首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mild winter weather causing snow to melt and ice to accumulate on the ground has been proposed to cause the decreased survival of individuals, and less pronounced cyclicity, of small rodent populations in Fennoscandia. However, detailed data linking ice accumulation to decreased winter survival is lacking. We live-trapped and monitored with passive integrated transponders enclosed populations of root voles (Microtus oeconomus) exposed to different amounts of ice accumulation through a mild winter. We studied how social behaviour and survival responded to snow melt and ice accumulation. Voles avoided ground ice by moving their home ranges, thus increasing home range overlap in enclosed populations experiencing more extensive ice cover. Winter survival was not affected by the amount of ice accumulation, and was only slightly reduced during ice formation in early winter. The lowest survival rates were found at the onset of snow melt in early spring. These results suggest that ice accumulation does not cause lower survival during mild winters, probably because plastic social behaviour enables root voles to reduce the negative effects of varying winter weather on survival. The mechanisms for lower survival during mild winters may operate during spring and be related to spring floods or increased susceptibility to predators. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Seven years of winter survival data for winter wheat ( Triticum aestivum L.) were collected on a loam soil located on the Central Experimental Farm at Ottawa, Ontario (45 degrees 23'N, 75 degrees 43'W). The site was low-lying and subject to frequent winter flooding and ice-sheet formation. Two cultivars, a soft white and a hard red winter wheat, were planted in September. Crop establishment was measured in late fall and the percentage survival was measured in April of the following year. Meteorological data, which were available from the nearby weather site, were used to develop a large set of monthly weather indices that were felt to be important for winter survival. The objective of the study was to use genetic selection algorithms and artificial neural networks to select a subset of critical weather factors and topographic features and to model winter survival. The six weather indices selected were the total rain depth for December (mm), the total rain depth for February (mm), the number of days of the month with snow on the ground for January, the extreme minimum observed daily air temperature for March ( degrees C), the number of days of the month with snow on the ground for March, and the number of days of April with a daily maximum air temperature greater than 0 degrees C. It was found 89% of the variation in winter survival could be explained by these six weather indices, the cultivar, elevation and plot location.  相似文献   

3.
We exploited the natural climate gradient in the northern hardwood forest at the Hubbard Brook Experimental Forest (HBEF) to evaluate the effects of climate variation similar to what is predicted to occur with global warming over the next 50–100 years for northeastern North America on soil carbon (C) and nitrogen (N) cycle processes. Our objectives were to (1) characterize differences in soil temperature, moisture and frost associated with elevation at the HBEF and (2) evaluate variation in total soil (TSR) and microbial respiration, N mineralization, nitrification, denitrification, nitrous oxide (N2O) flux, and methane (CH4) uptake along this gradient. Low elevation sites were consistently warmer (1.5–2.5°C) and drier than high elevation sites. Despite higher temperatures, low elevation plots had less snow and more soil frost than high elevation plots. Net N mineralization and nitrification were slower in warmer, low elevation plots, in both summer and winter. In summer, this pattern was driven by lower soil moisture in warmer soils and in winter the pattern was linked to less snow and more soil freezing in warmer soils. These data suggest that N cycling and supply to plants in northern hardwood ecosystems will be reduced in a warmer climate due to changes in both winter and summer conditions. TSR was consistently faster in the warmer, low elevation plots. N cycling processes appeared to be more sensitive to variation in soil moisture induced by climate variation, whereas C cycling processes appeared to be more strongly influenced by temperature.  相似文献   

4.
荒漠人工固沙植被区土壤水分的时空变异性   总被引:10,自引:0,他引:10  
表层土壤水分具有高度的时间和空间变异性.研究的目的:(1)揭示沙坡头人工固沙植被区浅层土壤水分的时空变异性特征;(2)确定驱动土壤水分变异的主要环境因子.在人工固沙植被区内一个4500m2的网格样地上每隔10m设置取样点,在连续7个月的时间内 (2005年4~10月),每隔15d用时域反射仪测量各样点表层以下15cm和30cm深度的土壤容积含水量.结果表明,该区网格尺度上浅层土壤水分的分布具有明显的空间变异性,其变异性随着土壤水分含量的降低而减小;相对海拔是驱动土壤水分空间变异的主要环境因子,其作用在降雨后尤为显著,且其对土壤下层的影响比上层更明显;植被和土壤水分含量的相关性时间序列与相对海拔一致--降雨使其相关性增加;土壤质地(土壤粒径分布)和土壤水分含量的相关性时间序列特征与植被和相对海拔相反,且其对土壤上层的影响比下层更明显.因此,在沙坡头荒漠人工固沙植被区,降雨后的短暂湿润期,地形和植被是驱动浅层土壤水分变异的主要影响因子,而随着降雨之后土壤逐渐变干,土壤质地的影响变得更加明显.  相似文献   

5.
R. V. Olson 《Plant and Soil》1987,97(2):189-200
Summary Field experiments with winter wheat (Triticum aestivum L.) were conducted in two years at two locations using15N-enriched (NH4)2SO4 on Smolan silt loam (Pachic Argiustoll) and Ost loam (Typic Arguistoll) soils. The objective was to relate differences in crop utilization of fertilizer to movement and transformations of the N in a complete factorial experiment having fall and spring applications, banded and broadcast, with and without nitrapyrin. Plant uptake of the 60 kg N/ha applied varied from 31% to 62% with greatest uptake when fertilizer was banded in the spring without nitrapyrin and least uptake from fall and spring broadcast treatments using nitrapyrin. Analysis of single factor effects showed greater crop contents of fertilizer N for spring than fall applications. That was related to immobilization of the applied N. Much more fertilizer N was in inorganic forms during the period of rapid wheat growth with spring applications than with fall. Banding the fertilizer at a depth of 0.05 m resulted in greater plant uptake than broadcasting or banding it on the soil surface. A significant portion of the applied N was immobilized near the point of application. That limited the downward movement of the N placed on the surface, making it less available to plant roots than the N placed 0.05 m deep where soil moisture was more favorable. Use of nitrapyrin resulted in lowered amounts of fertilizer N as NO3-until mid-May for fall treatments and until harvest with spring treatments. That appeared to be the reason for lowered plant uptake when nitrapyrin was used. Published in memory of Professor R V Olson and over 40 years of contributions and service to agriculture and soil science (1919–1985).  相似文献   

6.
The insulative value of early and deep winter snow is thought to enhance winter reproduction and survival by arctic lemmings (Lemmus and Dicrostonyx spp). This leads to the general hypothesis that landscapes with persistently low lemming population densities, or low amplitude population fluctuations, have a low proportion of the land base with deep snow. We experimentally tested a component of this hypothesis, that snow depth influences habitat choice, at three Canadian Arctic sites: Bylot Island, Nunavut; Herschel Island, Yukon; Komakuk Beach, Yukon. We used snow fencing to enhance snow depth on 9-ha tundra habitats, and measured the intensity of winter use of these and control areas by counting rodent winter nests in spring. At all three sites, the density of winter nests increased in treated areas compared to control areas after the treatment, and remained higher on treated areas during the treatment. The treatment was relaxed at one site, and winter nest density returned to pre-treatment levels. The rodents’ proportional use of treated areas compared to adjacent control areas increased and remained higher during the treatment. At two of three sites, lemmings and voles showed significant attraction to the areas of deepest snow accumulation closest to the fences. The strength of the treatment effect appeared to depend on how quickly the ground level temperature regime became stable in autumn, coincident with snow depths near the hiemal threshold. Our results provide strong support for the hypothesis that snow depth is a primary determinant of winter habitat choice by tundra lemmings and voles.  相似文献   

7.
Although seasonal snow is recognized as an important component in the global climate system, the ability of snow to affect plant production remains an important unknown for assessing climate change impacts on vegetation dynamics at high‐latitude ecosystems. Here, we compile data on satellite observation of vegetation greenness and spring onset date, satellite‐based soil moisture, passive microwave snow water equivalent (SWE) and climate data to show that winter SWE can significantly influence vegetation greenness during the early growing season (the period between spring onset date and peak photosynthesis timing) over nearly one‐fifth of the land surface in the region north of 30 degrees, but the magnitude and sign of correlation exhibits large spatial heterogeneity. We then apply an assembled path model to disentangle the two main processes (via changing early growing‐season soil moisture, and via changing the growth period) in controlling the impact of winter SWE on vegetation greenness, and suggest that the “moisture” and “growth period” effect, to a larger extent, result in positive and negative snow–productivity associations, respectively. The magnitude and sign of snow–productivity association is then dependent upon the relative dominance of these two processes, with the “moisture” effect and positive association predominating in Central, western North America and Greater Himalaya, and the “growth period” effect and negative association in Central Europe. We also indicate that current state‐of‐the‐art models in general reproduce satellite‐based snow–productivity relationship in the region north of 30 degrees, and do a relatively better job of capturing the “moisture” effect than the “growth period” effect. Our results therefore work towards an improved understanding of winter snow impact on vegetation greenness in northern ecosystems, and provide a mechanistic basis for more realistic terrestrial carbon cycle models that consider the impacts of winter snow processes.  相似文献   

8.
We studied the effects of artificial soil frost on cambial activity and xylem formation on 47-year-old Norway spruce [Picea abies (L.) Karst.] trees grown on medium fertile site type (with moraine soil) in eastern Finland (62°42′N; 29°45′E). Different soil frost treatments applied were: (1) natural snow accumulation and melting (control, CTRL); (2) artificial removal of snow from soil surface during two consecutive winters (OPEN); and (3) snow clearing and insulation (FROST), which was in other ways similar to OPEN, but the ground was insulated in early spring to delay soil thawing. Each treatment was replicated in three blocks, and two sample trees in each plot were repeatedly microcored during growing seasons of 2006–2007 for the analysis of the onset, cessation and the duration of xylem formation. The phases of tracheid differentiation (tracheids in radial enlargement, secondary cell wall formation, and mature tracheids) were measured from the microcores of 2007. The intra-ring growth and wood density variables were analysed based on X-ray densitometry. In FROST in 2006, xylem formation started a week later than in the other treatments. In 2007, no difference was found between the treatments. The discrepancy in results between the two study years may be explained by between-years variation in weather, i.e., the winter was colder in 2005/2006 than in 2006/2007. No effects of soil frost treatments on tracheid differentiation and on most of the intra-ring growth and density variables were discovered. Our results suggest that the delayed thawing of moraine soil may slightly affect the onset, timing and duration of xylem formation in Norway spruce. However, the effects of delayed soil frost may depend also on the soil type and become more evident with increasing water holding capacity of the soil.  相似文献   

9.
华北平原麦田土壤呼吸特征   总被引:66,自引:7,他引:59  
采用静态箱/气相色谱(GC)法测定了华北平原典型冬小麦田的土壤呼吸速率、结果表明,土壤呼吸速率日变化呈单峰曲线,最高峰出现在13:00左右,最低点在凌晨4:00左右;冬小麦生长季土壤呼吸速率平均冬季较低,夏季较高,与地温的季节变化趋势基本一致;随氮肥用量增加土壤呼吸增强,但增幅不大.秸秆还田处理的土壤呼吸作用明显高于秸秆不还田处理和氮肥处理;土壤呼吸同地温存在着显著的指数关系,其中5cm地温同土壤呼吸相关性最好.不同处理、不同深度土层具有不同的Q10值,Q10值随土壤的性状、地温测量的深度和微生物活动的土层深度变化而改变,其本身是温度的函数,随着温度的升高,Q10值呈下降趋势;土壤呼吸与土壤水分的关系较弱,未表现出明显的规律性;冬小麦平均净光合速率与土壤呼吸速率呈相似的变化趋势。从小麦返青到腊熟,冬小麦田表现为CO2的汇.  相似文献   

10.
An abundance index of an eastern Quebec population of North American porcupines (Erethizon dorsatum) has cycled with superimposed periodicities of 11 and 22 years from 1868 to 2000. This cycle closely followed 11- and 22-year cycles in solar irradiance and local weather (e.g., winter precipitation and spring temperature), generating the hypothesis that solar activity may affect porcupine abundance through effects on local weather. We investigated the mechanisms linking porcupine abundance to local weather conditions using a 6-year study (2000–2005) involving individual mark-recapture, radio tracking, seasonal survival analyses and identification of mortality causes. Summer (May–August) survival was high and constant over the study period, whereas winter (August–May) survival was lower and varied during the duration of our study. Variations in local winter precipitation explained 89% of the variation in winter survival. Porcupine predation rates appeared strongly related to snow conditions; 95% of depredated porcupines were killed when snow was covering the ground, and predation rates were higher in years with increased winter precipitation. Our data thus support the hypothesis that changes in predation rates under different snow conditions were the mechanism relating climate to porcupine population dynamics, via modifications of the local predator–prey interactions and impacts on porcupine winter survival. Our study adds to the growing body of evidence supporting an effect of climate on predator–prey processes. Also, it identifies one possible mechanism involved in the relationship between solar irradiance and porcupine population cycles observed at this study site over a 130-year period.  相似文献   

11.
Winter is becoming warmer and shorter across the northern hemisphere, and reductions in snow depth can decrease tree seedling survival by exposing seedlings to harmful microclimates. Similarly, herbivory by small mammals can also limit the survival and distribution of woody plants, but it is unclear whether winter climate change will alter small‐mammal herbivory. Although small‐scale experiments show that snow removal can either increase or decrease both soil temperatures and herbivory, we currently lack snow‐removal experiments replicated across large spatial scales that are needed to understand the effect of reduced snow. To examine how winter herbivory and snow conditions influence seedling dynamics, we transplanted Acer saccharum and Tsuga canadensis seedlings across a 180 km latitudinal gradient in northern Wisconsin, where snow depth varied seven‐fold among sites. Seedlings were transplanted into one of two herbivory treatments (small‐mammal exclosure, small‐mammal access) and one of two late‐winter snow removal treatments (snow removed, snow unmanipulated). Snow removal increased soil freeze‐thaw frequency and cumulative growing degree‐days (GDD), but the magnitude of these effects depended on forest canopy composition. Acer saccharum survival decreased where snow was removed, but only at sites without conifers. Excluding small mammals increased A. saccharum survival at sites where the small‐mammal herbivore Myodes gapperi was present. Excluding small mammals also increased T. canadensis survival in plots with < 5 cm snow. Because variation in canopy composition and M. gapperi presence were important predictors of seedling survival across the snow‐depth gradient, these results reveal complexity in the ability to accurately predict patterns of winter seedling survival over large spatial scales. Global change scenarios that project future patterns of seedling recruitment may benefit from explicitly considering interactions between snow conditions and small‐mammal winter herbivory.  相似文献   

12.
土壤深层供水对冬小麦干物质生产的影响   总被引:25,自引:3,他引:22  
采用根系研究装置研究了土壤深层供水对冬小麦干物质生产的影响 .结果表明 ,上层低湿度下层高湿度的处理在小麦灌浆期仍然保持了较高的土壤和叶片含水量 ,具有发达的根系 ,特别是 1m以下的根量在 4个处理中为最高 ,旗叶和穗的干重也最大 ,具有最大的产量潜力 .本研究表明 ,上层土壤较干下层土壤湿润有利于发挥小麦根信号的积极作用 ,平衡水分利用 ,同时通过对土壤水分的合理调节可以促进深层根的发育 ,有利于提高产量和水分利用效率 .  相似文献   

13.
Temperate species occupying habitats at the northern limit of their geographical distribution are limited by weather and climatic conditions. Such conditions often directly affect population dynamics, and thus, influence shifts in distribution via changes in demographic parameters. We examined this question by following three distinct populations of wild turkeys inhabiting areas exposed to a gradient of meteorological conditions at the northern limit of the species distribution. Four years of radio-telemetry on 181 birds and monitoring of 95 nests revealed that population demographics of wild turkeys were influenced by snow depth, winter temperature and summer rainfall. During winter, survival of turkeys decreased drastically when snow depth remained >30 cm for >10 days and also decreased as temperatures got colder. In the spring, snow persistence delayed nest initiation, whereas nest survival was negatively affected by rainfall. Our findings show that the effects of critical meteorological factors such as snow and temperature can be compounded when both reach the limit of a species tolerance simultaneously.  相似文献   

14.
王瑾杰  丁建丽  张喆 《生态学报》2019,39(5):1784-1794
传统的土壤水分模拟研究难以从土壤水分变化的时空双向出发表达其连续演变的过程,存在时空尺度效应问题。借助SWAT模型模拟的长时间序列优势,结合高分辨率卫星影像和遥感技术,力图在时空尺度效应问题上取得突破。并利用长时间序列的模拟结果分析流域土壤水分的空间格局和不同维度时空异质性。结果表明:(1)2008-2014年间艾比湖流域土壤水分主要受气温、降水及人类活动影响,呈波动变化,总体偏低且具有逐年减小趋势。(2)受降水、地形及土地覆被影响,土壤水分分布呈现出由山区向两侧平原减少的特点,且林地 > 农用地 > 草地 > 稀疏植被。(3)近10年间土壤水分低值区由原来的北部山区及平原向东部、东南部平原区及南部山区迁移,东部减少最为明显。(4)流域四季土壤水分变化差异显著。其中,春季主要受融雪影响;夏季、秋季主要受降雨量和气温影响;冬季主要受固态降雪和气温影响;且不同年份、相同季节、相同子流域土壤水分变化趋势表现一致。  相似文献   

15.
《植物生态学报》2017,41(9):964
Aims Seasonal snow cover is one of the most important factors that control winter soil respiration in the cold biomes. The warming-induced decreases in snowpack could affect winter soil respiration of subalpine forests. The aim of this study was to explore the effects of snow removal on winter soil respiration in a Picea asperata forest.Methods A snow removal experiment was conducted in a P. asperata forest stand in western Sichuan during the winter of 2015/2016. The snow removal treatment was implemented using wooden roof method. Soil temperatures, snow depth and soil respiration rate were simultaneously measured in plots of snow removal and controls during the experimental period.Important findings Compared to the control, snow removal increased the fluctuations of soil temperatures. The average daily temperature of the soil surface and that at 5 cm depth were 1.12 °C and 0.34 °C lower, respectively, and the numbers of freeze-thaw cycles of the soil surface and that at 5 cm depth were increased by 39 and 12, respectively, in plots of snow removal than in the controls. The average rate of winter soil respiration and CO2 efflux were 0.52 μmol·m-2·s-1 and 88.44 g·m-2, respectively. On average, snow removal reduced soil respiration rate by 21.02% and CO2 efflux by 25.99%, respectively. More importantly, the snow effect mainly occurred in the early winter. The winter soil respiration rate had a significant exponential relationship with soil temperature. However, snow removal significantly reduced temperature sensitivity of the winter soil respiration. Our results suggest that seasonal snow reduction associated with climate change could inhibit winter soil respiration in the subalpine forests of western Sichuan, with significant implications for the carbon dynamics of the subalpine forests.  相似文献   

16.
Snow on land is an important component of the global climate system, but our knowledge about the effects of its changes on vegetation are limited, particularly in temperate regions. In this study, we use daily snow depth data from 279 meteorological stations across China to investigate the distribution of winter snow depth (December–February) from 1980 to 2005 and its impact on vegetation growth, here approximated by satellite‐derived vegetation greenness index observations [Normalized Difference Vegetation Index (NDVI)]. The snow depth trends show strong geographical heterogeneities. An increasing trend (>0.01 cm yr?1) in maximum and mean winter snow depth is found north of 40°N (e.g. Northeast China, Inner Mongolia, and Northwest China). A declining trend (?1) is observed south of 40°N, particularly over Central and East China. The effect of changes in snow depth on vegetation growth was examined for several ecosystem types. In deserts, mean winter snow depth is significantly and positively correlated with NDVI during both early (May and June) and mid‐growing seasons (July and August), suggesting that winter snow plays a critical role in regulating desert vegetation growth, most likely through persistent effects on soil moisture. In grasslands, there is also a significant positive correlation between winter snow depth and NDVI in the period May–June. However, in forests, shrublands, and alpine meadow and tundra, no such correlation is found. These ecosystem‐specific responses of vegetation growth to winter snow depth may be due to differences in growing environmental conditions such as temperature and rainfall.  相似文献   

17.
Hui  R.  Zhao  R. M.  Liu  L. C.  Li  Y. X.  Yang  H. T.  Wang  Y. L.  Xie  M.  Wang  X. Q. 《Photosynthetica》2018,56(4):1304-1312

Water availability is a major limiting factor in desert ecosystems. However, a winter snowfall role in the growth of biological soil crusts is still less investigated. Here, four snow treatments were designed to evaluate the effects of snow depth on photosynthesis and physiological characteristics of biological soil crusts. Results showed that snow strongly affected the chlorophyll fluorescence properties. The increased snow depth led to increased contents of photosynthetic pigments and soluble proteins. However, all biological soil crusts also exhibited a decline in malondialdehyde and soluble sugar contents as snow increased. Results demonstrated that different biological soil crusts exhibited different responses to snow depth treatment due to differences in their morphological characteristics and microhabitat. In addition, interspecies differentiation in response to snow depth treatment might affect the survival of some biological soil crusts. Further, this influence might lead to changes in the structural composition and functional communities of biological soil crusts.

  相似文献   

18.
Climate warming is predicted to reduce the extent of ice cover in the Arctic and, within the Hudson Bay region, the annual ice may be significantly decreased or entirely lost in the foreseeable future. The ringed seal ( Phoca hispida ), a key species that depends on sea ice, will likely be among the first marine mammals to show the negative effects of climatic warming. We used 639 ringed seals killed by Inuit hunters from western Hudson Bay (1991–1992, 1999–2001) to assess trends in recruitment relative to snow depth, snowfall, rainfall, temperature in April and May, North Atlantic Oscillation (NAO) from the previous winter, and timing of spring break-up. Snowfall and ringed seal recruitment varied from lower than average in the 1970s, to higher in 1980s and lower in 1990s. Prior to 1990, seal recruitment appeared to be related to timing of spring ice break-up which was correlated with the NAO. However, recent 1990–2001 environmental data indicate less snowfall, lower snow depth, and warmer temperatures in April and May when pups are born and nursed. Decreased snow depth, particularly below 32 cm, corresponded with a significant decrease in ringed seal recruitment as indicated by pups born and surviving to adults that were later harvested. Earlier spring break-up of sea ice together with snow trends suggest continued low pup survival in western Hudson Bay.  相似文献   

19.
The year-to-year variations of vertical distribution and biomass of anoxic phototrophic bacteria were studied during ice periods 2003–2005 and 2007–2008 in meromictic lakes Shira and Shunet (Southern Siberia, Russian Federation). The bacterial layers in chemocline of both lakes were sampled with a thin-layer hydraulic multi-syringe sampler. In winter, biomass of purple sulphur bacteria varied considerably depending on the amount of light penetrating into the chemocline through the ice and snow cover. In relatively weakly stratified, brackish Shira Lake, the depth of chemocline varied between winters, so that light intensity for purple sulphur bacteria inhabiting this zone differed. In Shira Lake, increased transparency of mixolimnion in winter, high chemocline position and absence of snow resulted in light intensity and biomass of purple sulphur bacteria exceeding the summer values in the chemocline of the lake. We could monitor snow cover at the lake surface using remote sensing and therefore estimate dynamics and amount of light under ice and its availability for phototrophic organisms. In Shunet Lake, the light intensities in the chemocline and biomasses of purple sulphur bacteria were always lower in winter than in summer, but the biomasses of green sulphur bacteria were similar.  相似文献   

20.
土壤水分对返青期断根冬小麦补偿效应的影响   总被引:2,自引:1,他引:1  
通过盆栽试验研究了不同土壤水分条件下返青期断根冬小麦的补偿效应.结果表明,断根小麦的早期生长受到抑制,叶面积在返青 拔节期间显著下降,到开花期能恢复至对照水平.高水分条件下断根小麦拔节期的叶绿素荧光参数包括表观光合电子传递速率、实际光化量子产量、光化学淬灭系数、非光化学淬灭值均显著大于对照,开花后单茎干物质积累为0.81 g,显著大于对照(0.56 g),花后干物质积累系数比对照提高了38.79%,断根小麦根量虽有所下降但差异不显著;低水分条件下断根小麦的叶绿素荧光参数和花后干物质积累与对照之间没有显著差异,但断根小麦的根系生物量(7.83 g·pot-1)显著小于对照(9.77 g·pot-1).土壤水分对断根小麦的地上生物量和籽粒产量的补偿效应没有显著影响.断根处理的冬小麦在两种土壤水分条件下均显著降低了耗水量,在整个生育期,高水分条件下冬小麦断根处理可节水2 000 ml左右,水分利用效率为1.97 g·kg -1,显著大于对照的1.70 g·kg -1;低水分条件下也可节水1 500 ml左右,水分利用效率虽有所提高,但未达到显著性差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号