首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bcl-2 is known as a critical inhibitor of apoptosis triggered by a broad range of stimuli, mainly acting on the mitochondria. It can interact with many members of the Bcl-2 family, influence mitochondrial membrane permeability and modulate cell apoptosis. RTN3, a member of the reticulon (RTN) family, was predominantly localized on the endoplasmic reticulum (ER). Its N- and C-termini, both facing the cytoplasm, can recruit some proteins to the ER to modulate some physiological functions. We found that RTN3, which does not belong to the Bcl-2 family, can interact with Bcl-2 on the ER. In normal HeLa cells, ectopic overexpressed Bcl-2 could reduce the cell apoptosis induced by overexpressed RTN3. When the HeLa cells stably expressing Bcl-2 were treated with tunicamycin, endogenous RTN3 increased in the cell microsomal fraction. This change increased the Bcl-2 in microsomal fractions and also in the mitochondrial fractions where the anti-apoptotic activity of Bcl-2 mainly acts. These results suggest that RTN3 could bind with Bcl-2 and mediate its accumulation in mitochondria, which modulate the anti-apoptotic activity of Bcl-2.  相似文献   

2.
Release of apoptogenic proteins such as cytochrome c from mitochondria is regulated by pro- and anti-apoptotic Bcl-2 family proteins, with pro-apoptotic BH3-only proteins activating Bax and Bak. Current models assume that apoptosis induction occurs via the binding and inactivation of anti-apoptotic Bcl-2 proteins by BH3-only proteins or by direct binding to Bax. Here, we analyze apoptosis induction by the BH3-only protein Bim(S). Regulated expression of Bim(S) in epithelial cells was followed by its rapid mitochondrial translocation and mitochondrial membrane insertion in the absence of detectable binding to anti-apoptotic Bcl-2 proteins. This caused mitochondrial recruitment and activation of Bax and apoptosis. Mutational analysis of Bim(S) showed that mitochondrial targeting, but not binding to Bcl-2 or Mcl-1, was required for apoptosis induction. In yeast, Bim(S) enhanced the killing activity of Bax in the absence of anti-apoptotic Bcl-2 proteins. Thus, cell death induction by a BH3-only protein can occur through a process that is independent of anti-apoptotic Bcl-2 proteins but requires mitochondrial targeting.  相似文献   

3.
Reticulon-4 (RTN4), a reticulon family protein localized in the endoplasmic reticulum, is reported to be involved in multiple physiological processes like neuroendocrine secretion and membrane trafficking in neuroendocrine cells. Previous studies have presented a great potential of RTN4 for the treatment of autoimmune-mediated demyelinating diseases and spinal cord injury regeneration. While interaction with Bcl-2 and Bcl-2-like family in apoptosis modulation implicated its possible role in various human cancers. However, the investigation of this gene in prostate cancer is mainly ignored. Here in our current study, we focused on its role in prostate cancer and found that RTN4 DNA copy numbers were higher in prostate cancer than normal prostate gland while its RNA and protein expressions were relatively lower. Chromosomal neighbor gene EML6 had similar expression patterns with RTN4 in prostate cancer tissues and cell lines, and further research found that they could be both targeted by miR-148a-3p. Lentivirus-mediated RTN4 overexpression potently inhibited DU145 and LNCaP cells proliferation. Cell cycle was blocked in G2/M phase and significant cell senescence was observed in RTN4 overexpressed prostate cancer cells. Finally, interaction networks in the normal prostate gland and cancer tissues further revealed that RTN4 maybe phosphorylated by MAPKAPK2 and FYN at tyrosine 591 and serine 107, respectively. All these results implied that RTN4 might somehow participate in prostate tumor progression, and this elicits possibility to develop or identify selective agents targeting RTN4 for prostate cancer therapy.  相似文献   

4.
Chen R  Jin R  Wu L  Ye X  Yang Y  Luo K  Wang W  Wu D  Ye X  Huang L  Huang T  Xiao G 《Autophagy》2011,7(2):205-216
Autophagy plays an important role in targeting cellular proteins, protein aggregates and organelles for degradation for cell survival. Autophagy dysfunction has been extensively described in neurodegenerative conditions linked to protein misfolding and aggregation. However, the role of autophagy in the prion disease process is unclear. Here, we show that when expressed in mouse neuroblastoma N2a cells, cytoplasmic PrP (cyPrP) aggregates lead to endoplasmic reticulum stress (ER stress), activation of reticulon 3 (RTN3), impairment of ubiquitin-proteasome system (UPS), induction of autophagy and apoptosis. RTN3 belongs to the reticulon family with the highest expression in the brain and RTN3 is often activated under ER stress. To assess the function of RTN3 in pathological conditions involving cyPrP protein misfolding, we knocked down the expression of RTN3 in cyPrP-transfected cells; unexpectedly, the inhibition of expression of RTN3 enhances the induction of autophagy resulted from cyPrP aggregates, and the process is mediated by the enhanced interaction between Bcl-2 and Beclin1 promoted by RTN3, which enhances Bcl-2-mediated inhibition of Beclin 1-dependent autophagy. Furthermore, down-regulation of RTN3 promoted the clearance of cyPrP aggregates, allowed the activity of the UPS to resume and alleviated ER stress; ultimately, apoptosis due to the cyPrP aggregates was inhibited. Together, these data suggest that RTN3 negatively regulates autophagy to block the clearance of cyPrP aggregates and provide a clue regarding the potential to induce autophagy for the treatment of prion disease and other neurodegenerative diseases such as Parkinson disease (PD), Alzheimer disease (AD) and Huntington disease (HD).  相似文献   

5.
Prolactin has more than 300 separate functions including affecting mammary growth, differentiation, secretion and anti-apoptosis. In the previous studies, prolactin induced Bcl-2 expression to prevent apoptosis and also provoked the activity of ornithine decarboxylase (ODC). Our previous data showed that ODC overexpression upregulates Bcl-2 and prevents tumor necrosis factor alpha (TNF-α)- and methotrexate (MTX)-induced apoptosis. Here, we further investigate whether prolactin prevents MTX-induced apoptosis through inducing ODC activity and the relationship between ODC and Bcl-2 upon prolactin stimulation. Prolactin prevented MTX-induced apoptosis in a dose-dependent manner in HL-60 cells. Following prolactin stimulation, ODC enzyme activity also shows an increase in a dose-dependent manner, expressing its maximum level at 3 h, and rapidly declining thereafter. Prolactin-induced ODC activity is completely blocked by a protein kinase C delta (PKCδ) inhibitor, rottlerin. However, there are no changes in the expressions of ODC mRNA and protein level after prolactin stimulus. It indicates that prolactin may induce ODC activity through the PCKδ pathway. Besides, Bcl-2 expresses within 1 h of prolactin treatment and this initiating effect of prolactin is not inhibited by alpha-difluoromethylornithine (DFMO). However, Bcl-2 is further enhanced following prolactin stimulation for 4 h and this enhancement is blocked by DFMO. Bcl-2 has no effect on ODC activity and protein levels, but ODC upregulates Bcl-2, which is inhibited by DFMO. Overall, there are two different forms of prolactin effect, it induces Bcl-2 primarily, and following this it stimulates ODC activity. Consequently induced ODC activity further enhances the expression of Bcl-2. The anti-apoptotic effect of prolactin is diminished by DFMO and recovered by putrescine. Obviously, ODC activity is one basis for the anti-apoptotic mechanisms of prolactin. A Bcl-2 inhibitor, HA14-1, together with DFMO, completely blocks the anti-apoptotic effects of prolactin. These results suggest that increasing ODC activity is another way of prolactin preventing MTX-induced apoptosis and that this induction of ODC activity enhances the expression of Bcl-2 strongly enough to bring about the anti-apoptotic function.  相似文献   

6.
We have previously reported that Fas-resistant A20 cells (FasR) have phospholipase D (PLD) activity upregulated by endogenous PLD2 overexpression. In the present study, we investigated how overexpressed PLD2 in FasR could generate survival signals by regulating the protein levels of anti-apoptotic Bcl-2 and Bcl-xL. To confirm the effect of PLD2 on Bcl-2 protein levels, we transfected PLD2 into wild-type murine B lymphoma A20 cells. The transfected cells showed markedly the increases in Bcl-2 and Bcl-xL protein levels, and became resistant to Fas-induced apoptosis, similar to FasR. Treatment of wild-type A20 cells with phosphatidic acid (PA), the metabolic end product of PLD2 derived from phosphatidylcholin, markedly increased levels of anti-apoptotic Bcl-2 and Bcl-xL proteins. Moreover, PA-induced expressions of Bcl-2 and Bcl-xL were enhanced by propranolol, an inhibitor of PA phospholydrolase (PAP), whereas completely blocked by mepacrine, an inhibitor of phospholipase A(2) (PLA(2)), suggesting that PLA(2) metabolite of PA is responsible for the increases in Bcl-2 and Bcl-xL protein levels. We further confirmed the involvement of arachidonic acid (AA) in PA-induced survival signals by showing that 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA), PA without AA, was unable to increase Bcl-2 and Bcl-xL proteins. Moreover, PA notably increased cyclooxygenase (COX)-2 protein expression, and PA-induced expression of both Bcl-2 and Bcl-xL was inhibited by NS-398, a specific inhibitor of COX-2. Taken together, these findings demonstrate that PA generated by PLD2 plays an important role in cell survival during Fas-mediated apoptosis through the increased Bcl-2 and Bcl-xL protein levels which resulted from PLA(2) and AA-COX2 pathway.  相似文献   

7.
The Bcl-2 (Bcl is B-cell lymphocytic-leukaemia proto-oncogene) family comprises two groups of proteins with distinct functional biology in cell-fate signalling. Bcl-2 protein was the first member to be discovered and associated with drug resistance in human lymphomas. Since then a host of other proteins such as Bcl-xL, Bcl-2A1 and Mcl-1 with similar anti-apoptotic functions have been identified. In contrast, the pro-apoptotic Bcl-2 proteins contain prototypic effector proteins such as Bax and Bak, and the BH3 (Bcl-2 homology)-only proteins comprising Bak, Bid, Bim, Puma and Noxa. A complex interplay between the association of pro-apoptotic and anti-apoptotic proteins with each other determines the sensitivity of cancer cells to drug-induced apoptosis. The canonical functional of Bcl-2 in terms of apoptosis inhibition is its ability to prevent mitochondrial permeabilization via inhibiting the translocation and oligomerization of pro-apoptotic proteins such as Bax; however, more recent evidence points to a novel mechanism of the anti-apoptotic activity of Bcl-2. Overexpression of Bcl-2 increases mitochondrial oxygen consumption and in doing so generates a slight pro-oxidant intracellular milieu, which promotes genomic instability and blocks death signalling. However, in the wake of overt oxidative stress, Bcl-2 regulates cellular redox status thereby preventing excessive build-up of ROS (reactive oxygen species), which is detrimental to cells and tissues. Taken together, the canonical and non-canonical activities of Bcl-2 imply a critical involvement of this protein in the processes of tumour initiation and progression. In the present paper we review these functionally distinct outcomes of Bcl-2 expression with implications for the chemotherapeutic management of cancers.  相似文献   

8.
9.
10.
The mitochondrial pathway of apoptosis is regulated by the interplay between the members of Bcl-2 family. Within this family, BH3-only proteins are the sensors of apoptotic stimuli and can trigger apoptosis either by inhibiting the anti-apoptotic Bcl-2-family proteins or by directly activating the effectors Bax and Bak. An expanding body of research suggests that a number of non-Bcl-2 proteins can also interact with Bcl-2 proteins and contribute to the decision of cell fate. Dynein light chain (LC8, DYNLL or DLC), a hub protein and a dimerizing engine has been proposed to regulate the pro-apoptotic activity of two BH3-only proteins, Bim and Bmf. Our recent work has provided insight into the mechanisms through which DLC1 (DYNLL1) modulates Bim activity. Here we discuss the present day understanding of Bim-DLC interaction and endeavor to evaluate this interaction in the light of information from studies of DLC with other binding partners.  相似文献   

11.
RTN3是RTN家族的成员之一,因其主要定位于内质网,所以用reticulon来命名.RTN3与RTN4B是RTN家族中目前已知的、唯一一对具有凋亡诱发功能的基因.过表达的RTN3介导了真核细胞的三大凋亡信号转导通路:死亡受体途径、线粒体途径、内质网途径,并使之交联形成凋亡调控网络;RTN3可与RTN4B相互作用,形成同源或异源二聚来调控细胞凋亡.另外,过表达RTN3还参与了细菌的类凋亡作用.RTN3广泛表达于多种组织,其过表达诱发凋亡的机制的总结将让人们更好的了解RTN3及其家族,完善细胞凋亡的信号转导研究.  相似文献   

12.
B-cell lymphoma (Bcl-2) protein is an anti-apoptotic member of the Bcl-2 family. It is functionally demarcated into four Bcl-2 homology (BH) domains: BH1, BH2, BH3, BH4, one flexible loop domain (FLD), a transmembrane domain (TM), and an X domain. Bcl-2’s BH domains have clearly been elucidated from a structural perspective, whereas the conformation of FLD has not yet been predicted, despite its important role in regulating apoptosis through its interactions with JNK-1, PKC, PP2A phosphatase, caspase 3, MAP kinase, ubiquitin, PS1, and FKBP38. Many important residues that regulate Bcl-2 anti-apoptotic activity are present in this domain, for example Asp34, Thr56, Thr69, Ser70, Thr74, and Ser87. The structural elucidation of the FLD would likely help in attempts to accurately predict the effect of mutating these residues on the overall structure of the protein and the interactions of other proteins in this domain. Therefore, we have generated an increased quality model of the Bcl-2 protein including the FLD through modeling. Further, molecular dynamics (MD) simulations were used for FLD optimization, to predict the flexibility, and to determine the stability of the folded FLD. In addition, essential dynamics (ED) was used to predict the collective motions and the essential subspace relevant to Bcl-2 protein function. The predicted average structure and ensemble of MD-simulated structures were submitted to the Protein Model Database (PMDB), and the Bcl-2 structures obtained exhibited enhanced quality. This study should help to elucidate the structural basis for Bcl-2 anti-apoptotic activity regulation through its binding to other proteins via the FLD.  相似文献   

13.
14.
Bcl-2/adenovirus E1B 19-kDa interacting protein 1 (BNIP1), which is predominantly localized to the endoplasmic reticulum (ER), is a pro-apoptotic Bcl-2 homology domain 3 (BH3)-only protein. Here, we show that the expression of BNIP1 induced not only a highly interconnected ER network but also mitochondrial fragmentation in a BH3 domain-dependent manner. Functional analysis demonstrated that BNIP1 expression increased dynamin-related protein 1 (Drp1) expression followed by the mitochondrial translocation of Drp1 and subsequent mitochondrial fission. Both BNIP1-induced mitochondrial fission and the translocation of Drp1 were abrogated by Bcl-2 overexpression. These results collectively indicate that ER-specific BNIP1 plays an important role in mitochondrial dynamics by modulating the mitochondrial fission protein Drp1 in a BH3 domain-dependent fashion.  相似文献   

15.
Fucosyltransferase IV (FUT4) is an essential enzyme that catalyzes the synthesis of difucosylated oligosaccharide LeY which is overexpressed in the cancers derived from the epithelial tissues. Our previous studies have shown that FUT4 overexpression promotes A431 cell proliferation through the MAPK and PI3K/Akt signaling pathways, but the relationship between FUT4 and apoptosis remained unclear. Here, we investigated the effect of FUT4 overexpression on cyclophosphamide (CPA)-induced apoptosis in A431 cells. Western blot analysis showed that FUT4 overexpression decreased expression of Bax, Caspase 3, and PARP proteins, and increased anti-apoptotic Bcl-2 protein in A431 cells. The anti-apoptosis effect of FUT4 was confirmed both by Annexin-V/PI and JC-1 assays. The results showed that FUT4 overexpression up-regulated phosphorylation of ERK1/2 and Akt which was inhibited by CPA in dose-dependent manner. By blocking the ERK/MAPK and PI3K/Akt pathways with specific inhibitors, we demonstrated that these two pathways were required in mediating the anti-apoptosis effect of FUT4. We concluded that FUT4 inhibited cell apoptosis induced by CPA through decreasing the expression of apoptotic proteins Bax, Caspase 3, and PARP and increasing the expression of anti-apoptotic protein Bcl-2 via the ERK/MAPK and PI3K/Akt signaling pathways in A431 cells.  相似文献   

16.
The smallest protein of hepatitis B virus, HBX, has been implicated in the development of liver diseases by interfering with normal cellular processes. Its role in cell proliferation has been unclear as both pro-apoptotic and anti-apoptotic activities have been reported. We showed molecular evidence that HBX induced apoptosis in HepG2 cells. A Bcl-2 Homology Domain 3 was identified in HBX, which interacted with anti-apoptotic but not pro-apoptotic members of the Bcl-2 family of proteins. HBX induced apoptosis when transfected into HepG2 cells, as demonstrated by both flow cytometry and caspase-3 activity. However, HBX protein may not be stable in apoptotic cells triggered by its own expression as only its mRNA or the fusion protein with the glutathione-S-transferase was detected in transfected cells. Our results suggested that HBX behaved as a pro-apoptotic protein and was able to induce apoptosis.  相似文献   

17.
18.
The aim of this study was to find the efficacy of 5-hydroxy 3′,4′,7-trimethoxyflavone (HTMF), a flavonoid compound isolated from the medicinal plant Lippia nodiflora, in inhibiting the proliferation and inducing apoptosis in human breast cancer cell line MCF-7. The anti-proliferative effect of the compound HTMF was confirmed using MTT cytotoxicity assay. Increased apoptotic induction by HTMF was demonstrated by acridine orange/ethidium bromide (AO/EtBr) and Hoechst 33258 staining studies. The phosphatidylserine translocation, an early feature of apoptosis and DNA damage were revealed through AnnexinV-Cy3 staining and comet assay. Moreover, the significant elevation of cellular ROS was observed in the treated cells, as measured by 2,7-diacetyl dichlorofluorescein (DCFH-DA). The mRNA expression studies also supported the effectiveness of HTMF by shifting the Bax:Bcl-2 ratio. The treatment of MCF-7 cells with HTMF encouraged apoptosis through the modulation of apoptotic markers, such as p53, Bcl-2, Bax, and cleaved PARP. In silico molecular docking and dynamics studies with MDM2-p53 protein revealed that HTMF was more potent compound that could inhibit the binding of MDM2 with p53 and, therefore, could trigger apoptosis in cancer cell. Overall, this study brings up scientific evidence for the efficacy of HTMF against MCF-7 breast cancer cells.  相似文献   

19.
20.
Much evidence suggests that apoptosis plays a crucial role in cell population homeostasis that depends on the expression of various genes implicated in the control of cell life and death. The sensitivity of human neuroblastoma cells SK-N-SH to undergo apoptosis induced by thapsigargin was examined. SK-N-SH were previously differentiated into neuronal cells by treatments with retinoic acid (RA), 4 beta-phorbol 12-myristate 13-acetate (PMA) which increases protein kinase C (PKC) activity, and staurosporine which decreases PKC activity. Neuronal differentiation was evaluated by gamma-enolase, microtubule associated protein 2 (MAP2) and synaptophysin immunocytochemistry. The sensitivity of the cells to thapsigargin-induced apoptosis was evaluated by cell viability and nuclear fragmentation (Hoechst 33258) and compared with pro-(Bcl-2, Bcl-x(L)) and anti-apoptotic (Bax, Bak) protein expression of the Bcl-2 family. Cells treated with RA and PMA were more resistant to apoptosis than controls. Conversely, the cells treated with staurosporine were more susceptible to apoptosis. In parallel with morphological modifications, the expression of inhibitors and activators of apoptosis was directly dependent upon the differentiating agent used. Bcl-2 expression was strongly increased by PMA and drastically decreased by staurosporine as was Bcl-x(L) expression. Bax and Bak expression were not significantly modified. These results demonstrate that drugs that modulate PKC activity may induce a modification of Bcl-2 expression as well as resistance to the apoptotic process. Furthermore, the expression of Bcl-2 was reduced by toxin B from Clostridium difficile and, to a lesser extent, by wortmannin suggesting a role of small G-protein RhoA and PtdIns3 kinase in the control of Bcl-2 expression. Our data demonstrate a relationship between the continuous activation of PKC, the expression of Bcl-2 protein family and the resistance of differentiated SK-N-SH to apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号