首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
小金海棠和山定子幼苗根自由空间铁累积量和活化量   总被引:5,自引:0,他引:5  
不同基因型苹果幼苗根系自由空间铁累积量和活化利用能力不同,在缺铁胁迫条件下,抗缺铁的苹果基因型小金海棠幼苗与对缺铁敏感的山定子幼苗相比,根系自由空间铁累积量大,且它对此铁库的活化利用能力强。  相似文献   

2.
缺铁是石灰性土壤常见的植物营养问题之一.禾本科植物种或基因型的植物铁载体分泌能力与耐缺铁有关,提高植物铁载体分泌能力是改良缺铁的土壤上植物铁aestivum L.) 3个杂交种及其4个亲本在缺铁营养液中植物铁载体的分泌及杂种的效应.植物铁载体的分泌率通过根分泌物对新形成的Fe(OH)3的活化能力进行测定, 在缺铁症出现时每隔2、3天测定1次.在缺铁条件下,所有基因型都分泌较多的植物铁载体,并且随缺铁症状的发展分泌量增加.杂交种具有对缺铁更敏感的反馈系统,在缺铁条件下,杂交种比亲本分泌铁载体的速度更快、量更高.通过分析杂交种和亲本的关系,认为可以通过对亲本分泌植物铁载体能力和配合力的选择,利用杂种优势来提高小麦铁的利用效率.  相似文献   

3.
大豆根系质外体铁库的累积及其在缺铁时被利用的规律   总被引:5,自引:0,他引:5  
宋亚娜  王贺 《Acta Botanica Sinica》1999,41(12):1299-1302
采用营养液培养法研究了在不同程度的缺铁条件下,大豆(Glycinemax(L.)Merr.)根系质外体铁库累积与利用的规律,及其在缓解植物缺铁胁迫方面的作用。结果表明,缺铁处理下,大豆根系质外体铁库不断被再利用直至枯竭,根系还原力与过氧经物酶活性呈升降有序的周期性变化,从而一定程度上缓解缺铁胁迫,延缓植株缺铁症状的出现,新叶叶绿素和活性铁含量缓慢下降,而低铁条件下(供应10^-6mol/LFeEC  相似文献   

4.
冬小麦植物铁载体分泌的杂种效应   总被引:1,自引:0,他引:1  
缺铁是石灰性土壤常见的植物营养问题之一。禾本科植物种或基因型的植物铁载体分泌能力与耐缺铁有关 ,提高植物铁载体分泌能力是改良缺铁的土壤上植物铁营养的关键措施之一。在水培条件下分析了冬小麦(TriticumaestivumL .) 3个杂交种及其 4个亲本在缺铁营养液中植物铁载体的分泌及杂种的效应。植物铁载体的分泌率通过根分泌物对新形成的Fe(OH) 3 的活化能力进行测定 ,在缺铁症出现时每隔 2、3天测定 1次。在缺铁条件下 ,所有基因型都分泌较多的植物铁载体 ,并且随缺铁症状的发展分泌量增加。杂交种具有对缺铁更敏感的反馈系统 ,在缺铁条件下 ,杂交种比亲本分泌铁载体的速度更快、量更高。通过分析杂交种和亲本的关系 ,认为可以通过对亲本分泌植物铁载体能力和配合力的选择 ,利用杂种优势来提高小麦铁的利用效率。  相似文献   

5.
以富钾植物烟草为研究对象,烤烟基因型ND202、NC628、G28、NC628×ND202为材料,分析了不同基因型间根系特性及其对矿物钾活化能力的影响差异.结果表明: 根系对矿物钾活化总量越高,烤烟的钾积累量越高.ND202根系发达,富钾能力强,但受环境中钾含量影响较大;NC628根系矿钾活化能力较强,能够显著提高根际土壤钾有效性,但富钾能力较弱;杂交种NC628×ND202较母本具有较高的矿钾活化能力及耐低钾能力,较父本有较高的干物质积累量及富钾能力.因此,利用杂交培育高钾品种是有效的,选育高钾品种时,亲本不仅应具有较高的配合力,更应优先考虑其能否提高根际土壤钾的有效性.  相似文献   

6.
与供铁处理相比,对缺铁敏感的大豆品种“哈83”幼苗在缺铁胁迫条件下根际没有酸化现象,根系对Fe(Ⅲ)的还原能力也没有明显增强。但抗缺铁的大豆品种“8701”幼苗根际则严重酸化,根系对Fe(Ⅲ)的还原能力显著增强;加入能抑制根系H+-ATP酶活性、减弱根际酸化作用的H+-ATP酶抑制剂正钒酸钠会降低根系对Fe(Ⅲ)的还原能力;说明根际酸化与根系还原Fe(Ⅲ)能力相互联系,初步证实根细胞原生质膜H+-ATP酶和缺铁诱导的还原酶相互偶联的假说。  相似文献   

7.
缺铁敏感度不同的大豆品种对缺铁的适应机制   总被引:5,自引:0,他引:5  
与供铁处理相比,对缺铁敏感的大豆品种“哈83”幼苗在缺铁胁迫和上根际没有酸化现象,根系对Fe(Ⅲ)的还原能力也没有明显增强。但抗缺铁的大豆品种“8701”幼苗根际则严重酸化,根系对Fe(Ⅲ)的还原能力显著增强;加入能抑制根系H^+-ATP酶活性、减弱根际酸化作用的H^+-ATP酶抑制剂正钒酸钠会降低根系对Fe(Ⅲ)的还原能力;说明根际酸化与根系还原Fe(Ⅲ)能力相互联系,初步证实根细胞原生质膜H^  相似文献   

8.
盐胁迫对四种基因型冬小麦幼苗Na+、K+吸收和累积的影响   总被引:13,自引:0,他引:13  
以4种不同基因型冬小麦品种为试验材料,研究了盐胁迫下小麦幼苗的生长及Na^+、K^+和Cl^-的吸收、累积规律。结果表明,盐胁迫下小麦吸水困难,幼苗生长受抑;幼苗含水量、生物量及干物质量明显下降;Na^+、Cl^-含量和单株累积量显著增加。K^+含量和单株累积量则明显降低。Na^+/K^+比值随介质中的盐浓度的增加而升高。盐胁迫下各基因型冬小麦幼苗Na^+、K^+和Cl^-的单株累积量及其在地上部分和根系中的含量变化较大,说明小麦根系对Na^+、K^+和Cl^-的吸收存在基因型差异。盐处理下,暖型小麦NR9405对K^+的选择吸收能力强,对Na^+的吸收和累积少,植株体内的K^+浓度较高,Na^+/K^+比值小;幼苗的生物量较大,耐盐性强。冷型小麦RB6对K^+的选择能力差,对Na^+的吸收和累积量大,幼苗的Na^+/K^+比值大,生物量小,耐盐性较差。低盐浓度下,Na^+可作为渗透调节物质维持植物体内渗透平衡。高盐浓度下,Na^+的过度吸收和累积可能是盐害的主要原因。维持体内较低的Na^+水平和Na^+/K^+比值是小麦耐盐性的一个重要特征。  相似文献   

9.
黄瓜、番茄和大豆对缺铁胁迫适应性反应的差异   总被引:8,自引:0,他引:8       下载免费PDF全文
黄瓜、番茄和大豆同是双子叶植物,缺铁诱导的适应性机制都属于机理I,但是它们在适应缺铁胁迫的具体反应上却各有不同。黄瓜、蕃茄缺铁时主要表现为近根尖处膨大、变粗,根毛增多,发育成具有转移细胞特征,并主动向外分泌大量H+,使根系对Fe(Ⅲ)还原能力显著增强,从而提高了根际中铁的有效性。大豆则主要是依靠根尖膨大、变粗,表皮、皮层中积累大量酚类物质来还原难溶性Fe3+化合物。植物基因型之间对缺铁胁迫的这种反应上的差异,给铁高效基因型筛选和遗传育种工作提供了广阔的前景。  相似文献   

10.
潜在性缺铁条件下大豆根系质外体铁库的积累与利用   总被引:1,自引:0,他引:1  
用营养液培养方法研究了在不同供铁条件下,大豆根系质外体铁库的积累与活化利用。结果表明:1、供应难溶性Fe(OH)3,大豆根系质外体铁库呈现出积累与亏缺的节律性变化。与之相应出现根系还原力的降低与升高的节律性变化,但地上部总铁含量和新叶叶绿素含量均无变化。说明了根系质外体铁库的利用,维持了大豆正常生长需铁。2、对缺铁植株脉冲供铁后,大豆根系质外体铁库首先出现明显积累,随后一直处于下降状态,与此同时根系还原力表现出相应的变化,前期下降,后期有波动。地上部总铁含量与新叶叶绿素含量的变化与前两者密切联系,出现升高、降低不同趋势的变化。  相似文献   

11.
When Fe was supplied at 100 micromolar in nutrient solution of pH 7.5, 10 and 1 micromolar levels of the siderophore desferrioxamine B (DFOB), a microbial iron transport compound, significantly (α = 0.05) enhanced growth and reduced chlorosis of an Fe-inefficient variety of sorghum (Sorghum bicolor L.). Although significantly adverse effects resulted when both Fe and desferrioxamine B (DFOB) were added at 100 micromolar as FeDFOB, the plants were relatively healthy when grown with 100 micromolar DFOB plus 200 micromolar Fe. It was concluded that sorghum absorbed Fe from the pool of nonchelated, solubilized Fe, and utilized DFOB as a shuttle agent, in equilibrium with this pool, to transport Fe from finely suspended solid phase Fe particles to the membrane of absorbing root cells.

In contrast to sorghum, absorption of Fe by the Fe-efficient species sunflower (Helianthus annuus L.) was related to the level of FeDFOB and independent of the level of solubilized, nonchelated Fe. The latter was decreased whenever the concentration of DFOB was equal to or greater than the concentration of total Fe. For an Fe concentration of 10 micromolar, significantly larger and greener plants were obtained when DFOB was present at 1, 10, or 100 micromolar than in the absence of DFOB. When grown with 100 micromolar FeDFOB, sunflower plants appeared larger and less chlorotic than those supplied with 100 micromolar Fe and no DFOB. Sunflower apparently was able to utilize FeDFOB more directly than was sorghum. It is suggested that sunflower acquires Fe after binding FeDFOB at membrane sites and/or by producing sufficient reductants in the rhizosphere to reduce biologically significant levels of Fe(III)DFOB to the less stable Fe(II)DFOB.

  相似文献   

12.
Fe accumulation and mobilization in root apoplast of soybean ( Clycine max (L.) Merr. ) seedlings grown under Fe supplement of 10-6 mol/L FeEDTA, or Fe-deficient condition were studied. Under Fe sufficient condition, the content of the root apoplastic Fe pools of soybean seedlings changed in a rhythmic fashion of alternative accumulation and mobilization in every three-day cycling, together with orchestrated rhythmic changes of root Fe ( Ⅲ )-reduction capacity and peroxidase activity. In Fe deficient condition, Fe content in the root apoplastic pools deceased steadily almost to nil, and the root Ye( Ⅲ )-reduction capacity and peroxidase activity, ahhrough under went rhythmic changes but only in 2-day cycling. The results showed an important relation among root apoplastic Ye pools, Fe( Ⅲ )-reduction capacity and peroxidase activity.  相似文献   

13.
We hypothesized that the resistance of Hawkeye (HA) soybean (Glycine max L.) to iron-deficiency induced chlorosis (IDC) is correlated to an ability to accumulate a large pool of extracellular-root iron which can be mobilized to shoots as the plants become iron deficient. Iron in the root apoplast was assayed after efflux from the roots of intact plants in nutrient solution treated with sodium dithionite added under anaerobic conditions. Young seedlings of HA soybean accumulated a significantly larger amount of extracellular iron in their roots than did either IDC-susceptible PI-54619 (PI) soybean or IDC-resistant IS-8001 (IS) sunflower (Helianthus annus L.). Concurrently, HA soybean had much higher concentrations of iron in their shoots than either PI soybean or IS sunflower. The concentration of iron in the root apoplast and in shoots of HA soybean decreased sharply within days after the first measurements of extracellular root iron were made, in both +Fe and −Fe treatments. The accumulation of short-term iron reserves in the root apoplast and translocation of iron in large quantities to the shoot may be important characteristics of IDC resistance in soybeans.  相似文献   

14.
Leaves of Fe deficient sugar beets precultured in complete nutrient solution with Fe(III)EDTA remained green during the first 6 days of –Fe treatment when grown in a small nutrient solution volume (0.5 L/plant). After 3 days of –Fe treatment, roots placed in agar showed enhanced H+ release and ferric reduction at the tips of young laterals where short root hairs and transfer cells had developed. However, the H+ release was too weak to cause a pH decrease of the bulk nutrient solution. Nevertheless, the Fe stress response reactions probably lead to mobilization of Fe from the apoplasmic pool so that chlorosis development was prevented. Slight chlorosis symptoms appeared only after 4 more days of Fe deficiency and the pH of the bulk nutrient solution decreased to pH 4.5 simultaneously with renewed transfer cell formation and subsequent rapid regreening. In the 10 times higher volume of 5 L-Fe solution/plant, laterals with root hairs and transfer cells also showed localized acidification of the agar system. However, the protons released were so diluted that no pH decrease of the bulk solution was measurable. Instead, the leaves showed continuously increasing chlorosis with degenerated chloroplast ultrastructure. It is concluded that root hairs and transfer cells are not only formed under severe chlorosis but, instead, they seem to be an integral part of the adaptive response to latent Fe deficiency.  相似文献   

15.
The role of the leaf apoplast in iron (Fe) uptake into the leaf symplast is insufficiently understood, particularly in relation to the supposed inactivation of Fe in leaves caused by elevated bicarbonate in calcareous soils. It has been supposed that high bicarbonate supply to roots increases the pH of the leaf apoplast which decreases the physiological availability of Fe in leaf tissues. The study reported here has been carried out with sunflower plants grown in nutrient solution and with grapevine plants grown on calcareous soil under field conditions. The data obtained clearly show that the pH of the leaf apoplastic fluid was not affected by high bicarbonate supply in the root medium (nutrient solution and field experiments). The concentrations of total, symplastic and apoplastic Fe were decreased in chlorotic leaves of both sunflower (nutrient solution experiment) and grapevine plants in which leaf expansion was slightly inhibited (field experiment). However, in grapevine showing severe inhibition of leaf growth, total Fe concentration in chlorotic leaves was the same or even higher than in green ones, indicative to the so-called `chlorosis paradox'. The findings do not support the hypothesis of Fe inactivation in the leaf apoplast as the cause of Fe deficiency chlorosis since no increase was found in the relative amount of apoplastic Fe (% of total leaf Fe) either in the leaves of sunflower or grapevine plants. It is concluded that high bicarbonate concentration in the soil solution does not decrease Fe availability in the leaf apoplast.  相似文献   

16.
V. Römheld 《Plant and Soil》1991,130(1-2):127-134
Phytosiderophores (PS) are released in graminaceous species (Gramineae) under iron (Fe) and zinc (Zn) deficiency stress and are of great ecological significance for acquisition of Fe and presumably also of Zn. The potential for release of PS is much higher than reported up to now. Rapid microbial degradation during PS collection from nutrient solution-grown plants is the main cause of this underestimation. Due to spatial separation of PS release and microbial activity in the rhizosphere a much slower degradation of PS can be assumed in soil-grown plants. Concentrations of PS up to molar levels have been calculated under non-sterile conditions in the rhizosphere of Fe-deficient barley plants.Besides Fe, PS mobilize also Zn, Mn and Cu. Despite this unspecific mobilization, PS mobilize appreciable amounts of Fe in calcareous soils and are of significance for chlorosis resistance of graminaceous species. In most species the rate of PS release is high enough to satisfy the Fe demand for optimal growth on calcareous soils.In contrast to the chelates ZnPS and MnPS, FePS are preferentially taken up in comparison with other soluble Fe compounds. In addition, the specific uptake system for FePS (translocator) is regulated exclusively by the Fe nutritional status. Therefore, it seems appropriate to retain the term phytosiderophore instead of phytochelate.  相似文献   

17.
Nikolic M  Römheld V 《Plant physiology》2003,132(3):1303-1314
It has been hypothesized that nitrate (NO(3)(-)) nutrition might induce iron (Fe) deficiency chlorosis by inactivation of Fe in the leaf apoplast (H.U. Kosegarten, B. Hoffmann, K. Mengel [1999] Plant Physiol 121: 1069-1079). To test this hypothesis, sunflower (Helianthus annuus L. cv Farnkasol) plants were grown in nutrient solutions supplied with various nitrogen (N) forms (NO(3)(-), NH(4)(+) and NH(4)NO(3)), with or without pH control by using pH buffers [2-(N-morpholino)ethanesulfonic acid or 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid]. It was shown that high pH in the nutrient solution restricted uptake and shoot translocation of Fe independently of N form and, therefore, induced Fe deficiency chlorosis at low Fe supply [1 micro M ferric ethylenediaminedi(O-hydroxyphenylacetic acid)]. Root NO(3)(-) supply (up to 40 mM) did not affect the relative distribution of Fe between leaf apoplast and symplast at constant low external pH of the root medium. Although perfusion of high pH-buffered solution (7.0) into the leaf apoplast restricted (59)Fe uptake rate as compared with low apoplastic solution pH (5.0 and 6.0, respectively), loading of NO(3)(-) (6 mM) showed no effect on (59)Fe uptake by the symplast of leaf cells. However, high light intensity strongly increased (59)Fe uptake, independently of apoplastic pH or of the presence of NO(3)(-) in the apoplastic solution. Finally, there are no indications in the present study that NO(3)(-) supply to roots results in the postulated inactivation of Fe in the leaf apoplast. It is concluded that NO(3)(-) nutrition results in Fe deficiency chlorosis exclusively by inhibited Fe acquisition by roots due to high pH at the root surface.  相似文献   

18.
Iron availability in plant tissues-iron chlorosis on calcareous soils   总被引:3,自引:1,他引:2  
Konrad Mengel 《Plant and Soil》1994,165(2):275-283
The article describes factors and processes which lead to Fe chlorosis (lime chlorosis) in plants grown on calcareous soils. Such soils may contain high HCO3 - concentrations in their soil solution, they are characterized by a high pH, and they rather tend to accumulate nitrate than ammonium because due to the high pH level ammonium nitrogen is rapidly nitrified and/or even may escape in form of volatile NH3. Hence in these soils plant roots may be exposed to high nitrate and high bicarbonate concentrations. Both anion species are involved in the induction of Fe chlorosis.Physiological processes involved in Fe chlorosis occur in the roots and in the leaves. Even on calcareous soils and even in plants with chlorosis the Fe concentration in the roots is several times higher than the Fe concentration in the leaves. This shows that the Fe availability in the soil is not the critical process leading to chlorosis but rather the Fe uptake from the root apoplast into the cytosol of root cells. This situation applies to dicots as well as to monocots. Iron transport across the plasmamembrane is initiated by FeIII reduction brought about by a plasmalemma located FeIII reductase. Its activity is pH dependent and at alkaline pH supposed to be much depressed. Bicarbonate present in the root apoplast will neutralize the protons pumped out of the cytosol and together with nitrate which is taken up by a H+/nitrate cotransport high pH levels are provided which hamper or even block the FeIII reduction.Frequently chlorotic leaves have higher Fe concentrations than green ones which phenomenon shows that chlorosis on calcareous soils is not only related to Fe uptake by roots and Fe translocation from the roots to the upper plant parts but also dependent on the efficiency of Fe in the leaves. It is hypothesized that also in the leaves FeIII reduction and Fe uptake from the apoplast into the cytosol is affected by nitrate and bicarbonate in an analogous way as this is the case in the roots. This assumption was confirmed by the highly significant negative correlation between the leaf apoplast pH and the degree of iron chlorosis measured as leaf chlorophyll concentration. Depressing leaf apoplast pH by simply spraying chlorotic leaves with an acid led to a regreening of the leaves.  相似文献   

19.
Nikolic  M.  Römheld  V. 《Plant and Soil》1999,215(2):229-237
The mechanism of iron (Fe) uptake from the leaf apoplast into leaf mesophyll cells was studied to evaluate the putative Fe inactivation as a possible cause of Fe deficiency chlorosis. For this purpose, sunflower (Helianthus annuus L.) and faba bean plants (Vicia faba L.) were precultured with varied Fe and bicarbonate (HCO 3 - ) supply in nutrient solution. After 2–3 weeks preculture, FeIII reduction and 59Fe uptake by leaf discs were measured in solutions with Fe supplied as citrate or synthetic chelates in darkness. The data clearly indicate that FeIII reduction is a prerequisite for Fe uptake into leaf cells and that the Fe nutritional status of plants does not affect either process. In addition, varied supply of Fe and HCO 3 - to the root medium during preculture had no effect on pH of the xylem sap and leaf apoplastic fluid. A varied pH of the incubation solution had no significant effect on FeIII reduction and Fe uptake by leaf discs in the physiologically relevant pH range of 5.0–6.0 as measured in the apoplastic leaf fluid. It is concluded that Fe inactivation in the leaf apoplast is not a primary cause of Fe deficiency chlorosis induced by bicarbonate. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
High concentrations of Fe in the roots of plants grown in calcareous soil have been found in a variety of plants, which, nevertheless, show Fe deficiency symptoms. In the present work, energy dispersive X-ray (EDX) analysis at the cellular level has been used to characterize high root Fe concentrations in maize ( Zea mays L.) grown in a calcareous soil in comparison with low root Fe concentrations under acidic soil conditions. Roots were thoroughly washed to remove adhering soil particles from the root surface as far as possible. To avoid any interference with possibly still present soil particles, the excitation beam was focused on radial walls of neighboring cells as well as on the symplast. Under alkaline conditions, high Fe concentrations in the m M range and higher accumulated in the epidermal root apoplast. Symplastic Fe was not detectable. Only traces of Fe were detectable in the apoplast of the cortex parenchyma. Under acidic conditions, apoplastic root Fe concentrations were clearly lower than under alkaline conditions, and no Fe was detectable in the root apoplast by use of EDX analysis. We conclude that, under alkaline conditions, high amounts of Fe are trapped in the epidermal root apoplast (apoplastic Fe inactivation), probably because of a high apoplastic pH and thus restricted translocation towards the root stele and to the upper plant parts. In contrast, on acidic soils Fe translocation towards the root stele and thus Fe supply to the upper plant parts was not impaired. Our findings imply that Fe deficiency on calcareous soils is not caused by restricted acquisition of Fe from the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号