首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary The UV-B radiation (e.g. 337 nm) induced blue fluorescence (BF) and red chlorophyll fluorescence spectra (RF) of green leaves from plants with different leaf structure were determined and the possible nature and candidates of the blue fluorescence emission investigated. The blue fluorescence BF is characterized by a main maximum in the 450 nm region and in most cases by a second maximum/shoulder in the 530 nm region. The latter has been termed green fluorescence GF. The red chlorophyll fluorescence RF, in turn, exhibits two maxima in the 690 and 730 nm region. In general, the intensity of BF, GF and RF emission is significantly higher in the lower than the upper leaf side. The ratio of BF to RF emission (F450/F690) seems to vary from plant species to plant species. BF and GF emission spectra appear to be a mixed signal composed of the fluorescence emission of several substances of the plant vacuole and cell wall, which may primarily arise in the epidermis. Leaves with removed epidermis and chlorophyll-free leaves, however, still exhibit a BF and GF emission. Candidates for the blue fluorescence emission ( max near 450 nm) are phenolic substances such as chlorogenic acid, caffeic acid, coumarins (aesculetin, scopoletin), stilbenes (t-stilbene, rhaponticin), the spectra of which are shown. GF emission ( max near 530 nm) seems to be caused by substances like the alkaloid berberine and quercetin. Riboflavine, NADPH and phyllohydroquinoneK 1 seem to contribute little to the BF and GF emission as compared to the other plant compounds. Purified natural-carotene does not exhibit any blue fluorescence.  相似文献   

2.
Hoechst-33342-stained chicken thymocytes were analysed simultaneously on two fluorescence wavelength bands (green and violet) in our custom-built flow cytometer, and two major subsets were identified. In one subset (33% of the total) the emission spectrum remained constant with time, with little change in the respective green and violet fluorescence intensities. In the other subset (42% of the total) the green fluorescence increased during staining, resulting in a considerable change in the green-to-violet ratio, due to a change in the "shape" of the fluorescence emission with time. The data indicate that two binding sites, or two types of binding at the same site, exist in DNA for this dye and that these have different binding energies and, consequently, different fluorescence emission properties.  相似文献   

3.
Summary Lens fibers are coupled by communicating junctions, clusters of cell-to-cell channels composed of a 28-kD intrinsic membrane protein (MIP26). Evidence suggests that these and other cell-to-cell channels may close as a result of protein conformational change induced by activated calmodulin. To test the validity of this hypothesis, we have measured the intrinsic fluorescence emission and far-ultraviolet circular dichroism of the isolated components MIP26, calmodulin, and the MIP26-calmodulin complex, both in the absence and presence of Ca++, an uncoupling agent. MIP26 shows no change in either, fluorescence emission (primarily tryptophan and a measure of aromatic constitutivity) or in its circular dichroism spectrum. Calmodulin exhibits a 32% increase in fluorescence emission intensity with constant emission wavelength, entirely tyrosine, and a 44% increase in -helicity, changes previously described. The MIP26-calmodulin complex, on the other hand, displays fluorescence emission and circular dichroism spectra which are slightly different from the sum of the two single components, but shows marked differences in both spectra upon Ca++ addition. This indicates a change in conformation in one or both of the two components. Spectral changes include a 5-nm blue-shift, a 50% increase in tyrosine fluorescene emission, a 25% decrease in tryptophan fluorescence emission, and a 5% increase in the -helicity of the complex. These changes also occur about an isosbestic point and are fully reversible. These data provide additional evidence that activated calmodulin may modulate gating of cell-to-cell channels by affecting channel protein.  相似文献   

4.
5.
Summary This communication describes a simple method for recording fluorescence emission spectra of cytological preparations using a conventional fluorescence spectrophotometer. The emission characteristics of in situ complexes between some basic fluorochromes (DAPI, 33258 Hoechst, acridine orange, pyronin Y, and ethidium bromide) and nucleic acid containing structures from smears of chicken blood and Ehrlich tumor cells (chromatin, basophilic cytoplasm) are briefly described.  相似文献   

6.
After staining with Mayer's haematoxylin and eosin Y, paraffin sections of grasshopper and mouse testis were analysed by both transmitted light and fluorescence microscopy. Under violet-blue (436 nm) light excitation, a bright green emission was observed in all eosinophilic structures. Meiotic spindles (fibres and poles), mitochondrial aggregates, centriolar adjuncts in grasshopper spermatids, the basal lamina, flagellar bundles and remaining cytoplasmic droplets in the lumen of seminiferous tubules showed the most striking fluorescence induced by eosin Y. No emission was found in these structures after haemalum staining. Fluorescent microtubular components also revealed a positive immunoperoxidase reaction for -tubulin. All fixation and embedding procedures (Bouin, Zenker, formaldehyde alone or followed by dichromate or glutaraldehyde, freeze-substitution) were suitable for observation by fluorescence microscopy. Acetylation, deamination, and prolonged washing of stained sections with water, salt solution or ethanol strongly reduced eosin Y fluorescence, while it slightly increased after methylation. These results show that routine haematoxylin-eosin stained tissue sections can be routinely analysed by fluorescence microscopy. The emission of eosin Y allows easy and precise recognition of eosinophilic structures, which are poorly visible under bright field illumination.  相似文献   

7.
An abnormal fluorescence emission of protein was observed in the 33-kDa protein which is one component of the three extrinsic proteins in spinach photosystem II particle (PS II). This protein contains one tryptophan and eight tyrosine residues, belonging to a "B type protein". It was found that the 33-kDa protein fluorescence is very different from most B type proteins containing both tryptophan and tyrosine residues. For most B type proteins studied so far, the fluorescence emission is dominated by the tryptophan emission, with the tyrosine emission hardly being detected when excited at 280 nm. However, for the present 33-kDa protein, both tyrosine and tryptophan fluorescence emissions were observed, the fluorescence emission being dominated by the tyrosine residue emission upon a 280 nm excitation. The maximum emission wavelength of the 33-kDa protein tryptophan fluorescence was at 317 nm, indicating that the single tryptophan residue is buried in a very strong hydrophobic region. Such a strong hydrophobic environment is rarely observed in proteins when using tryptophan fluorescence experiments. All parameters of the protein tryptophan fluorescence such as quantum yield, fluorescence decay, and absorption spectrum including the fourth derivative spectrum were explored both in the native and pressure-denatured forms.  相似文献   

8.
In this study, the spectroscopic features and microscopical applications of the fluorescent daunomycin-Al3+ complex have been analyzed. In the presence of Al3+, the absorption spectrum of daunomycin showed a deep bathochromic shift and new peaks at 529 and 566nm, whereas the fluorescence emission was considerably modified. The emission of daunomycin alone (peak at 560nm under optimal excitation at 470nm) decreased continuously from 0.5 to 24h after addition of Al3+ ions, and a new emission peak appeared at 580nm (optimal excitation at 530nm). Under the fluorescence microscope using green exciting light, nuclei from chicken blood smears and paraffin sections of rat embryos stained with daunomycin showed a weak emission, which greatly increased after treatment with Al3+ ions. The bright and stable fluorescence of chromatin DNA induced by daunomycin-Al3+ could be a valuable labelling method in fluorescence microscopy and DNA cytochemistry.  相似文献   

9.
In an effort to understand the role of environmental metal ions in the interaction of charged pesticides with humic substances, a fluorescence study of the interaction of the widely-used herbicide 2,4-dichlorophenoxyacetic acid (DCPAA) with Al(3+) and Pd(2+) and Suwannee River fulvic acid (SRFA) was undertaken. Initial fluorescence experiments on binary solutions clearly indicated that both Al(3+) and Pd(2+) strongly interact with both SRFA and DCPAA when alone in solution with the metal ion. Titrations of SRFA with Al(3+) at pH values of 4.0, 3.0 and 2.0 revealed decreased degrees of fluorescence emission enhancement (at lambda(emission, max)=424 nm) with decreasing pH, consistent with the expected loss of rigidity in the SRFA-Al(3+) complexes formed as pH is lowered. In contrast, titrations of SRFA with Pd(2+) at all of these pH values resulted in significant fluorescence quenching. Al(3+) additions to solutions of DCPAA at pH values above the pK(a) (2.64) of DCPAA resulted primarily in significant changes in the wavelength of maximum emission (without significant quenching or enhancement of emission intensity), while Pd(2+) additions to DCPAA solutions resulted primarily in very significant fluorescence quenching. The DCPAA fluorescence results strongly support the formation of an Al(3+)-DCPAA complex at pH values above the pK(a) of DCPAA. The fluorescence results obtained for solutions of Pd(2+) and DCPAA are best explained by a collisional quenching mechanism, that is, energy transfer from excited DCPAA molecules to Pd(2+) following the collision of these two species in solution. Excitation-emission matrix plots obtained on ternary solutions (at environmentally-relevant pH 4.0) containing SRFA, DCPAA and metal ions (i.e., either Al(3+) or Pd(2+)) provides evidence (especially for systems containing Al(3+)) for the existence of ternary complexes between fulvic acid species, the herbicide DCPAA and metal ion, suggesting (at least at pH 4.0, where the predominant DCPAA species is negatively-charged) that metal ions may function to "bridge" negatively-charged fulvic acids to negatively-charged pesticides.  相似文献   

10.
Binding of 1,8-anilinonaphthalene sulfonate (1,8-ANS) with native human oxyhemoglobin (Hb) in 50 mM potassium phosphate buffer (pH 7.4) was studied by steady state fluorescence spectroscopy and by laser spectrofluorimetry with subnanosecond time resolution. The distribution of fluorescence decay times and parameters of two- and three-exponential deconvolution of the fluorescence kinetics of 1,8-ANS in Hb solution demonstrate that the emission at wavelengths em of 455-600 nm is not single-exponential and has components with mean decay times <0.5, 3.1-5.5, and 12.4-15.1 nsec with the amplitudes depending on the emission wavelength. Analysis of time-resolved fluorescence spectra shows that the shortest-lived component should be assigned to 1,8-ANS molecules in the aqueous medium, whereas the two longer-lived components are assigned to two types of binding sites for 1,8-ANS in the Hb molecule characterized by different polarity and accessibility to water molecules.  相似文献   

11.
A specific method was developed for monitoring the concentration of cyanobacteria (blue-green algae) before waterblooms, based on their characteristics ofin vivo fluorescence. The excitation and emission spectra of cyanobacteria are very different from those of eukaryotic algae, due to the importance of phycocyanin, rather than chlorophylla, in determining the fluorescence characteristics. Our results, based on four cyanobacteria:Microcystis aeruginosa, Anabaena cylindrica, Phormidium tenue andSpirulina platensis, indicate that excitation at 620 nm and its emission at 645 nm is a sensitive and specific method for their detection. Furthermore, the addition of 10 M photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) induced only 3% increase in phycocyanin fluorescence, suggesting that this measurement is almost independent of the ongoing rate of photosynthesis.Author for correspondence  相似文献   

12.
A time-dependent loss of Photosystem II (PS II) activity seen in Anacystis nidulans grown without Ca2+ was paralleled by a loss in chlorophyll (Chl) a fluorescence of variable yield which reflects inhibition of Q reduction and of state changes. Both inhibitions were fully reversed by the addition of Ca2+ to the growth medium. The lack of state changes in Ca2+-depleted cells was confirmed in 77 K fluorescence difference spectra of light versus dark-adapted cells.Absorption spectra of control and of Ca2+-depleted cells were identical whether measured at room temperature or at 77 K. Fluorescence emission spectra measured at 39°C (cell growth temperature) demonstrated higher yields in Ca2+-depleted cells compared to controls. Fluorescence emission spectra at 77 K also produced higher yields in Ca2+-depleted cells but the increased fluorescence at this temperature occurred principally at 683 nm. The increased relative fluorescence yield in Ca2+-depleted samples results from light absorbed by phycocyanin (PC), but not from light absorbed almost exclusively by Chl. The 683 run fluorescence peak probably represents increased allophycocyanin (APC) emission as intact phycobilisomes become energetically disassociated from the photosynthetic apparatus. This inferred disassociation occurred only after PSII activity was mostly inhibited in Ca2+-depleted cells, and was not fully reversible.Abbreviations APC Allophycocyanin - Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EDTA ethylenediaminotetraacetic acid - PC phycocyanin - PS photosystem - Q primary quinone electron acceptor of Photosystem II also a quencher of Chl a fluorescence DPB-CIW Publ. No. 817  相似文献   

13.
During the midday depression of net CO2 exchange in the mediterranean sclerophyllous shrub Arbutus unedo, examined in the field in Portugal during August of 1987, several parameters indicative of photosynthetic competence were strongly and reversibly affected. These were the photochemical efficiency of photosystem (PS) II, measured as the ratio of variable to maximum chlorophyll fluorescence, as well as the photon yield and the capacity of photosynthetic O2 evolution at 10% CO2, of which the apparent photon yield of O2 evolution was most depressed. Furthermore, there was a strong and reversible increase in the content of the carotenoid zeaxanthin in the leaves that occurred at the expense of both violaxanthin and -carotene. Diurnal changes in fluorescence characteristics were interpreted to indicate three concurrent effects on the photochemical system. First, an increase in the rate of radiationless energy dissipation in the antenna chlorophyll, reflected by changes in 77K fluorescence of PSII and PSI as well as in chlorophyll a fluorescence at ambient temperature. Second, a state shift characterized by an increase in the proportion of energy distributed to PSI as reflected by changes in PSI fluorescence. Third, an effect lowering the photon yield of O2 evolution and PSII fluorescence at ambient temperature without affecting PSII fluorescence at 77K which would be expected from a decrease in the activity of the water splitting enzyme system, i.e. a donor side limitation.Abbreviations and symbols ci concentration of CO2 within the leaf - Fo instantaneous fluorescence emission - FM maximum fluorescence emission - Fv variable fluorescence emission - PFD photon flux density (400–700 nm) - PSI, II photosystem I, II - TL leaf temperature  相似文献   

14.
The unfolding of human serum proteins (HSP) was studied by measuring the intrinsic fluorescence intensity at a wavelength of excitation corresponding to tryptophan's or typosine's fluorescence and surface hydrophobicity. The maxima emission wavelengths (max) of human serum albumin (HSA) and human serum globulin (HSG) before beer consumption (BC) were 336.0 and 337.0 nm and after BC shifted to 335.0 and 334.0 nm, respectively. The surface hydrophobicity slightly increased after BC. In a solution of 8 M urea the max of BSA shifted to 346.4 and that of BSG to 342.5 nm. In contrast, in the same solution but after BC the max positions of HSA and HSG shifted to 355.9 and 357.7 nm, respectively. A decrease in fluorescence intensity, a shift in the maximum of emission, and an increase in surface hydrophobicity which reflected unfolding of proteins were observed. Here we provide evidence that the loosening of the HSP structure takes place primarily in various concentrations of urea before and after beer consumption. Differences in the fluorescence behavior of the proteins are attributed to disruption of the structure of proteins by denaturants as well as by the change in their compactability as a result of ethanol consumption.  相似文献   

15.
16.
The spectral curves of emission of paraform-induced fluorophores in small, intensely fluorescent (SIF) cells in lumbar ganglia of the sympathetic trunk and in the major pelvic ganglion were compared with the fluorescence spectra of lipofuscin granules in the perikaryons of the neurons of the vagus inferior ganglion. As a rule, the fluorescence spectra of SIF cells correlate with the content in them of catecholamines. The spectral characteristics of fluorophores of so-called "yellow" SIF cells have much in common with the fluorescence spectra of lipofuscin granules. Apparently, in some of cases small cells containing lipofuscin may be identified as "yellow" SIF cells.  相似文献   

17.
18.
Summary The blue fluorescence emitted by microbial cells irradiated with UV light at 360 nm is usually supposed to provide a good estimate of the cell NAD(P)H content. Here we present an example of a microbial fermentation in which culture fluorescence, both in the cells and in the medium, was almost exclusively due to the presence of a fluorophore that displayed an emission spectrum very similar to that of NAD(P)H but that we show by biochemical studies to be a different compound. Our results demonstrate that studies on the redox state of cells should be based on on-line fluorescence data only after appropriate control experiments to establish a definitive correlation between fluorescence and NAD(P)H levels. Offprint requests to: J. E. Bailey  相似文献   

19.
Acetabularia mediterranea algae, grown in three different light-dark regimes, were frozen in liquid nitrogen at c.t.(1) 0 and c.t. 6 and a record made of 77 degrees K fluorescence emission spectra of their chloroplasts. Algae grown under LD cycles exhibited a clear circadian rhythm of oxygen production. The low temperature fluorescence emission spectrum at c.t.0 was different from that at c.t.6 and this difference was increased by submitting the algae to successive "freeze-thaw" treatment. Similar results were obtained in DD, and the photosynthesis rhythm remained fully expressed. Algae grown in LL, where no rhythm of photosynthesis could be detected in the samples because there is a great individual variability in period lenght under these conditions, exhibited a similar difference in their low temperature flourescence emission spectra between c.t.0 and c.t.6. We conclude that the circadian rhythm in low-temperature fluorescence emission of the chloroplasts in Acetabularia is related to the circadian rhythm in photosynthesis.  相似文献   

20.
BACKGROUND: Specific signal detection has been a fundamental issue in fluorescence microscopy. In the context of tissue samples, this problem has been even more pronounced, with respect to spectral overlap and autofluorescence. METHODS: Recent improvements in confocal laser scanning microscopy combine sophisticated hardware to obtain fluorescence emission spectra on a single-pixel basis and a mathematical procedure called "linear unmixing" of fluorescence signals. By improving both the specificity of fluorescence acquisition and the number of simultaneously detectable fluorochromes, this technique of spectral imaging (SI) allows complex interrelations in cells and tissues to be addressed. RESULTS: In a comparative approach, SI microscopy on a quantitative basis was compared to conventional bandpass (BP) filter detection, demonstrating substantial superiority of SI with respect to detection accuracy and dye combination. An eight-color immunofluorescence protocol for tissue sections was successfully established. Moreover, advanced use of SI in fluorescence resonance energy transfer (FRET) applications using enhanced green fluorescence protein (EGFP) and enhanced yellow fluorescence protein (EYFP) in a confocal set up could be demonstrated. CONCLUSIONS: This novel technology will help to perform complex multiparameter investigations at the cellular level by increasing the detection specificity and permitting simultaneous use of more fluorochromes than with classical techniques based on emission filters. Moreover, SI significantly extends the possibilities for specialized microscopy applications, such as the visualization of macromolecular interactions or conformational changes, by detecting FRET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号