首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenylate and guanylate cyclase activities were confirmed in crude homogenates from rat peritoneal mast cells. Both enzyme activities were associated with the 105, 000 X g particulate fractions, but not detected in the supernatant fractions. The optimal pH for both cyclase activities was 8.2. Mn++ was essentially required for guanylate cylcase activity, while adenylate cyclase activity was observed in the presence of either Mg++ or Mn++. The apparent Km values of adenylate cyclase for Mn++-ATP and Mg++-ATP were 160 μM and 340 μM, respectively, whereas the value of guanylate cyclase for Mn++-GTP was 100 μM. Adenylate cyclase was activated by 10 mM NaF. However, both adenylate and guanylate cyclase activities were neither stimulated nor inhibited by the addition of various kinds of agents which stimulate or inhibit the release of histamine from mast cells.  相似文献   

2.
Sperm from several invertebrates contained guanylate cyclase activity several-hundred-fold greater than that in the most active mammalian tissues; the enzyme was totally particulate. Activity in the presence of Mn2+ was up to several hundred-fold greater than with Mg2+ and was increased 3–10-fold by Triton X-100. Sperm from several vertebrates did not contain detectable guanylate cyclase. Sperm of both invertebrates and vertebrates contained roughly equal amounts of Mn2+-dependent adenylate cyclase activity; in invertebrate sperm, this enzyme was generally several hundred-fold less active than guanylate cyclase. Adenylate cyclase was particulate, was unaffected by fluoride, and was generally greater than 10-fold more active with Mn2+ than with Mg2+. Invertebrate sperm contained phosphodiesterase activities against 1.0 μm cyclic GMP or cyclic AMP in amounts greater than mammalian tissues. Fish sperm, which did not contain guanylate cyclase, had high phosphodiesterase activity with cyclic AMP as substrate but hydrolyzed cyclic GMP at a barely detectable rate. In sea urchin sperm, phosphodiesterase activity against cyclic GMP was largely particulate and was strongly inhibited by 1.0% Triton X-100. In contrast, activity against cyclic AMP was largely soluble and was weakly inhibited by Triton. The cyclic GMP and cyclic AMP contents of sea urchin sperm were in the range of 0.1–1 nmol/g. Sea urchin sperm homogenates possessed protein kinase activity when histone was used as substrate; activities were more sensitive to stimulation by cyclic AMP than by cyclic GMP.5  相似文献   

3.
Adenylate cyclase in the membrane fractions of bovine and rat brains, but not in rat liver plasma membranes, was solubilized by treatment with Fe2+ (10 μM) plus dithiothreitol (5 mM). Solubilization of the enzyme by these agents was completely prevented by simultaneous addition of N,N′-diphenyl-p-phenylenediamine (DPPD), an inhibitor of lipid peroxidation. Ascorbic acid also solubilized the enzyme from the brain membranes. Lipid peroxidation of the brain membranes was characterized by a selective loss of phosphatidylethanolamine. Solubilization of membrane-bound enzymes by Fe2+ plus dithiothreitol was not specific for adenylate cyclase, because phosphodiesterase, thiaminediphosphatase and many other proteins were also solubilized. Solubilized adenylate cyclase had a high specific activity and was not activated by either NaF, 5′-guanylyl imidodiphosphate (Gpp[NH]p) or calmodulin. These results suggested that lipid peroxidation of the brain membranes significantly solubilized adenylate cyclase of high specific activity.  相似文献   

4.
Adenylate cyclase of the sea anemoneAnthopleura elegantissima was found to be associated with the heavy particulate fraction of the cell and to be activated by NaF and 2-mercaptoethanol. Reduced glutathione, which elicits the ciliary swallowing response during feeding, also activated adenylate cyclase in particles from the oral disc and pharynx. The GSH effect was dependent on homogenization procedure, whereas the NaF and 2-mercaptoethanol activation was not. The activation of adenylate cyclase from the oral disc and pharynx by GSH was correlated with increased Ca2+ binding to the particulate fraction. When activation by GSH was abolished by mechanical homogenization, no increasea in Ca2+ binding was observed in the presence of GSH. It is suggested that chemoreception for the swallowing response of this organism is mediated by cyclic AMP control of Ca2+ distribution in the cell.  相似文献   

5.
Adenylate cyclase, guanylate cyclase, and the cyclic nucleotide phosphodiesterases of Cylindrotheca fusiformis were characterized in crude and partially purified preparations. Both cyclases were membrane-bound and required Mn2+ for activity, though Mg2+ gave 50% activity with adenylate cyclase. Properties of adenylate cyclase were similar to those of higher eukaryotic cyclases in some respects, and in other respects were like lower eukaryotic cyclases. Guanylate cyclase was typical of other lower eukaryotic enzymes.

Two phosphodiesterase activities were found, one selective for cyclic AMP, the other for cyclic GMP. The 5′-nucleoside monophosphate was the major product of both activities and each of the enzymes had distinctive divalent cation requirements, pH optima, and kinetic parameters. Both phosphodiesterases were similar to those of other lower eukaryotes with one notable difference: the cyclic AMP enzyme was inhibited by calcium.

Changes in the cyclic nucleotide levels were quantitated in light-dark and silicon-starvation synchronized cultures using a more sensitive radioimmunoassay than used in a previously published study (Borowitzka and Volcani 1977 Arch Microbiol 112: 147-152). Contrary to the previous report, the cyclic GMP level did not change significantly in either synchrony. The cyclic AMP level increased dramatically very early in the period of DNA replication with the peak cyclic AMP accumulation substantially preceding that of DNA synthesis in both synchronies. There was no significant change in the activity of either cyclase or either phosphodiesterase during either synchrony. Thus, the mechanism for the rise in cAMP level remains unclear.

  相似文献   

6.
Germ cells from the mouse testis possess both a particulate and a soluble form of adenylate cyclase (EC 4.6.1.1). Germ cell adenylate cyclase activity is Mn++ dependent and is not stimulable with either NaF or 5′guanylylimidodiphosphate. Both particulate and soluble adenylate cyclase specific activities increase as germ cells progress through their differentiative stages, but epididymal spermatozoa seem to lack a significant amount of soluble activity. Somatic cells of the seminiferous tubule possess only a membrane bound activity, which is Mg++ and Mn++ dependent, NaF and 5′guanylylimidodiphosphate stimulable. It is suggested that germ cell adenylate cyclases represent incomplete forms of the enzyme, devoid of regulative subunits.  相似文献   

7.
Nuclei from purified human peripheral lymphocytes were prepared by incubations with Triton X-100 to disrupt the cells, followed by sucrose-density gradient centrifugation. The nuclei were pure as judged by phase-contrast microscopy and had low contents of non-nuclear marker enzymes. In addition, nuclei prepared from lymphocytes surface-labelled with 125I had only 2-7% of the radioactivity bound to intact lymphocytes. At 3.3 mM-Ca2+ and 100 micronM-ATP a fluoride-sensitive adenylate cyclase was demonstrated in nuclei prepared in 0.2% Triton X-100 or 0.33% Triton X-100. There was linear accumulation of cyclic AMP for 10 min in both preparations. The apparent Km for ATP was 90 micronM. Adenylate cyclase activity was augmented by 1.0 mM-Mn2+ and inhibited at higher concentrations. Ca2+ showed two peaks of stimulation, at 1.0-2.5 mM- and above 10 mM-Ca2+. Mg2+ was inhibitory at all concentrations. EDTA OR EGTA only slightly decreased adenylate cyclase activity, suggesting that another metal ion may be necessary for activity. Adenylate cyclase activity was stimulated by 10mM-isoproterenol and 10 micronM-adrenaline in the presence of a phosphodiesterase inhibitor. Phytohaemagglutinin and prostaglandin E1 alone or in combination with isoproterenol had no effect on nuclear adenylate cyclase activity in either nuclei preparation. These results indicate that human lymphocyte nuclei contain one or several adenylate cyclases which differ from adenylate cyclases found in other subcellular fractions of these cells with regard to their bivalentcation requirements and responsiveness to pharmacological agents.  相似文献   

8.
Transient changes in cyclic AMP levels accompany the light-growth response of the sporangiophore of Phycomyces blakesleeanus. Furthermore growth is regulated by endogenous hormones. Since adenylate cyclase may perform a role in these events, some properties of the enzyme from the sporangiophores of Phycomyces blakesleeanus are reported here. The enzyme is mostly particulate and activity is dependent on a divalent cation possibly Mg2+; Mn2+ and Ca2+ are inhibitory. Its Km is 0.5 mM and the pH optimum is 7.8. Low levels of GTP markedly enhance activity. Nueleoside triphosphates, including ATP at high concentrations, are inhibitory while AMP and ADP and to a lesser extent IMP increase activity. Ouabain, NaF, and alloxan also inhibit Phycomyces cyclase. Pyruvate, imidazole, nucleoside monophosphates other than AMP and IMP, histamine, glucagon, octopamine, γ-aminobutyric acid and norepinephrine have little or no effect. However, high concentrations of epinephrine and dopamine tripled activity. The effect of dopamine was shown to be saturable. Adenylate cyclase extracted in the dark was significantly activated upon simultaneous exposure to light and substrate. An inference is made that sensory transduction in Phycomyces may involve adenylate cyclase, although the interaction may or may not be a direct one.  相似文献   

9.
10.
Thyroid homogenates and thyroid plasma membranes were prepared from human thyroid and the effects of thyroid-stimulating hormone (thyrotropin), NaF, and prostaglandins E1 and E2 on adenyl cyclase activity in these preparations were studied. The basal level of adenyl cyclase activity in plasma membranes was 5–8 times greater than that of the original homogenates. Adenyl cyclase activity in plasma membranes was stimulated 4.7-fold by 100 munits/ml of thyrotropin and 5-fold by 10 mM of NaF, but the activity in the homogenates was only stimulated 2-fold by either thyrotropin or NaF. Prostaglandin E1 (10?6?10?3 M) and prostaglandin E2 (10?7?10?4 M) failed to stimulate adenyl cyclase activity in plasma membranes, but they did stimulate adenyl cyclase activity in the homogenates. A marked stimulatory effect of prostaglandin E2 (10?5 M) on adenyl cyclase activity in plasma membranes resumed in the presence of GTP (10?7?10?4 M), although GTP itself only slightly stimulated enzyme activity. GDP and GMP were also effective in this respect, although their potencies varied from compound to compound. GTP potentiated slightly the action of thyrotropin on adenyl cyclase in plasma membranes, but it significantly depressed an increase of enzyme activity produced by NaF. Since GTP did not affect the ATP-regenerating system, it seems that GTP, GDP or GMP was required for the manifestation of prostaglandin E2 action on adenyl cyclases of human thyroid plasma membranes.  相似文献   

11.
1. The activities of the enzymes involved in the metabolism of cyclic nucleotides were studied in sarcolemma prepared front guinea-pig heart ventricle; the enzyme activities reported here were linear under the assay conditions. 2. Adenylate cyclase was maximally activated by 3mM-NaF; NaF increased the Km for ATP (from 0.042 to 0.19 mM) but decreased the Ka for Mg2+ (from 2.33 to 0.9 mM). In the presence of saturating Mg2+ (15 mM), Mn2+ enhanced adenylate cyclase, whereas Co2+ was inhibitory. beta-Adrenergic amines (10-50 muM) stimulated adenylate cyclase (38+/-2%). When added to the assay mixture, guanyl nucleotides (GTP and its analogue, guanylyl imidophosphate) stimulated basal enzyme activity and enhanced the stimulation by isoproterenol. By contrast, preincubation of sarcolemma with guanylyl imidodiphosphate stimulated the formation of an 'activated' form of the enzyme, which did not reveal increased hormonal sensitivity. 3. The guanylate cyclase present in the membranes as well as in the Triton X-100-solubilized extract of membranes exhibited a Ka for Mn 2+ of 0.3 mM; Mn2+ in excess of GTP was required for maximal activity. Solubilized guanylate cyclase was activated by Mg2+ only in the presence of low Mn2+ concentrations; Ca2+ was inhibitory both in the absence and presence of low Mn2+. Acetylcholine as well as carbamolycholine stimulated membrane-bound guanylate cyclase. 4. Cylic nucleotide phosphodiesterase activities of sarcolemma exhibited both high-and low-Km forms with cyclic AMP and with cyclic GMP as substrate. Ca2+ ions increased the Vmax. of the cyclic GMP-dependent enzyme.  相似文献   

12.
The role of cyclic nucleotides in the regulation of lymphocyte growth and differentiation remains controversial, as an adequate characterization of the key enzymes, adenylate cyclase and guanylate cyclase, in the plasma membrane of lymphocytes is still lacking. In this study, calf thymus lymphocytes were disrupted by nitrogen cavitation and various cellular fractions were isolated by differential centrifugation and subsequent sucrose density ultracentrifugation. As revealed by the chemical composition and the activities of some marker enzymes, the plasma membrane fraction proved to be highly purified. Nucleotide cyclases were present in the plasma membranes in high specific activities, basal activities of adenylate cyclase being 13.7 pmol/mg protein per min and 34.0 pmol/mg protein per min for the guanylate cyclase, respectively. Adenylate cyclase could be stimulated by various effectors added directly to the enzyme assay, including NaF, GTP, 5'-guanylyl imidodiphosphate, Mn2+ and molybdate. Addition of beta-adrenergic agonists only showed small stimulating effects on the enzyme activity in isolated plasma membranes. Basal activity of adenylate cyclase as well as activities stimulated by NaF or 5'-guanylyl imidodiphosphate exhibited regular Michaelis-Menten kinetics. Activation by both agents only marginally affected the Km values, but largely increased Vmax. The activity of the plasma membrane-bound guanylate cyclase was about 10-fold enhanced by the nonionic detergent Triton X-100 and high concentrations of lysophosphatidylcholine, but was slightly decreased upon addition of the alpha-cholinergic agonist carbachol. Basal guanylate cyclase indicated to be an allosteric enzyme, as analyzed by the Hill equation with an apparent Hill coefficient close to 2. In contrast, Triton X-100 solubilized enzyme showed regular substrate kinetics with increasing Vmax but unaffected Km values. Thus the lymphocyte plasma membrane contains both adenylate cyclase and guanylate cyclase at high specific activities, with properties characteristic for hormonally stimulated enzymes.  相似文献   

13.
Abstract— Mn2+ caused an 8-to 16-fold stimulation of adenylate cyclase activity in homogenates as well as synaptosomcs. isolated synaptic membranes, and slices prepared from rat brain. The stimulation occurred at low concentrations of Mn2+. with a doubling of activity at 50-60μM. and was unaffected by a 60-fold excess of Mg2+. Whether or not Mg2+ was added, inclusion of a low concentration of Mn2+ reduced, but did not prevent the stimulation of adenylate cyclase caused by dopaminc in homogenates of corpus striatum. In contrast, Ca2+. at a concentration that had little effect on basal cyclase activity, completely prevented the stimulation by dopamine. The increase of cyclase activity produced by Mn2+ in brain homogenates was potentiated by F?. Other ions, notably Hg2+. Pb2+. Cu2+ and Zn2+. in order of decreasing potency, inhibited both basal and Mn2--stimulated cyclase activity. It is proposed that the effect of Mn2+ on adenylate cyclase activity may involve only the catalytic subunit of the enzyme, and that the mechanism is different from that by which either dopamine or F? stimulates the enzyme. These results suggest that the effects of low concentrations of Mn2+ and certain other divalent metal ions on adenylate cyclase activity may be involved in their neuropsychiatrie or other toxic effects, and that such ions may also participate in normal physiological mechanisms involving cyclic nucleotides.  相似文献   

14.
Guanylate cyclase (E.C. 4.6.1.2.) was investigated in the accessory reproductive gland of the male house cricket, Acheta domesticus, which is known to accumulate exceptionally high levels of guanosine 3′,5′-cyclic monophosphate (cyclic GMP). Accessory gland guanylate cyclase activity was linear with time for at least one hour, and with enzyme concentration to about 5 mg soluble protein per ml. Activity was dependent on Mn2+ and was maximal at pH 7.3 to 8.0. Sodium fluoride had no effect on activity, but sodium azide was slightly stimulatory. About 80% of the activity was sedimentable at 16,000 g, and both soluble and particulate activities were increased slightly in the presence of Triton X-100. Kinetic analysis indicated half-maximal velocity at 85 μM GTP in the presence of excess Mn2+, and reciprocal plots were concave upward. Changes in activity during maturation of the gland were small, and did not provide evidence for a regulatory role of guanylate cyclase in the accumulation of accessory gland cyclic GMP. The regulation and rôle of cyclic GMP in the accessory gland are discussed.  相似文献   

15.
1. The cyclic AMP phosphodiesterase in homogenates of the submaxillary gland and pancreas was found to be associated mainly with the 300,000 times g supernatant fraction. A Lineweaver-Burk plot showed a high-affinity (Km app. = 1.6 muM) and a low-affinity (Km app. greater than 100muM) component for the cyclic AMP substrate. The enzyme was magnesium dependent, and strongly inhibited by papaverine, theophylline and caffeine. Cyclic GMP inhibited cyclic AMP phosphodiesterase, but only in concentrations greatly exceeding that of the cyclic AMP. Calcium did not alter the activity of the enzyme. The activity of the submaxillary cyclic AMP phosphodiesterase was not influenced by noradrenaline, dopamine, histamine, 5-hydroxytryptamine or gamma-amino butyric acid, and that of the pancreatic enzyme by acetylcholine, pancreozymin or secretin. 2. Adenylate cyclases from guinea-pig submaxillary gland and cat pancreas are particulate enzymes. The highest specific activity was recovered from the 1500 times g pellet. Guineo-pig submaxillary adenylate cyclase was activated by fluoride, noradrenaline, isoprenaline and adrenaline. The noradrenaline activation was blocked by the beta-adrenoceptor blocker, propranolol, but not by the alphs-adrenoceptor blocker, phentolamine. Neither acetylcholine nor carbachol had any effect on the adenylate cyclase activity. The apparent Km value for the 10- minus 4 M noradrenaline activated adenylate cyclase activity was completely aboliched by 5 mM calcium. Cat pancreatic adenylate cyclase was clearly and consistently activated by secretin, but not by pancreozymin or carbachol.  相似文献   

16.
Bovine lung soluble guanylate cyclase was purified to apparent homogeneity in a form that was deficient in heme. Heme-deficient guanylate cyclase was rapidly and easily reconstituted with heme by reacting enzyme with hematin in the presence of excess dithiothreitol, followed by removal of unbound heme by gel filtration. Bound heme was verified spectrally and NO shifted the absorbance maximum in a manner characteristic of other hemoproteins. Heme-deficient and heme-reconstituted guanylate cyclase were compared with enzyme that had completely retained heme during purification. NO and S-nitroso-N-acetylpenicillamine only marginally activated heme-deficient guanylate cyclase but markedly activated both heme-reconstituted and heme-containg forms of the enzyme. Restoration of marked activation of heme-deficient guanylate cyclase was accomplished by including 1 μM hematin in enzyme reaction mixtures containing dithiothreitol. Preformed NO-heme activated all forms of guanylate cyclase in the absence of additional heme. Guanylate cyclase activation was observed in the presence of either MgGTP or MnGTP, although the magnitude of enzyme activation was consistently greater with MgGTP. The apparent Km for GTP in the presence of excess Mn2+ or Mg2+ was 10 μM and 85–120 μM, respectively, for unactivated guanylate cyclase. The apparent Km for GTP in the presence of Mn2+ was not altered but the Km in the presence of Mg2+ was lowered to 58 μM with activated enzyme. Maximal velocities were increased by enzyme activators in the presence of either Mg2+ or Mn2+. The data reported in this study indicate that purified guanylate cyclase binds heme and the latter is required for enzyme activation by NO nitroso compounds.  相似文献   

17.
Guanylate cyclase activity was determined in a 1000g particulate fraction derived from rabbit heart homogenates using Mg2+ or Mn2+ as sole cation in the presence and absence of Triton X-100. With Mg2+, very little guanylate cyclase activity could be detected in the original particulate fraction assayed with or without Triton, or in the particulate fraction treated with varying concentrations of Triton (detergent-treated mixture) prior to enzyme assay. However, the detergent-solubilized supernatants as well as the detergent-insoluble residues (pellets) derived from detergent-treated mixtures possessed appreciable Mg2+-supported enzyme activity. With Mn2+, significant enzyme activity was detectable in the original particulate fraction assayed without Triton. Much higher activity was seen in particulate fraction assayed with Triton and in detergent-treated mixtures; the supernatants but not the pellets derived from detergent-treated mixtures possessed even greater activity. The sum of enzyme activity in pellet and supernatant fractions greatly exceeded that of the mixture. When the pellets and supernatants derived from detergenttreated mixtures were recombined, measured enzyme activities were similar to those of the original mixture. With Mg2+ or Mn2+, the specific activity of guanylate cyclase in pellet and supernatant fractions varied considerably depending on the concentration of Triton used for treatment of the particulate fraction; treatment with low concentrations of Triton (0.2–0.7 μmol/mg protein) gave supernatants showing high activity whereas treatment with relatively greater concentrations of the detergent (>0.7 μmol/mg protein) gave pellets showing high activity. The relative distribution of guanylate cyclase in pellet and supernatant fractions expressed as a function of Triton concentration during treatment (of the particulate fraction) showed that 50 to 80% of the recovered enzyme activity remained in supernatants at low detergent concentrations whereas 50 to 80% of the recovered activity resided in the pellets at higher detergent concentrations. Inclusion of excess Triton in the enzyme assay medium did not alter the specific activity profiles and the relative distribution patterns of the cyclase in pellet versus supernatant fractions. The results demonstrate the inherent potential of cardiac particulate guanylate cyclase to utilize Mg2+ in catalyzing the synthesis of cyclic GMP. However, it appears that some factor(s) endogenous to the cardiac particulate fraction severely impairs the expression of Mg2+-dependent activity; Mn2+-dependent activity is also affected by such factor(s) but apparently less severely. Further, the results suggest that previously reported activities of cardiac particulate guanylate cyclase, despite being assayed with Mn2+ and in the presence of Triton X-100, represent underestimation of what otherwise appears to be a highly active enzyme system capable of utilizing physiologically relevant divalent cation such as Mg2+.  相似文献   

18.
Crude preparations of cyclic adenosine 3′, 5′-monophosphate phosphodiesterase were activated 1.5 to 2 fold by incubation with ATP, Mg2+ and cyclic AMP in a reaction which was both, time and temperature dependent. Cyclic AMP phosphodiesterase remained in an activated state upon filtration of the enzymatic preparation through Sephadex G-25 and ion-exchange chromatography. Activation of the enzyme in the presence of [γ 32P]ATP resulted in a significant amount of [32P] protein-bound radioactivity. Reversible deactivation of cyclic AMP phosphodiesterase was enhanced by Mg2+ and was accompanied by the release of [32P] protein bound radioactivity. The evidence is consistent with a mechanism for controlling cyclic AMP phosphodiesterase through phosphorylation-dephosphorylation sequence.  相似文献   

19.
Adenylate cyclase activity was estimated inhomogenates of rat islets of Langerhans. by measurement of the conversion of [α-32P]ATP to adenosine cyclic 3′,5′-[32P]monophosphate. Islet cell adenyulate cyclase activity was stimulated by the addition to the homogenates of glucagon, fluoride, prostaglandins E1 or E2 GTP or CTP although not by UTP, TTP, GDP, or GMP. Adrenaline, noradrenaline and isoproterenol were each found to inhibit the activity, the order of potency at a concentration of 10?4 M being adrenaline > noradrenaline > isoproterenol. The effects of these agents were not altered by β-blackade with propanolol but could be preventived by α-blockade with phenoxybenzamine. The following agents, present at concentrations previously shown to increase rates of insulin secretion from rat islets of Langerhans, were ineffective in altering adenylate cyclase activity when tested in the presence or absence of 0.1 mM GTP: glucose, glibenclamide, xylitol leucine, arginine, or potassium. These results suggest that the activity of adenylate cyclase in the B cells of rat islets of Langerhans may play an important role in mediating the direct effects of hormones and adrenergic agents on insulin release, although the short term effects of substrates such as glucose or amino acids on the release process do not appear to be mediated through alterations in the activity of this enzyme.  相似文献   

20.
The purpose of this study was to elucidate the mechanisms by which arachidonic acid activates guanylate cyclase from guinea pig lung. Guanylate cyclase activities in both homogenate and soluble fractions of lung were examined. Guanylate cyclase activity was determined by measuring formation of [32-P] cyclic GMP from α-[32-P] GTP in the presence of Mn2+, a phosphodiesterase inhibitor and a suitable GTP regenerating system. Arachidonic acid, and to a slight extent dihomo-γ-linolenic acid, activated guanylate cyclase in homogenate but not soluble fractions. Similarly, phospholipase A2 activated homogenate but not soluble guanylate cyclase. Methyl arachidonate, linolenic, linoleic and oleic acids did not activate guanylate cyclase in either fraction. High concentrations of indomethacin, meclofenamate and aspirin inhibited activation of homogenate guanylate cyclase by arachidonic acid and phospholipase A2, without altering basal enzyme activity. These data suggested that a product of cyclooxygenase activity, present in the microsomal fraction, may have accounted for the capacity of arachidonic acid to activate homogenate guanylate cyclase. This view was supported by the findings that addition of the microsomal fraction to the soluble fraction enabled arachidonic acid to activate soluble guanylate cyclase, an effect which was reduced with cyclooxygenase inhibitors. Lipoxygenase activated guanylate cyclase in homogenate and soluble fractions. Arachidonic acid potentiated the activation of soluble guanylate cyclase by lipoxygenase, and this effect was inhibited with nordihydroguaiaretic acid, 1-phenyl-3-pyrazolidone and hydroquinone, but not with high concentrations of indomethacin, meclofenamate or aspirin. These data suggest that arachidonic acid activates guinea pig lung guanylate cyclase indirectly, via two independent mechanisms, one involving the microsomal fraction and the other involving lipoxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号