首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Black spruce [ Picea mariana (Mill.) B.S.P.] and tamarack [ Larix laricina (Du Roi) K. Koch] are the predominant tree species in boreal peatlands. The effects of 34 days of flooding on morphological and physiological responses were investigated in the greenhouse for black spruce and tamarack seedlings in their second growing season (18 months old). Flooding resulted in reduced root hydraulic conductance, net assimilation rate and stomatal conductance and increased needle electrolyte leakage in both species. Flooded tamarack seedlings maintained a higher net assimilation rate and stomatal conductance compared to flooded black spruce. Flooded tamarack seedlings were also able to maintain higher root hydraulic conductance compared to flooded black spruce seedlings at a comparable time period of flooding. Root respiration declined in both species under flooding. Sugar concentration increased in shoots while decreasing in roots in both species under flooding. Needles of flooded black spruce appeared necrotic and electrolyte leakage increased over time with flooding and remained significantly higher than in flooded tamarack seedlings. No visible damage symptoms were observed in flooded tamarack seedlings. Flooded tamarack seedlings developed adventitious roots beginning 16 days after the start of flooding treatment. Adventitious roots exhibited significantly higher root hydraulic conductivity than similarly sized flooded tamarack roots. Flooded black spruce lacked any such morphological adaptation. These results suggest that tamarack is better able to adjust both morphologically and physiologically to prolonged soil flooding than black spruce seedlings.  相似文献   

2.
Abstract: Black spruce (Picea mariana), white spruce (Picea glauca), and jack pine (Pinus banksiana) seedlings were inoculated with Hebeloma crustuliniforme or Laccaria bicolor and subjected to NaCl and Na2SO4 treatments. The effects of ectomycorrhizas on salt uptake, growth, gas exchange, and needle necrosis varied depending on the tree and fungal species. In jack pine seedlings, ectomycorrhizal (ECM) fungi reduced shoot and root dry weights and in the ECM white spruce, there was a small increase in dry weights. Sodium chloride treatment reduced net photosynthesis and transpiration rates in the three studied tree species. However, NaCl-treated black spruce and jack pine colonized by H. crustuliniforme maintained relatively high photosynthetic and transpiration rates and needle necrosis of NaCl-treated black spruce seedlings was reduced by the ECM fungi. Higher concentrations of Na+ were found in shoots compared with roots of the three examined conifer species. ECM fungi reduced the concentrations of Na+ mainly in the shoots and this reduction was greater in plants treated with NaCl compared with Na2SO4. Shoots contained generally higher concentrations of Cl- compared with roots. In the NaCl-treated black spruce and white spruce, both ECM species significantly reduced Cl- concentrations. Our results point to overall greater phytotoxicity of NaCl compared with Na2SO4 and support our earlier findings which demonstrated beneficial effects of ECM fungi for woody plants exposed to NaCl stress.  相似文献   

3.
Aluminium (Al), mobilized by acidic deposition, has been claimed to be a major threat to forest vitality. Fine root mortality, decreased root growth and reduced nutrient uptake have been observed in controlled laboratory experiments where roots of tree seedlings were exposed to elevated concentrations of Al. Yet, evidence for Al-induced root damage from forest stands is scarcely reported. Nevertheless, Al dissolved in soil water has received a key role in the critical load concept for forests. Here, we present effects of artificially elevated concentrations of Al in the soil solution on fine roots in a middle-aged stand of Norway spruce (Picea abies (L.) Karst.). Although the inorganic Al concentrations about 200 µM and Ca:Al ratio about 0.7 that were established in the soil solution within this experiment have been associated with reduction of root growth and root mortality for spruce seedlings in hydroponic studies, no acute damage on fine roots was observed. Three years of treatment did not cause visual root damage, nor were effects on fine root necromass observed. Fine root necromass made up about 10% of fine root biomass for all treatments. However, significantly lower molar Ca:Al and Mg:Al ratios in living and dead fine roots were found in the plots where Al concentrations were highest and ratios of Ca to Al in the soil solution were lowest. The lack of response on fine root biomass suggests that forest stands tolerate higher Al levels than results from laboratory experiments indicate. We conclude that effect studies in the laboratory have limited value for field conditions. The key role of Al toxicity, expressed as the Ca/Al ratio, in critical load calculations for forests may have to be reconsidered.  相似文献   

4.
Responses of Melaleuca quinquenervia seedlings to flooding   总被引:1,自引:0,他引:1  
Abstract Studies were conducted on effects of flooding for 15, 30, 60, and 90 days on morphological changes, stomatal aperture, water potential, and growth of seedlings of Melaleuca quinquenervia, a species often planted for reclamation of swamps. Flooding rapidly induced formation of many hair-like adventitious roots as well as a few thick adventitious roots that originated on the original root system. Some adventitious roots also formed on submerged portions of the stem. Melaleuca seedlings were very tolerant of flooding as shown by only slight reduction in dry weight increment of shoots after 30 days of flooding in stagnant water. Although flooding for 60 or 90 days significantly reduced dry weight increment of leaves, dry weight increment of roots was not inhibited by any flooding treatment, reflecting both degeneration of some of the original roots and compensatory growth of adventitious roots. On certain days flooding induced stomatal closure on both adaxial and abaxial leaf surfaces. Extensive production of adventitious roots and some stomatal reopening after a critical period of flooding appeared to be important factors in the flooding tolerance of Melaleuca and are consistent with its aggressiveness and vigorous growth on wet sites.  相似文献   

5.
Nalini M. Nadkarni 《Oecologia》1994,100(1-2):94-97
Some of the proximate factors that would induce aboveground stems to produce adventitious roots were investigated experimentally on Senecio cooperi, a tropical cloud forest tree. Stem segments were air-layered with different treatments to promote root formation, and the number of roots initiated and rates of root growth were monitored for 20 weeks. Treatments were the application of wet epiphytes or dry epiphytes plus associated humus, sponges wetted with either water or nutrient solutions, or dry sponges. Controls (stem segments with nothing applied) were also monitored. Numbers of adventitious roots formed and rates of subsequent root growth differed among treatments. Wet epiphyte/humus and nutrient solutions were most effective in producing roots, which suggests that epiphytes and the nutrients they intercept and retain within the canopy may cue adjacent host tissue to exploit this resource.  相似文献   

6.
We compared seedling growth of four Artemisia species dominated at different habitats to determine whether interspecific seedling growth variation of a same genus in tolerance to burial can be used to explain plant distribution in the sand dune field. Interdune lowland species, Artemisia gmelinii, stabilized dune species, A. frigida, semi-stabilized dune species, A. halodendron, and active dune species, A. wudanica were selected. Seedlings grown for 3 weeks were treated at five burial depths for three burial times in pot experiments. Species from the habitats with little burial had smaller survival rate, dry weight and stem elongation speed than those from the habitats with intensive burial when buried. Furthermore, when buried, the former tended to adjust biomass allocation between shoot and root and produce adventitious buds, while the latter tended to maintain a constant root:shoot ratio and produce adventitious roots. We conclude that (1) seedlings of species with a long evolutionary history of exposure to sand burial (from the active sand dune), show quicker stem growth when buried than do seedlings of species from the habitats with little or no sand burial; (2) seedlings of species which do not change root:shoot ratio might be more tolerant of sand burial than those do; (3) seedlings of species from the habitats with intensive sand burial is prone to produce adventitious roots and seedlings of species from the habitats with little or no sand burial tend to produce adventitious buds when buried.  相似文献   

7.
Blake TJ  Li J 《Physiologia plantarum》2003,117(4):532-539
Drought adjustments were compared in black spruce ( Picea mariana [Mill] B.S.P), and jack pine ( Pinus banksiana [Lamb.]) by subjecting seedlings to five cycles of dehydration and rehydration. A computer-controlled root misting chamber system, supplied low (−1.5 MPa), moderate (−2.0 MPa), and severe (−2.5 MPa) dehydration, respectively, in cycles 1, 3 and 5. Although cell water relations failed to adjust to chronic dehydration, there was limited osmotic adjustment in black spruce (cycle 3), and water was re-allocated from the apoplast to the symplast in jack pine (cycles 1 and 3). Dehydration postponement was more important than dehydration tolerance. Jack pine was better able to postpone dehydration than black spruce. Specific conductivity, the hydraulic conductivity per unit stem cross-sectional area, was lower in jack pine and slower to decline during chronic dehydration. When specific conductivity was corrected for the greater leaf area in black spruce, the leaf-specific conductivity did not differ in the two species. There was no increase in needle leakage in jack pine and stomata in jack pine seedlings reopened fully after rehydration. Black spruce was more of a 'water spender', and less water stress (−2.0 MPa, cycle 3) was required to lower specific conductivity, compared to jack pine (−2.5 MPa, cycle 5). Leakage from needle membranes increased in black spruce, and stomata failed to reopen after rewatering (cycles 3 and 5). A greater needle area, smaller root system, and a higher specific conductivity lowered the water stress threshold for cavitation in black spruce, which is confined to moister sites in the boreal forest. Jack pine had a larger root system, smaller needle area and lower specific conductivity than black spruce. Because of these static features, jack pine is more drought tolerant and it is often found on sites that are too hot and dry for black spruce.  相似文献   

8.
淹水胁迫对青杨雌雄幼苗生理特性和生长的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
为揭示青杨(Populus cathayana)雌雄幼苗对淹水胁迫的适应性, 在实验地内通过土培盆栽淹水方式从植株生理生态和生长发育方面探讨淹水胁迫对青杨扦插苗的影响。试验分为对照和淹水2个处理, 处理时间为40天。结果显示: (1)淹水胁迫导致青杨幼苗叶片中的丙二醛(MDA)含量和茎部淹水区的不定根数显著升高, 植株的净光合速率(Pn)、叶绿素含量、超氧化物歧化酶(SOD)活性、株高、基径、总叶面积、比叶面积(SLA)、根生物量、叶生物量、茎生物量、总生物量干重和根冠比(R/S)显著降低。(2)与雄株相比, 淹水胁迫显著增加了雌株幼苗的MDA含量, 降低了SOD活性、Pn、类胡萝卜素(Caro)含量、叶绿素a/b、SLA、根生物量和R/S, 并导致雄株在淹水胁迫下具有比雌株更高的气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)、不定根数和株高。可见, 淹水胁迫对青杨雌雄幼苗的形态生长和生理过程均有严重的抑制作用, 但表现出显著的性别间差异。雄株可以通过维持更高的光合作用能力和增加不定根数量来维持植株的生长, 从而表现出比雌株更强的抗逆性。  相似文献   

9.
Fabião  A.  Madeira  M.  Steen  E.  Kätterer  T.  Ribeiro  C.  Araújo  C. 《Plant and Soil》1995,168(1):215-223
The distribution along the soil profile of Eucalyptus globulus root biomass was followed in a plantation in central Portugal at 1, 2 and 6 years after planting, using an excavation technique. The experimental design consisted of a control (C) and 3 treatments: application of solid fertilizers twice a year (F), irrigation without the application of fertilizers (I) and irrigation combined with liquid fertilizers (IL). Below- and above-ground biomass decreased as follows: IL>I>F>C. So, water stress limited growth more severely than nutrient stress. The roots rapidly colonized the top soil volume (0–20 cm depth) during the first year after planting. Fine root biomass 6 years after planting was 2.2, 1.8 and 1.6 times higher in IL treatment than it was respectively in control, and in F and I treatments. The distribution of fine roots along the soil profile 6 years after planting was more even in IL compared to the other treatments. However, fine roots in the top soil were more concentrated along the tree rows in the irrigated treatments than in the others. The proportion of below-ground biomass relative to the total tree biomass and the root/shoot ratio were higher in C than in the treatments at early growth stages. This pattern was not so clear 6 years after planting, due to the increased proportion of the tap root relative to total biomass, especially in the IL treatment.  相似文献   

10.
Morphological changes of roots and shoots following oxygen deficiencyin the root medium and after partial pruning of the root systemwere analyzed to obtain easily measurable parameters of theadaptive capacity of the root system against stress. Wheat seedlings(Triticum aestivum L. cv. Hatri) were cultivated on nutrientsolution which was either aerated or flushed with nitrogen,or were cultivated on flooded sand. On the third day after grainswelling in two pruning variants, roots 1–3 or 4–8were excised. Root anaerobiosis retarded longitudinal growth and biomass accumulationof the shoot and the seminal roots, and stimulated the developmentof adventitious roots. Partial removal caused a general compensativegrowth of the remaining roots under aerobic conditions. Root pruning plus anaerobiosis exceeded the compensatory capacityof the seedlings and thus caused a strong delay of elongationand biomass accumulation of both roots and shoots, includingdecrease of the root/shoot ratio. Roots became independent ofendosperm reserves on the seventh day under aerobic conditionsthough caryopses were not completely exhausted at this time.Additionally, oxygen deficiency delayed the reserve exhaustionprocess. Triticum aestivum L. cv Hatri, wheat, roots, growth analysis, morphology, anaerobiosis, strees, root pruning, compensatory capacity, caryopsis  相似文献   

11.
Priha  O.  Lehto  T.  Smolander  A. 《Plant and Soil》1999,206(2):191-204
Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and silver birch (Betula pendula L.) seedlings were grown in a greenhouse for four months in three different soils. The soils were from a field afforestation site on former agricultural land: soil from a pine site, soil from a spruce site and soil from a birch site. Pots without seedlings were included. The aim was to discover, independent of the effects of the different quality of aboveground litter and microclimate under the tree species, whether the roots change the microbial activities and chemical characteristics of the soil, whether the changes are dependent on the tree species, and whether the changes vary in different soils. Pine, spruce and birch had, on average, five, one and six meters of roots, respectively. Birch had by far the highest number of short root tips, on average 11 450 per seedling, compared to 1900 and 450 in pine and spruce seedlings, respectively. The majority of the short roots of pine and spruce were brown sheathed mycorrhizas, and those of birch were mycorrhizas in an early stage of development. The seedlings caused no major changes in either the soil pH or the concentrations of nutrients in the soils, but did affect the microbial characteristics of the soils. The effect of the tree species did not differ in different soils. Microbial biomass C and N, C mineralization rate and the concentration of ergosterol were all higher under birch and pine than under spruce and in plantless soils. Nitrate concentrations were lowest under pine and birch, but rates of net N mineralization, nitrification and denitrification did not differ under different seedlings. The stimulative effect of pine and especially birch on soil microbes was possibly due to them having more roots and releasing more root exudates to soil. There were, however, indications that not only the length/mass of roots determined the changes in microbial activities, but also differences in root activities per unit of root or in the quality of root exudates.  相似文献   

12.
 Plant responses to saturation vapour pressure deficit (SVPD) were studied by subjecting black spruce [Picea mariana (Mill) B.S.P.] and jack pine seedlings (Pinus banksiana Lamb.) to humid (0.3 – 0.8 kPa) or dry (2.0 – 2.5 kPa SVPD) regimes for 4 weeks using a computer-controlled environmental system to control diurnal variation in SVPD. Dry matter accumulation in needles was not altered by increasing SVPD. However, root growth declined by 60% which increased shoot to root ratio and reduced total seedling dry weight in both black spruce and jack pine. Relative growth rate of jack pine also declined to about half the rate of plants grown under humid conditions. In situ root marking studies showed that the decline in root growth of jack pine under the high SVPD was the result of reduced lateral root initiation, whereas root elongation was unaffected by humidity. A 4-week exposure to dry air increased abscisic acid (ABA) levels in needles, but not roots, of jack pine whereas ABA levels in black spruce were not altered. A short (3-day) exposure failed to increase needle ABA levels in either species. These results suggest that the responses of conifers to dry air were not the result of ABA accumulation. Received: 24 March 1996 / Accepted: 30 May 1996  相似文献   

13.
To determine the role of adventitious roots in supplying water to Ipomoea pes-caprae (L.) Sweet (Convolvulaceae), we examined the effects of water deficit on water uptake and the growth patterns of leaves and shoots. After stopping the water supply from the primary root or adventitious roots, the water-uptake rate of the other root system increased steeply within 90–100 min to a level of 90% of the pretreatment water-uptake rate of the whole plant. Thus, the primary and adventitious roots can compensate for a decrease in the water-uptake rate of the whole plant caused by dehydration. The continuous growth of leaves and shoots after dehydration suggests that an increase in the water-uptake rate by either root system can support plant growth, although the growth rates of immature leaves in plants with no water supply from the primary or adventitious roots were lower than in controls. We conclude that the water supply from adventitious roots contributes to the survival and growth of plants, and will be important for vegetative propagation.  相似文献   

14.
The effects of two boron (B) levels on growth, shoot water potential, gas exchange and nutrient accumulation in Norway spruce [Picea abies (L.) Karst.] seedlings were studied in a growth room experiment lasting 22 weeks which included well-watered control seedlings and seedlings exposed to one (8 days) or two (6+8 days) periods of drought and a rewatering period (8 days) at the end of the experiment. The effects of B and drought were monitored during drought and recovery. Needle B concentrations were 6 mg kg–1 (–B treatment) and 34 mg kg–1 (+B treatment) at the end of the experiment. The –B seedlings showed visible symptoms of damage in the upper shoot after repeated drought and had reduced height growth, root dry mass, allocation of biomass to roots and formation of root tips and mycorrhizas and reduced needle P, Ca, and Mg concentrations and contents. In contrast, 15N uptake, shoot water potential and gas exchange were not markedly affected by B. It can be concluded that the visible symptoms of damage at low B were probably related to reduced B transport due to repeated drought. In contrast, the effects of low B on growth, particularly of the roots, and on nutrient uptake can be regarded as early effects which occur before any influence on shoot water potential or gas exchange. The positive effects of B on root biomass and nutrient accumulation are of particular importance regarding the establishment of young seedlings in the field.  相似文献   

15.
The large river swamps of Louisiana have complex topography and hydrology, characterized by black willow (Salix nigra) dominance on accreting alluvial sediments and vast areas of baldcypress (Taxodium distichum) deepwater swamps with highly organic substrates. Seedling survival of these two wetland tree species is influenced by their growth rate in relation to the height and duration of annual flooding in riverine environments. This study examines the interactive effects of substrate, hydroperiod, and nutrients on growth rates of black willow and baldcypress seedlings. In a greenhouse experiment with a split-split-plot design, 1-year seedlings of black willow and baldcypress were subjected to two nutrient treatments (unfertilized versus fertilized), two hydroperiods (continuously flooded versus twice daily flooding/draining), and two substrates (sand versus commercial peat mix). Response variables included height, diameter, lateral branch count, biomass, and root:stem ratio. Black willow growth in height and diameter, as well as all biomass components, were significantly greater in peat substrate than in sand. Black willow showed a significant hydroperiod–nutrient interaction wherein fertilizer increased stem and root biomass under drained conditions, but flooded plants did not respond to fertilization. Baldcypress diameter and root biomass were higher in peat than in sand, and the same two variables increased with fertilization in flooded as well as drained treatments. These results can be used in Louisiana wetland forest models as inputs of seedling growth and survival, regeneration potential, and biomass accumulation rates of black willow and baldcypress.  相似文献   

16.
Summary Flooding ofPlatanus occidentalis L. seedlings for up to 40 days induced several changes including early stomatal closure, greatly accelerated ethylene production by stems, formation of hypertrophied lenticels and adventitious roots on submerged portions of stems, and marked growth inhibition. Poor adaptation ofPlatanus occidentalis seedlings to soil inundation was shown in stomatal closure during the entire flooding period, inhibition of root elongation and branching, and death of roots. Some adaptation to flooding was indicated by (1) production of hypertrophied lenticels which may assist in exchange of dissolved gases in flood water and in release of toxic compounds, and (2) production of adventitious roots on stems which may increase absorption of water. These adaptations appeared to be associated with greatly stimulated ethylene production in stems of flooded plants. The greater reduction of root growth over shoot growth in flooded seedlings will result in decreased drought tolerance after the flood waters recede. The generally low tolerance to flooding of seedlings of species that are widely rated as highly flood tolerant is emphasized.  相似文献   

17.
M. Mandre  R. Korsjukov  K. Ots 《Plant and Soil》2004,265(1-2):301-314
The effect of wood ash applied as a fertiliser (0.25, 0.5 and 1 kg m–2) to nutrient poor sandy soil on 4-year-old Norway spruce (Picea abies) growing in small-scale sample plots was studied. Analyses carried out with roots, stems, needles and shoots of different age showed that an increase in the pH level and K and Ca concentrations and a decrease in N and P concentrations in the soil was accompanied by a disbalance of nutrients in tree compartments. Stimulation of pigment synthesis in Norway spruce needles was observed, and no disbalances occurred in the pigment system (Chl a/Chl b, TChl/Car) guaranteeing normal process of photosynthesis. Biomass responses to wood ash application depended on the age of needles and shoots, being only slightly notable in current year organs. Inhibition of height growth of seedlings, but stimulation of root biomass was established.  相似文献   

18.
The effects of sugars on root growth and on development of adventitious roots were analyzed in Arabidopsis thaliana. Seeds were sown on agar plates containing 0.0–5.0% sugars and placed vertically in darkness (DD) or under long day (LD, 16 h:8 h) conditions, so that the seedlings were constantly attached to the agar medium. In the sucrose-supplemented medium, seedlings showed sustained growth in both DD and LD. However, only dark-grown seedlings developed adventitious roots from the elongated hypocotyl. The adventitious roots began to develop 5 days after imbibition and increased in number until day 11. They could, however, be initiated at any position along the hypocotyl, near the cotyledon or the primary root. They were initiated in the pericycle in the same manner as ordinary lateral roots. Sucrose, glucose and fructose greatly stimulated the induction of adventitious roots, but mannose or sorbitol did not. Sucrose at concentrations of 0.5–2.0% was most effective in inducing adventitious roots, although 5.0% sucrose suppressed induction. Direct contact of the hypocotyl with the sugar-supplemented agar medium was indispensable for the induction of adventitious roots. Electronic Publication  相似文献   

19.
研究地下穴贮滴灌(自主设计)、膜下滴灌、地表滴灌3种滴灌方式对酿酒葡萄品种‘赤霞珠’幼苗根冠功能的影响.结果表明: 膜下滴灌和地下穴贮滴灌较地表滴灌更促进植株生长,其中地下穴贮滴灌主要促进根系的生长,膜下滴灌主要促进地上部的生长;在20~60 cm土层,地下穴贮滴灌处理根表面积、根体积、根系活力和超氧化物歧化酶活性均高于地表滴灌和膜下滴灌处理,表明地下穴贮滴灌可有效促进根系下扎,提高土壤深层根系的生理活性;同一灌水周期后期地表滴灌处理较早受到干旱胁迫的影响,地下穴贮滴灌和膜下滴灌处理叶片净光合速率(Pn)和气孔导度(gs)均高于地表滴灌处理,灌水7 d后膜下滴灌处理12:00—14:00实际光化学效率(ΦPSⅡ)、光化学猝灭系数(qP)低于地下穴贮滴灌处理,表明叶片荧光日进程中膜下滴灌受到的光抑制程度大于地下穴贮滴灌;对植株根冠功能的相关分析表明,有效增加20~40 cm土层根系的根量指标,保持根系生理活性在较高水平,可促进整体植株地上部生物量的增加和总生物量的积累.综合分析表明,地下穴贮滴灌较膜下滴灌、地表滴灌对植株根冠生长及功能调控有一定优势,可作为果树节水灌溉技术的潜在替代技术.  相似文献   

20.
Salix cheilophila Schneid. is a naturally occurring Salix species in Mu Us Sandy Land, Inner Mongolia, China. We focused on the morphological adaptability of S. cheilophila to sand dune burial. For morphological measurements, 32 S. cheilophila seedlings were removed from a community which was in the process of being buried by a shifting sand dune. Each seedling collected included the entire root system. We measured the number, length, and biomass of the adventitious roots, primary lateral roots, and taproot, and compared the morphological characteristics of the root system, including adventitious roots, for seedlings buried to various levels in the sand. The growth range of adventitious roots increased as the length of the buried portion of the main shoot increased. In addition, the total dry weight of all current-year shoots tended to increase gradually with increasing total dry weight of the adventitious roots. These results suggest that S. cheilophila tends to make use of the sedimentary sand layer that accompanies shifting sand dunes. However, there was no correlation between biomass or number of adventitious roots and the length of the buried part of the main shoot. Thus, S. cheilophila does not grow adventitious roots proportional to the buried part. These morphological characteristics of the root system, including the adventitious roots, may indicate that S. cheilophila has poor morphological adaptability to sand dune burial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号