was synthesized by the fat body, with a low level of the Lp gene expression and protein synthesis being maintained in pre- and postvitellogenic females. Following a blood meal, the Lp gene expression and protein synthesis were significantly upregulated. Our findings showed that the fat body levels of Lp mRNA and the rate of Lp secretion by this tissue reached their maximum at 18 h post-blood meal (PMB). 20-Hydroxyecdysone was responsible for an increase in the Lp gene expression and Lp protein synthesis in the mosquito fat body. Finally, the immunocytochemical localization of Lp showed that in vitellogenic female mosquitoes, this protein was accumulated by developing oocytes where it was deposited in yolk granules.  相似文献   

20.
M. Locke  P. Huie 《Tissue & cell》1983,15(6):885-902
The basal surface in transporting epithelia is infolded in a way that encourages the formation of standing gradients. Many insect cells have a similar infolded reticular system (RS) although they are clearly not transporting epithelia. These cells are like one another metabolically in that they sequester lipid from hemolymph lipophorins (lipid transporting proteins). Dietary lipids enter the hemolymph from the midgut RS which may be an adaptation for lipophorin loading. The plasma membrane reticular system of tissues metabolizing lipids (fat body, wax glands, oenocytes, lenticles) may be an adaptation for lipophorin reception and unloading. Cationic ferritin (pI 8.5) shows all RSs are covered by a lamina functioning as a negatively charged sieve. The basal plasma membrane leading to the RS is also negatively charged. The RS is a container with charged entrances that would be expected to affect the composition of the contents. Midgut cells release lipid particles into their RS. The particles are positively charged since in tracer studies they associate with anionic but not cationic ferritin. Lipophorins are anionic. The electrostatic binding of lipid to lipophorin would make it less anionic and more likely to leave the RS when loaded, thus carrying lipid to the hemolymph. Conversely, at the destination RS, loaded lipophorin would penetrate more easily than unloaded. A change in charge with unloading would be expected to alter the equilibrium between entering and leaving lipophorin, causing protein concentration in the RS of lipid receiving tissues as has been observed in the fat body. Reticular systems may thus be reaction vessels for interactions between carrier proteins and their load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号