首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Long-term ovariectomy reduces the ability of estradiol and progesterone treatment to induce sexual receptivity in female rats. Previous researchers suggested that this effect may be due to a decreased induction of neural progestin receptors by estradiol in the long-term ovariectomized rats. The present study was designed to replicate and extend this finding, and to search for neuroanatomical correlates by measuring the volume of the ventromedial nucleus (VMN) of the hypothalamus, a putative site of action of estradiol and progesterone for the induction of female sexual behavior. Long-term ovariectomy (5 to 6 weeks) as compared to short-term ovariectomy (1 week) reduced the ability of estradiol-17 beta and progesterone treatment to induce sexually receptive and proceptive behaviors. Consistent with previous reports, our data show that the reduced levels of cytosol progestin receptors after long-term ovariectomy and estradiol treatment are related to a reduced ability of estradiol to induce the receptors. Long-term ovariectomy did not affect the concentration of cytosol progestin receptors in the preoptic area, suggesting a neuroanatomical specificity to this effect. Contrary to our predictions, long-term ovariectomy did not affect the volume of the VMN. In fact, estradiol treatment, while blocking the effect of long-term ovariectomy on sexual behavior, decreased the volume of the VMN. Therefore, the measurement of the volume of the VMN is not a good predictor of the responsiveness to steroid hormone induction of sexual behavior.  相似文献   

2.
The present study tested whether testosterone propionate (TP) implanted in the ventromedial nucleus (VMN) of the hypothalamus could initiate performance, motivational, or sociosexual components of sexual behavior in castrated male rats. Twenty-seven intact male Long Evans rats were pretested for copulation, partner preference, and 50-kHz vocalization and were subsequently castrated. Approximately 3 weeks after castration, males were retested to confirm that these behaviors had declined, and groups were assigned. Groups 1 and 2 were implanted with bilateral stainless steel cannulae directed at the VMN that were either filled with TP (TVMN group) or remained empty (Blank group). A third group (TSC) was implanted subcutaneously with two 10-mm Silastic capsules filled with testosterone. Restoration of behavior was measured for 2 weeks after implants. We found that copulation and 50-kHz vocalization were not restored by TP in the VMN alone. However, partner preference returned to preoperative levels in both the TVMN and TSC groups, indicating that TP in the VMN was sufficient to restore sexual motivation. Following behavioral testing, prostate glands and seminal vesicles were weighed and confirmed that TP did not leak into the periphery in the TVMN group. Immunostaining for androgen receptors also verified that TP spread was confined to the immediate area surrounding the cannula tip. These results suggest that androgen activation at the VMN is sufficient to induce the motivational components of male sexual behavior, whereas activation of other brain sites is required for copulation and ultrasonic vocalization.  相似文献   

3.
4.
The effects of septal or preoptic lesions on both masculine and feminine sexual behaviors were examined in castrated adult male rats. Three weeks after brain surgery, animals were implanted with Silastic tubes containing testosterone (T) and observations of masculine sexual behavior were carried out four times every 5 days. T tubes were removed immediately after the end of the masculine behavioral tests. Two weeks later, animals implanted with Silastic tubes containing estradiol-17 beta(E2) were subjected to three feminine sexual behavioral tests at 5-day intervals. The bilateral lateral septal lesion (LSL) and the medial preoptic lesion (MPOL) effectively suppressed the performance of mounts, intromissions, and ejaculations, whereas the medial septal lesion (MSL), the dorsolateral preoptic lesion (DPOL), and the sham operation did not show any significant suppression of these behaviors. In the feminine sexual behavioral tests, intact and sham-operated control males showed only a low lordotic activity. However, the performance of the lordosis reflex was markedly facilitated by LSL or DPOL, while the lordotic activity of MSL and MPOL males was not significantly different from that of control males. These results suggest that the lateral septum exerts not only a facilitatory influence on masculine sexual behavior but also an inhibitory influence on feminine sexual behavior in male rats. On the other hand, the medial preoptic area may play a critical role in regulating masculine sexual behavior in male rats.  相似文献   

5.
The neuropeptide cholecystokinin (CCK) inhibits lordosis behavior when infused into the ventromedial nucleus of the hypothalamus (VMN) of female rats and has no effect when infused into the VMN of male rats. To test whether this sex difference develops under the control of perinatal steroids, male rats were castrated or given sham surgeries within 3 h of birth and female rats were injected with either 0 or 100 micrograms testosterone propionate on postnatal day 5. As adults, these rats were castrated as necessary, implanted with unilateral cannulae directed at the VMN, and tested for their ability to display female sexual behavior and to respond to CCK. Neonatal castration of males prevented defeminization of this response. When treated with 5 micrograms estradiol benzoate (EB), neonatally castrated males showed both lordosis behavior and a profound inhibition of that behavior after infusions of CCK. Neonatally castrated males did not display lordosis behavior when treated with 2 micrograms EB. Control males showed no lordosis behavior and, therefore, no response to CCK. Both doses of EB induced lordosis behavior in neonatally androgenized females. Significantly, these neonatally androgenized females were less responsive to CCK's inhibition of lordosis and were also anovulatory. These results imply that androgens alter the development of CCK responsive circuits as well as defeminize cyclic gonadotropin release. Levels of 125I-sCCK-8 binding in the VMN were correlated closely with an individual's ability to respond to sCCK-8. In summary, the inhibition of female sexual behavior caused by exogenously administered CCK in normal adult female rats appears to be controlled at least partially by levels of CCK receptors in the VMN and to differentiate under the control of perinatally present testosterone.  相似文献   

6.
Sex differences in response to discrete estradiol injections   总被引:1,自引:0,他引:1  
Developmental effects of perinatal androgens render adult male rats refractory to the activation of feminine sexual behavior by estradiol (E2) and progesterone (P). Recent evidence suggested that fluctuating levels of systemic E2, which are thought to approximate the ovarian secretion under physiological conditions, may reverse this insensitivity to E2 and, particularly, to the synergistic effects of P in male rats of the Wistar strain. We examined whether this hormonal regimen would reverse this insensitivity in Sprague-Dawley rats. Gonadectomized animals received two injections of E2 (1 microgram per injection) 12 hr apart at 0900 and 2100 hr followed by P (0.5 mg) or oil, at 35 hr, and a mating behavior test, at 38 hr, subsequent to the initial E2 administration. This treatment was repeated four times at 4-day intervals. The inability of Sprague-Dawley male rats to respond to E2 and P was unaffected by this pattern of exposure to exogenous E2. Receptivity scores, lordosis quotients, and proceptivity were negligible in males, and significantly less than that displayed by females. In addition, the levels of sexual receptivity and proceptivity were facilitated by the availability of P following E2 in females, but not in males. The present findings fail to support a general hypothesis that "discontinuous" E2 stimulation, achieved by two spaced injections of this hormone, reverses developmental determinants of sex differences in responsiveness to hormones mediating female sexual behaviors.  相似文献   

7.
Two experiments were carried out to assess the possible involvement of 3′:5′cyclic adenosine monophosphate (cAMP) in the hormonally mediated activation of masculine and feminine sexual behavior in female rats. In Experiment I, theophylline, a compound shown to be effective in inhibiting the degradation of cAMP, was combined with estradiol benzoate (EB) in an attempt to potentiate the action of estradiol for inducing feminine or masculine sexual behavior. Theophylline, when administered in combination with EB to ovariectomized females, resulted in an increase in masculine sexual behavior but no potentiating action on female receptivity. In Experiment II, theophylline, when given to female rats, potentiated the action of testosterone propionate in stimulating male but not female sexual behavior. These data suggest that estradiol and testosterone may be activating masculine sexual behavior through similar biochemical mechanisms. Likewise, cAMP may be involved in the activation of masculine but not feminine sexual behavior by gonadal steroids.  相似文献   

8.
Sex differences in brain morphology underlie physiological and behavioral differences between males and females. During the critical perinatal period for sexual differentiation in the rat, gonadal steroids act in a regionally specific manner to alter neuronal morphology. Using Golgi-Cox impregnation, we examined several parameters of neuronal morphology in postnatal day 2 (PN2) rats. We found that in the ventromedial nucleus of the hypothalamus (VMN) and in areas just dorsal and just lateral to the VMN that there was a sex difference in total dendritic spine number (males greater) that was abolished by treating female neonates with exogenous testosterone. Dendritic branching was similarly sexually differentiated and hormonally modulated in the VMN and dorsal to the VMN. We then used spinophilin, a protein that positively correlates with the amount of dendritic spines, to investigate the mechanisms underlying these sex differences. Estradiol, which mediates most aspects of masculinization and is the aromatized product of testosterone, increased spinophilin levels in female PN2 rats to that of males. Muscimol, an agonist at GABA(A) receptors, did not affect spinophilin protein levels in either male or female neonates. Kainic acid, an agonist at glutamatergic AMPA/kainate receptors, mimicked the effect of estradiol in females. Antagonizing AMPA/kainate receptors with NBQX prevented the estradiol-induced increase in spinophilin in females but did not affect spinophilin level in males.  相似文献   

9.
Transmission mediated by gamma-aminobutyric acid type A (GABAA) receptors expressed within the medial preoptic area (mPOA) and the ventromedial nucleus (VMN) of the hypothalamus is known to play critical, but contrasting, roles in regulating steroid-dependent sexual behaviours in rats. Previous studies have demonstrated a striking dichotomy in receptor composition between the two regions with regard to gamma, but not alpha or beta, subunit expression. To test if gonadal steroids regulate the expression of the gamma subunit genes within the mPOA and the VMN, in situ hybridization analysis for messenger RNAs encoding the gamma 1, gamma 2Short (gamma 2S) and gamma 2Long (gamma 2L) subunits was done in gonadectomized male and female rats and in gonadally intact females over the oestrous cycle. No significant differences in the expression of the gamma subunit mRNAs were observed in gonadectomized male versus female rats. Significant effects of gonadal state in female rats were observed for gamma 1 mRNA levels in the mPOA and gamma 2L levels in the VMN. These data demonstrate that gonadal hormones exert activational control of expression of GABAA receptor gamma subunit mRNAs and suggest that differences in receptor structure may contribute to the functional modulation of female sexual behaviours mediated by GABAergic transmission in these regions.  相似文献   

10.
Progesterone (P) facilitation of sexual receptivity in rodents has been achieved by intracranial administration to the ventral hypothalamus; the preoptic area; and midbrain areas such as central gray, mesencephalic reticular formation, and ventral tegmental nucleus. In our laboratory, by far the most effective site in rats has been the ventromedial nucleus of the hypothalamus (VMN). However, several reports of sensitivity to P in the midbrain of rats and other rodent species led us to investigate whether stimulation of the ventral midbrain of female rats might contribute to facilitation of sexual receptivity. Ovariectomized Long-Evans rats received one cannula aimed at the VMN, and another aimed at the contralateral ventral mesencephalon. P in both cannulae, following a priming dose of estradiol, caused significantly higher lordosis quotients (LQ) than blank tubes. Controls with bilateral cannulae in the VMN responded when both tubes were filled with P, but did not respond to unilateral VMN P stimulation. P in the VMN and contralateral anterior preoptic area did not result in a greater degree of receptivity than did the empty tubes. These studies indicate that although progesterone stimulation in the midbrain alone is not sufficient to facilitate receptivity in female rats with our methods, the midbrain may play an auxiliary role. P implants in the midbrain appear to facilitate receptivity in the case of VMN implant treatments that are subthreshold for stimulating lordosis. The results are discussed in light of similar studies in other rodent species, and in the context that more than one brain site may be important in the natural stimulation of sexual receptivity by gonadal hormones.  相似文献   

11.
Female sexual behavior is controlled by central estrogenic action in the ventromedial nucleus of the hypothalamus (VMN). This region plays a pivotal role in facilitating sex-related behavior in response to estrogen stimulation via neural activation by several neurotransmitters, including histamine, which participates in this mechanism through its strong neural potentiating action. However, the mechanism through which estrogen signaling is linked to the histamine system in the VMN is unclear. This study was undertaken to investigate the relationship between estrogen and histamine receptor subtype H1 (H1R), which is a potent subtype among histamine receptors in the brain. We show localization of H1R exclusively in the ventrolateral subregion of the female VMN (vl VMN), and not in the dorsomedial subregion. In the vl VMN, abundantly expressed H1R were mostly colocalized with estrogen receptor α. Intriguingly, H1R mRNA levels in the vl VMN were significantly elevated in ovariectomized female rats treated with estrogen benzoate. These data suggest that estrogen can amplify histamine signaling by enhancing H1R expression in the vl VMN. This enhancement of histamine signaling might be functionally important for allowing neural excitation in response to estrogen stimulation of the neural circuit and may serve as an accelerator of female sexual arousal.  相似文献   

12.
Male rats received Silastic implants of the aromatase inhibitor, 1,4,6-androstatriene-3, 17-dione (ATD), on days 2–10 of life. Controls received blank implants. There were no differences in the masculine sexual behavior of ATD and control males when they were tested as gonadally intact adults. In contrast, even without exogenous hormone treatment, nine of 14 ATD males exhibited lordosis behavior, whereas only one of 12 controls did so. In addition, during a sexual preference test in which access was provided to both a sexually receptive female and to a stud male, there was no difference in the proportions of ATD (1114) and control (712) males that copulated with the stimulus female; however, seven of the ATD males also exhibited feminine sexual behavior including some instances of solicitation. Only one of the control males showed any lordosis behavior. In general, all animals spent more time with the stimulus female than with the stud male. At the termination of preference testing, all animals were castrated and then tested twice for feminine sexual behavior under exogenous estradiol benzoate and progesterone. All of the ATD males showed lordosis behavior with a mean lordosis quotient (LQ) of 85; and 11 of the 14 also showed solicitation behavior. Only five of 12 control males exhibited lordosis (X?LQ = 59) and only one showed solicitation behavior. These results indicate that the propensity of males to show feminine sexual behavior can be manipulated independently of the capacity for masculine sexual behavior. Moreover, our results suggest that the process of defeminization may occur primarily postnatally in rats since treatment during that period results in substantial increments in later feminine sexual behavior including solicitation behaviors.  相似文献   

13.
The aromatization hypothesis asserts that testosterone (T) must be aromatized to estradiol (E2) to activate copulatory behavior in the male rat. In support of this hypothesis, the aromatization inhibitor, ATD, has been found to suppress male sexual behavior in T-treated rats. In our experiment, we first replicated this finding by peripherally injecting ATD (15 mg/day) or propylene glycol into T-treated (two 10-mm Silastic capsules) or control castrated male rats. In a second experiment, we bilaterally implanted either ATD-filled or blank cannulae into the medial preoptic area (MPOA) of either T-treated or control castrated male rats. With this more local distribution of ATD, a lesser decline in sexual behavior was found, suggesting that other brain areas are involved in the neurohormonal activation of copulatory behavior in the male rat. To determine whether in vivo ATD interacts with androgen or estrogen receptors, we conducted cell nuclear androgen and estrogen receptor binding assays of hypothalamus, preoptic area, amygdala, and septum following treatment with the combinations of systemic T alone. ATD plus T, ATD alone, and blank control. In all four brain areas binding of T to androgen receptors was significantly decreased in the presence of ATD, suggesting that ATD may act both as an androgen receptor blocker and as an aromatization inhibitor. Competitive binding studies indicated that ATD competes in vitro for cytosol androgen receptors, thus substantiating the in vivo antiandrogenic effects of ATD. Cell nuclear estrogen receptor binding was not significantly increased by exposure to T in the physiological range. No agonistic properties of ATD were observed either behaviorally or biochemically. Thus, an alternative explanation for the inhibitory effects of ATD on male sexual behavior is that ATD prevents T from binding to androgen receptors.  相似文献   

14.
A rise in plasma testosterone (T) levels occurs in male rats during the first 2 hr after birth which is of importance for the process of sexual differentiation. To study the influence of environmental factors on the postnatal T surge and sexual development, newborn male rats were subjected to various treatments immediately after cesarean delivery including cooling, ether anesthesia, and mother-infant separation. In adulthood, the animals were observed for masculine and feminine sexual behavior. Males anesthetized at 0 hr showed elevated levels of feminine sexual behavior and impaired masculine sexual behavior. Pups subjected to cooling or mother-infant separation showed slightly prolonged intromission latencies, but otherwise normal levels of feminine sexual behavior. Significantly elevated plasma T levels were found in intact pups 2 hr after birth but not in pups subjected to cooling or ether anesthesia. Significantly higher levels of T were observed in pups subjected to cooling 4 hr after birth, suggesting a delay of the T surge. The most pronounced impairing effects were seen in the defeminization process, but the masculinization process also is affected by ether anesthesia. It was concluded that ether anesthesia immediately after birth may permanently interfere with the sexual development by suppressing the neonatal T surge.  相似文献   

15.
A female rat will display a repertoire of behaviors during a sexual encounter with a male rat including sexually receptive (the lordosis response) and proceptive (hopping, darting) behaviors. In addition, when given the opportunity, a sexually receptive female rat will approach and withdraw from the male rat, controlling the timing of the receipt of mounts, intromissions, and ejaculations, a behavior known as paced mating behavior. The present experiments tested the hypotheses (1) that progesterone regulates paced mating behavior, and (2) that multiple hormone regimens used previously to induce sexual receptivity have the same effect on paced mating behavior. Paced mating behavior was assessed in sexually receptive ovariectomized female rats after treatment with: (1) estradiol benzoate (EB; 30.0 mg/kg) followed by a range of doses of progesterone (P; 1.0-8.0 mg/kg), (2) two pulses of unesterified estradiol (E2; 2.0 microg/rat) followed by 1.0 mg/rat of P, and (3) EB alone (5.0 microg/rat) for 6 days. No differences in sexual receptivity or in paced mating behavior were observed across doses of P (1.0-8.0 mg/kg). In contrast, the number of hops and darts per min increased with the dose of P administered. E2 + P administration resulted in slightly, but significantly, lower levels of sexual receptivity along with significantly longer contact-return latencies following an intromission in relation to the other treatment conditions. In addition, female rats exhibited fewer hops and darts per min in response to E2 + P than in response to EB + 8.0 mg/kg of P. The administration of EB alone for 6 days induced levels of receptivity and paced mating behavior indistinguishable from EB + P, while eliciting significantly fewer hops and darts per min than the EB + 8.0 mg/kg P treatment condition. Hormone priming regimen had no effect on the percentage of exits displayed during the paced mating tests in any experimental phase. Dose of P had no effect on paced mating behavior in sexually receptive rats. In addition, P does not appear to be necessary for the display of paced mating behavior following long-term treatment with EB. In contrast, the pulsatile administration of E2 + P induced a different pattern of paced mating behavior in sexually receptive rats.  相似文献   

16.
The mechanisms involved in sexual differentiation of the brain remain incompletely defined. In mammals, testosterone secretion by the male during early development permanently alters the capacity of the brain to respond to circulating estrogen. In rats, this change in estrogen responsiveness is associated with a reduction in estrogen receptor (ER) levels in the periventricular region of the preoptic area (PVP), the medial preoptic nucleus (MPO), and the hypothalamic ventromedial nucleus (VMN) of the male. To determine whether these differences represent a response to early testosterone exposure or a secondary consequence of gonadal secretions at puberty, ER levels were measured by quantitative in vitro autoradiography in the brains of rats killed at intervals between 1-10 and 28-49 days of age. As early as 24 hr after birth, ER sex differences in the MPO and PVP are already quantitatively similar to those observed in adulthood. A sex difference in the VMN emerges later, between 5 and 10 days of age. Differences between brain regions are also observed in the rate of ER development after the first week of life, ER concentrations in the PVP and MPO being close to adult levels within 1 day of birth, in contrast to the VMN where they increase markedly between Day 10 and adulthood in both sexes. These observations suggest that changes in ER concentrations may be one of the earliest hallmarks of brain sexual differentiation. Sex differences in ER in different brain regions may, however, be expressed asynchronously, providing a possible mechanism for variation in the duration of "critical periods" for testosterone-mediated organization of specific CNS functions.  相似文献   

17.
Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates the secretion of GnRH into the hypothalamic hypophysial portal system and sensitizes the pituitary for release of hormones that trigger ovulation. Because reproductive behavior is synchronized with GnRH release, the present study was undertaken to determine whether PACAP in the ventromedial nucleus (VMN) plays a role in receptivity. To this end, we used rat and mouse reproductive behavioral models to determine the biological relationship between PACAP and steroid receptor function in females. We provide evidence for the requirement of PACAP in the VMN for progesterone (P)-dependent sexual behavior in estrogen (E)-primed females. We clarify the biological and molecular mechanisms of PACAP activity by showing 1) that inhibition of endogenous PACAP suppresses P receptor (PR)-dependent sexual behavior facilitated by the steroid P or D1-like agonist SKF38393 and 2) that PR, steroid receptor coactivators-1 and -2, and new protein synthesis are essential for ligand independent PACAP-facilitated behavior. These findings are consistent with convergence of PACAP-mediated cellular signals on PR for genomic activation and subsequent behavioral changes. Further, we show that steroids regulate both endogenous PACAP mRNA in the VMN and immunoreactive PACAP in the medial basal hypothalamus and cerebral spinal fluid for ligand-dependent, steroid receptor-dependent receptivity. The present findings delineate a novel, steroid-dependent mechanism within the female hypothalamus by which the neuropeptide PACAP acts as a feed-forward, paracrine, and/or autocrine factor for synchronization of behavior coordinate with hypothalamic control of ovulation.  相似文献   

18.
The objective of this study was to examine the influence of androgen and of the inhibiting of aromatization of androgen to estrogen during the early neonatal period on the development of receptive (lordosis and acceptance of stimulus male mounting attempts) and proceptive (affiliation with and solicitation of stimulus males) feminine sexual behavior. Within 8 hr of birth, male rats were castrated or received subcutaneous implants of the aromatase inhibitor androst-1,4,6-triene-3, 17-dione (ATD) while females received injections of testosterone propionate (TP). At 90 days of age all treated animals and controls were tested for receptive and proceptive feminine sexual behavior. It was found that androgen present neonatally blocked proceptive as well as receptive behavior patterns in adult rats. The proceptive and receptive feminine sexual behavior patterns displayed by adult males deprived of the effects of androgen neonatally either by castration or by treatment with ATD were comparable to those of normal females.  相似文献   

19.
The purpose of this study was to examine the effects of neonatally placed septal lesions (SL) in male, female, and androgenized female rats on reproductive behavior. Animals were castrated as adults and tested for both feminine and masculine sexual behavior. After treatment with estradiol benzoate (EB) alone (2 μg daily for 3 days), only the females with SL which had not been given testosterone propionate (TP) neonatally showed a facilitation of lordosis behavior. Following EB (2 μg for 3 days) plus 0.5 mg progesterone (P), both the lesioned and the sham-operated female groups showed an increase in the display of lordosis in either hormonal condition. All animals were given a pretest for masculine sexual behavior and tested on Days 4, 7, 11, and 15 of daily TP treatment (150 μg/day). There was no effect of the neonatally placed SL on masculine sexual behavior in female rats or in female rats androgenized with 30 μg TP. However, lesioned females treated neonatally with 1 mg TP showed a marginal enhancement of masculine sexual behavior. Male rats given SL neonatally showed a marked enhancement of masculine sexual behavior compared to that of controls. These results suggest that, depending on the neonatal hormone environment, SL selectively increase behavioral sensitivity to hormones. Although neonatally lesioned females show behavioral responses similar to females given SL as adults, male rats given SL neonatally are unique in that they show enhanced masculine sexual behavior whereas males lesioned as adults do not.  相似文献   

20.
Cycloheximide(Cyclo), an inhibitor of protein synthesis by a direct action on protein synthesis at the ribosomal level, was used to reversibly inhibit estrogen-induced sexual receptivity. Cyclo (100 μg per rat) was infused into the preoptic area(POA) of ovariectomized rats at varying times before, simultaneously with, and after 3 μg of subcutaneous estradiol benzoate (EB). All animals received 0.5 mg progesterone (P) 36 hr after EB, and were tested for sexual receptivity 4–6 hr after P. The females were placed with stud males and a lordosis quotient was computed for each female (lordosis quotient = number of lordosis responses/20 mounts by the male × 100). Females receiving Cyclo 6 hr before, simultaneously with, or 12 hr after EB showed significantly lower levels of sexual receptivity when compared to females receiving Cyclo 36 hr before and 18 and 24 hr after EB. When those animals that showed low levels of sexual behavior after Cyclo infusion were reprimed with EB and P 7 days later and presented with a male they showed high levels of sexual receptivity. Thus, the effect of Cyclo was reversible. Only Cyclo infusions into the POA (bilateral) and third ventricle were effective in suppressing sexual behavior. Caudate nucleus, lateral ventricle, and unilateral POA infusions were without effect.The data presented are in agreement with earlier work that utilized actinomycin D to inhibit steroid-induced sexual behavior. Cyclo was found to be less toxic than actinomycin D. All of the available evidence is consistent with the hypothesis that estrogen stimulates RNA and/or protein synthesis in its facilitation of sexual behavior in the female rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号