首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Although there is increasing interest in the effects of habitat disturbance on community attributes and the potential consequences for ecosystem functioning, objective approaches linking biodiversity loss to functional loss are uncommon. The objectives of this study were to implement simultaneous assessment of community attributes (richness, abundance and biomass, each calculated for total-beetle assemblages as well as small- and large-beetle assemblages) and three ecological functions of dung beetles (dung removal, soil perturbation and secondary seed dispersal), to compare the effects of habitat disturbance on both sets of response variables, and their relations. We studied dung beetle community attributes and functions in five land-use systems representing a disturbance gradient in the Brazilian Amazon: primary forest, secondary forest, agroforestry, agriculture and pasture. All response variables were affected negatively by the intensification of habitat disturbance regimes, but community attributes and ecological functions did not follow the same pattern of decline. A hierarchical partitioning analysis showed that, although all community attributes had a significant effect on the three ecological functions (except the abundance of small beetles on all three ecological functions and the biomass of small beetles on secondary dispersal of large seed mimics), species richness and abundance of large beetles were the community attributes with the highest explanatory value. Our results show the importance of measuring ecological function empirically instead of deducing it from community metrics.  相似文献   

2.
Dung beetles (Coleoptera: Scarabaeidae) perform essential ecological functions in pastures, such as dung removal, nutrient recycling and parasite control. However, the patterns of alimentary use by dung beetles in introduced Brazilian pastures are poorly known. Here, we compared dung beetle species richness, abundance and species composition in cattle and sheep dung, and identified the dung beetle species preference by each dung type. In January 2019, dung beetles were sampled with pitfall traps baited with cattle and sheep dung in 12 introduced pastures (Urochloa spp.), in Aquidauana, Mato Grosso do Sul, Brazil. A total of 592 individuals belonging to 14 species of dung beetles were collected. Of the 14 species sampled, nine were recorded in both dung types, five were found exclusively in sheep dung and no species was exclusive to cattle dung. Species richness and abundance were higher in sheep dung. Species composition was different between the dung types. Dichotomius bos (Blanchard), Genieridium bidens (Balthasar), Onthophagus aeneus Blanchard and Trichillum externepunctatum Preudhomme de Borre were associated with sheep dung. Our results provide evidence that sheep dung is more attractive to dung beetles with a distinct community species between the two dung types, although the studied pastures have never been used before for sheep breeding. Thus, our data shows that the introduction of a new alimentary resource (e.g. sheep dung) can be an important strategy to help to obtain a more diverse dung beetle assemblage in introduced Brazilian pastures.  相似文献   

3.
The impacts of land use change on biodiversity and ecosystem functions are variable, particularly in fragmented tropical rainforest systems with high diversity. Dung beetles (Scarabaeinae) are an ideal group to investigate the relationship between land use change, diversity and ecosystem function as they are easily surveyed, sensitive to habitat modification and perform many ecosystem functions. Although this relationship has been investigated for dung beetles in some tropical regions, there has been no study assessing how native dung beetles in Australia's tropical rainforests respond to deforestation, and what the corresponding consequences are for dung removal (a key ecosystem function fulfilled by dung beetles). In this study we investigated the relationship between dung beetle community attributes (determined through trapping) and function (using dung removal experiments that allowed different dung beetle functional groups to access the dung) in rainforest and cleared pasture in a tropical landscape in Australia's Wet Tropics. Species richness, abundance and biomass were higher in rainforest compared to adjacent pasture, and species composition between these land use types differed significantly. However, average body size and evenness in body size were higher in pasture than in rainforest. Dung removal was higher in rainforest than in pasture when both functional groups or tunnelers only could access the dung. Increased dung removal in the rainforest was explained by higher biodiversity and dominance of a small number of species with distinct body sizes, as dung removal was best predicted by the evenness in body size of the community. Our findings suggest that functional traits (including body size and dung relocation behaviour) present in a dung beetle community are key drivers of dung removal. Overall, our results show that deforestation has reduced native dung beetle diversity in Australian tropical landscapes, which negatively impacts on the capacity for dung removal by dung beetles in this region.  相似文献   

4.
The conversion of Brazilian savanna into exotic pastures leads to the loss of dung beetles and a decrease in their contribution to ecological functions. We hypothesized that the dung beetle communities from exotic pastures would show greater significant differences between climatic zones, when contrasted to communities from Brazilian savanna in the same region, since dung beetle assemblages in pastures are more simplified. We assessed which variables (purpose of production, type of management, percentage the habitat per buffer, soil penetration resistance, pasture area and herd size) affect more the dung beetle community in exotic pastures. We carried out this study in 48 areas of native Brazilian savannas and exotic pastures distributed across four bioclimatic zones: BZ1, hot with three dry months; BZ2, hot with 4–5 dry months; BZ3, sub-hot with 4–5 dry months and BZ4, meso-thermal with 4–5 dry months of Minas Gerais State, Brazil. In each BZ, six areas of Brazilian savannas and six areas of exotic pasture were selected. In the Brazilian savanna areas, the species richness, abundance and biomass of dung beetles did not differ between the bioclimatic zones, unlike the exotic pastures. The composition of the dung beetle community was different between land use systems and between bioclimatic zones; the interaction between the two factors was also significant. Our results provide evidence that dung beetle communities active in exotic pastures are more susceptible to climatic environmental variations than communities from more complex and stable habitats, such as savannas. Finally, the best model suggested that all the six variables combined explained about 91% of the total variability in species composition observed between sampling sites.  相似文献   

5.
The Pantanal is the largest Neotropical seasonal freshwater wetland on Earth. Extensive livestock production has been the dominant economic land use activity of the Pantanal, where approximately 80 % of the land is occupied by native and introduced pastures. However, the impact of native pasture conversion into introduced pasture on the biodiversity of this biome is little understood. Here we evaluate the effect of native pasture to introduced pasture conversion on dung beetle communities. We sampled dung beetles in July 2011 (dry season) and January 2012 (rainy season), at four native pasture sites and four introduced pasture sites in Aquidauana, Mato Grosso do Sul, Brazil. The sampling was carried out using pitfall traps baited with three different bait types: carrion, cattle dung, and human feces. We sampled 7086 individuals, belonging to 32 species of 16 genera and six tribes of dung beetles. The abundance was similar among the pasture types. However, a higher species richness was found on the native pasture. Species composition also differed between the two pasture types in each sampling season. Additionally, the dominant functional guilds were different in the two landscapes. The result shows that the conversion of native grasslands into introduced pasture results in a decrease of species number and changes in species composition. These findings highlight the importance on native pasture to the conservation of dung beetle biodiversity in this ecosystem.  相似文献   

6.
Agricultural expansion and intensification are major threats to global biodiversity, ecological functions, and ecosystem services. The rapid expansion of oil palm in forested tropical landscapes is of particular concern given their high biodiversity. Identifying management approaches that maintain native species and associated ecological processes within oil palm plantations is therefore a priority. Riparian reserves are strips of forest retained alongside rivers in cultivated areas, primarily for their positive hydrological impact. However, they can also support a range of forest‐dependent species or ecosystem services. We surveyed communities of dung beetles and measured dung removal activity in an oil palm‐dominated landscape in Sabah, Malaysian Borneo. The species richness, diversity, and functional group richness of dung beetles in riparian reserves were significantly higher than in oil palm, but lower than in adjacent logged forests. The community composition of the riparian reserves was more similar to logged forest than oil palm. Despite the pronounced differences in biodiversity, we did not find significant differences in dung removal rates among land uses. We also found no evidence that riparian reserves enhance dung removal rates within surrounding oil palm. These results contrast previous studies showing positive relationships between dung beetle species richness and dung removal in tropical forests. We found weak but significant positive relationships between riparian reserve width and dung beetle diversity, and between reserve vegetation complexity and dung beetle abundance, suggesting that these features may increase the conservation value of riparian reserves. Synthesis and applications: The similarity between riparian reserves and logged forest demonstrates that retaining riparian reserves increases biodiversity within oil palm landscapes. However, the lack of correlation between dung beetle community characteristics and dung removal highlights the need for further research into spatial variation in biodiversity–ecosystem function relationships and how the results of such studies are affected by methodological choices.  相似文献   

7.
Biodiversity loss and anthropogenic environmental changes are known to impact ecosystem functions and services. However, there are still some uncertainties such as confounding environmental factors other than community attributes that affect ecosystem functioning. Our goal was to understand what factors influence the performance of Scarabaeinae dung beetle functions, testing the hypothesis that both community attributes and environmental variables influence the performance. Toward this aim, we collected dung beetles along an elevational gradient (800–1400 m a.s.l.) in the Espinhaço mountain range (Brazil) and quantified dung beetle functions, that is, dung removal, soil excavation and secondary seed dispersal. We recorded data on environmental factors related to climate, soil and vegetation and evaluated their effects on dung beetle functions. Dung beetle ecological functions declined with elevation and the decrease was more pronounced than richness, indicating that there are other factors involved in functions performance besides diversity of beetles. Indeed, we found that the ecological functions measured were dependent on both dung beetle community attributes and environmental factors. Climate, soil and vegetation influenced dung beetle function performance as much as richness, abundance and body size. Dung beetle functional diversity did not explain any of the functions measured. Our study demonstrates that ecological functions are directly influenced by both community attributes and environmental variables and confirms the link between biodiversity, environment and ecosystem functioning.  相似文献   

8.
1. Dung beetles are key contributors to a suite of ecosystem services. Understanding the factors that dictate their distributions is a necessary step towards preventing negative impacts of biodiversity loss. 2. Alpine dung beetle communities were analysed along altitudinal gradients to assess how different components of the community, defined in terms of nesting strategy [dung‐ovipositing Aphodiidae (DOAs), soil‐ovipositing Aphodiidae (SOAs) and two paracoprid (PAR) groups, Geotrupidae and Scarabaeidae] and parameters relevant to dung removal rates (species richness, total biomass and functional diversity), are distributed, and to identify to which environmental factors they respond. 3. Species richness declined with altitude. There was no significant variation in functional diversity or total biomass in relation to altitude. There were significant variations when considered by nesting group: DOA species richness and biomass decreased, SOA biomass increased, and Geotrupidae biomass showed a non‐linear trend, as altitude increased. 4. Functional diversity and total species richness were positively related to vegetation cover. DOA species richness was highest in forest and scrub; SOA species richness was highest in grassland and PAR species richness was lowest in rocky areas. 5. Dung beetle species show different trends in species richness and biomass depending on nesting strategy. Management to promote the dung beetle community should include maintenance of a mosaic of habitat types. Given the likely importance of species richness and biomass to ecosystem functioning, and the complimentary effect of different dung beetle groups, such a strategy may protect and enhance the ecosystem services that Alpine dung beetles provide.  相似文献   

9.
10.
In recent decades, pastoral abandonment has produced profound ecological changes in the Alps. In particular, the reduction in grazing has led to extensive shrub encroachment of semi-natural grasslands, which may represent a threat to open habitat biodiversity. To reverse shrub encroachment, we assessed short-term effects of two different pastoral practices on vegetation and dung beetles (Coleoptera, Scarabaeoidea). Strategic placement of mineral mix supplements (MMS) and arrangement of temporary night camp areas (TNCA) for cattle were carried out during summer 2011 in the Val Troncea Natural Park, north-western Italian Alps. In 2012, one year after treatment, a reduction in shrub cover and an increase in bare ground cover around MMS sites was detected. A more intense effect was detected within TNCA through increases in forage pastoral value, and in the cover and height of the herbaceous layer. Immediately after treatment, changes in dung beetle diversity (total abundance, species richness, Shannon diversity, taxonomic and functional diversity) showed a limited disturbance effect caused by high cattle density. In contrast, dung beetle diversity significantly increased one year later both at MMS and TNCA sites, with a stronger effect within TNCA. Multivariate Regression Trees and associated Indicator Value analyses showed that some ecologically relevant dung beetle species preferred areas deprived of shrub vegetation. Our main conclusions are: i) TNCA are more effective than MMS in terms of changes to vegetation and dung beetles, ii) dung beetles respond more quickly than vegetation to pastoral practices, and iii) the main driver of the rapid response by dung beetles is the removal of shrubs. The resulting increase in dung beetle abundance and diversity, which are largely responsible for grassland ecosystem functioning, may have a positive effect on meso-eutrophic grassland restoration. Shrub encroachment in the Alps may therefore be reversed, and restoration of grassland enhanced, by using appropriate pastoral practices.  相似文献   

11.
We studied the diversity of dung beetle communities in Japanese pastures to identify the factors that maintain or enhance the diversity of dung beetles at a landscape scale. We surveyed dung beetles from 17 pastures located in the northeastern part of Tochigi Prefecture, which is in the center of mainland Japan. From 1999 to 2001, surveys were conducted during the 6-month grazing period (May to October) by using dung baited basket traps. We also collected information about the environmental conditions and pasture management practices. Twenty-five dung beetle species belonging to Geotrupinae, Scarabaeinae, and Aphodiinae (including 13 tunneler and 12 dweller species) were recorded. The abundance of dweller species decreased with increasing elevation, possibly because of the effect of rainfall, whereas the species richness of tunneler species was affected by cattle disturbance and soil condition. Beetle species richness significantly increased with the number of years that the pastures had been grazed. Ivermectin administration did not appear to have any adverse effect on dung beetle abundance, species richness, or species diversity. The dung beetle datasets of the current study (including specific tunneler and dweller beetle groups) supported the widely documented positive relationship between local abundance and species distribution ranges. The within pasture, within area, and between area hierarchical additive partitioning of regional total diversity indicated that landscape-scale management should be implemented to conserve the regional diversity of the dung beetle communities inhabiting Japanese pastures.  相似文献   

12.
Our knowledge of how tropical forest biodiversity and functioning respond to anthropogenic and climate-associated stressors is limited. Research exploring El Niño impacts are scarce or based on single post-disturbance assessments, and few studies assess forests previously affected by anthropogenic disturbance. Focusing on dung beetles and associated ecological functions, we assessed (a) the ecological effects of a strong El Niño, (b) if post-El Niño beetle responses were influenced by previous forest disturbance, and (c) how these responses compare between forests impacted only by drought and those affected by both drought and fires. We sampled 30 Amazonian forest plots distributed across a gradient of human disturbance in 2010, 2016, and 2017—approximately 5 years before, and 3–6 and 15–18 months after the 2015–16 El Niño. We found 14,451 beetles from 98 species and quantified the beetle-mediated dispersal of >8,600 seed mimics and the removal of c. 30 kg of dung. All dung beetle responses (species richness, abundance, biomass, compositional similarity to pre-El Niño condition, and rates of dung removal and seed dispersal) declined after the 2015–16 El Niño, but the greatest immediate losses (i.e., in 2016) were observed within fire-affected forests. Previous forest disturbance also influenced post-El Niño dung beetle species richness, abundance, and species composition. We demonstrate that dung beetles and their ecological functions are negatively affected by climate-associated disturbances in human-modified Amazonian forests and suggest that the interaction between local anthropogenic and climate-related stressors merits further investigation.  相似文献   

13.
We evaluated the effects of different land-use systems on the ability of dung beetles to control the population of detritus-feeding flies. We tested the hypotheses that intensification of land use will reduce dung beetles richness, abundance and biomass and, consequently, their dung burial ability, affecting the interaction between dung beetles and flies and reducing its effectiveness as a natural biological control. In the Brazilian Amazon we sampled dung beetles, fly larvae and adults; and recorded the rate of dung removal by dung beetles across a gradient of land-use intensity from primary forest, secondary forest, agroforestry, agriculture to pasture. Our results provide evidence that land-use intensification results in a reduction of the richness, abundance and biomass of dung beetles, and this in turn results in lower rates of dung removal in the most simplified systems. We found no significant differences in the abundance of fly larvae between the different systems of land use. However, the number of adult flies differed significantly between land-use systems, presenting higher abundance in those sites with greater intensity of use (pasture and agriculture) and a lower abundance of adult flies in forested systems (primary and secondary forests, and agroforestry). Information-theoretic model selection based on AICc revealed strong support for the influence of land-use systems, dung removal rates and dung beetle abundance, biomass and richness on adult dung-fly abundance. Our results also reveal that dung beetles are not solely responsible for fly control and that other factors linked to land use are influencing the populations of these detritus-feeding insects.  相似文献   

14.
Riparian forests provide important habitat for many wildlife species and are sensitive to landscape change. Among terrestrial invertebrates, dung beetles have been used to investigate the effects of environmental disturbances on forest structure and diversity. Since many studies demonstrated a negative response of dung beetle communities to increasing forest fragmentation, and that most dung beetle species had a more pronounced occurrence during warmest seasons, three hypotheses were tested: (1) Scarabaeinae richness, abundance, diversity and evenness are lower in thinner riparian zone widths than in wider widths during the warmest seasons; (2) Scarabaeinae richness and abundance are positively influenced by leaf litter coverage and height and canopy cover; and (3) Scarabaeinae composition varies with the reduction in riparian vegetation and among annual seasons. We selected four fragments with different riparian zone widths in three secondary streams in southern Brazil. In each fragment, four sampling periods were carried out seasonally between spring 2010 and winter 2011. We collected dung beetles using pitfall traps with two types of bait. We collected 1289 specimens distributed among 29 species. In spring and summer, dung beetle richness was higher in fragments with the widest riparian zone than in those with a thinner riparian zone, and it did not vary between fragments in fall and winter seasons. Dung beetle abundance did not differ among fragments with different riparian zone widths, but it was higher in spring and summer than fall and winter. Richness and abundance were positively influenced by leaf litter. While dung beetle diversity was higher in fragments with wider riparian zone widths than in those with thinner widths, the evenness was similar among fragments. Dung beetle composition differed between the fragments with the widest and thinnest riparian zones, and it also varied among the seasons. Our results suggest that decreased riparian zones affect negatively to dung beetle community structure in southern Brazil. Fragments with thinner riparian zones had lower beetle richness in warmest seasons and an altered community composition. In this sense, the dung beetles are potentially good indicators of riparian forest fragmentation since some species were indicators of a particular riparian zone width. From a conservation perspective, our results demonstrate that the new Brazilian Forest Code will greatly jeopardize not only the terrestrial and aquatic biodiversity of these ecosystems, but also countless other ecological functions.  相似文献   

15.
Dung beetles highly depend on the ephemeral microhabitat dung which is food resource and larval habitat at the same time. Environmental conditions surrounding a dung pad, such as vegetation structure, have an impact on dung beetle assemblages. We investigated the influence of dung conditions and surrounding habitat characteristics on Mediterranean dung beetle assemblages in a permanently grazed landscape in northern Sardinia. We sampled the dung beetle assemblages of donkey and horse dung in three different vegetation types and assessed species richness and abundance of dung beetles. Species richness was determined by dung and surrounding habitat conditions, whereas abundance was solely affected by dung conditions. However, species richness and abundance decreased with increasing dung density. The effect of dung density on species richness varied depending on vegetation type, with dry grassland exhibiting the highest number of dung beetles species at high dung density. Species composition in dung pads was influenced by abiotic factors with dwellers being negatively affected by increasing dung-pad temperature. Our results underline the importance of diverse vegetation, particularly with respect to the complexity of vegetation which interrelates with the microclimate. Furthermore, our findings illustrate the negative effect of high dung densities on dung beetle assemblages, suggesting that the degree of the intensity of use by grazing animals is important when considering measures for the conservation of dung beetles.  相似文献   

16.
Species richness, composition, and functional traits of carabid beetle assemblages (Coleoptera: Carabidae) were studied in relation to different grassland management. Carabid beetles were sampled during the summers 2008 and 2009 by 165 traps located in 11 sites in the central-eastern Italian Alps. Using mixed effect models to account for potential spatial bias, we found that mown grasslands had significantly more species, a lower proportion of wingless species and a lower proportion of species with long larval development than grazed and natural grasslands. Within grazed and mown grasslands, neither cattle density nor number of cuts had any significant effect neither on species richness nor on any of the traits. The influence of grassland management can be summarised as follows: (1) grazing does not change community structure and functional traits compared to natural grasslands; (2) mowing negatively affects the carabid beetle assemblages; (3) the intensity of grazing and of cutting may not affect the structure of species assemblages of ground beetles. Our results support the hypothesis that agroecosystem practices in alpine grasslands influence carabid beetle communities. Specifically, the species with traits typical of undisturbed habitats (low dispersal abilities and long larval development) are more sensitive to perturbations (e.g. cutting). Our suggestion for agricultural and environmental planning and for conservation schemes is that the preservation of natural grasslands (e.g. forest gaps) and the implementation of grazing should be promoted during the planning of agroecosystem mosaics.  相似文献   

17.
We used dung beetles to evaluate the impact of urbanization on insect biodiversity in three Atlantic Forest fragments in Londrina, Paraná, Brazil. This study provides the first empirical evidence of the impact of urbanization on richness, abundance, composition and guild structure of dung beetle communities from the Brazilian Atlantic Forest. We evaluated the community aspects (abundance, richness, composition and food guilds) of dung beetles in fragments with different degrees of immersion in the urban matrix using pitfall traps with four alternative baits (rotten meat, rotten fish, pig dung and decaying banana). A total of 1 719 individuals were collected, belonging to 29 species from 11 genera and six Scarabaeinae tribes. The most urban‐immersed fragment showed a higher species dominance and the beetle community captured on dung presented the greatest evenness. The beetle communities were distinct with respect to the fragments and feeding habits. Except for the dung beetle assemblage in the most urbanized forest fragment, all others exhibited contrasting differences in species composition attracted to each bait type. Our results clearly show that the degree of urbanization affects Atlantic Forest dung beetle communities and that the preservation of forest fragments inside the cities, even small ones, can provide refuges for Scarabaeinae.  相似文献   

18.
N. M. O'Hea  L. Kirwan  J. A. Finn 《Oikos》2010,119(7):1081-1088
Dung fauna plays an important role in dung decomposition, a key ecosystem process in nutrient cycling in grazed grasslands. The diversity of a three‐species community (dung beetles, dung flies and epigeic earthworms) was systematically manipulated to produce different relative abundance distributions (evenness levels) and the resulting communities were introduced to standardised dung pats in laboratory experiments. Dung decomposition was modelled using an analysis that disentangled species identity effects and the interactions among species that contribute to the diversity effect. This revealed that the net diversity effect was composed of positive (fly–earthworm), negative (beetle–earthworm) and neutral (fly–beetle) effects of species interaction. These pairwise interactions resulted in complex, but systematically varying and predictable effects on dung decomposition as the relative abundances of species changed. Decomposition was consistently greater in communities with higher decomposer biomass. The utility of the adopted analytical approach was emphasised by comparison with an ANOVA that found that dung decomposition did not differ among evenness levels. Thus, the averaging of decomposition across different community structures within evenness levels masked the different effects of species interactions. These results highlight methodological insights into the quantification of diversity–function relationships.  相似文献   

19.
The Brazilian savanna is the second largest ecosystem in Brazil. It is also one of the most endangered, with only 20% of its habitat remaining unchanged. Agriculture and livestock have been indicated as the main agents of destruction of the Brazilian savanna. Brazilian livestock, for example, is the main reason for cultivation of exotic grasses such as Urochloa spp. (from Africa). Dung beetles are widely used in ecological assessment, mainly because they are recognized as bioindicators of environmental changes. Therefore, efficient sampling is required for any research involving the biodiversity of this group. In order to mitigate the lack of information on efficiency of the attractiveness of baits in the endangered Brazilian savanna and in exotic pasturelands, we sampled dung beetles in four native patches of the Brazilian savanna and in four areas of pastures with Urochloa spp. Dung beetles were captured with pitfall traps baited with carcass, cattle dung, human feces and pig dung, with a total sampling effort of 384 traps. We sampled 7544 individuals belonging to 43 species and 18 genera of dung beetles. Thirty‐eight species were collected in the Brazilian savanna and 24 species in exotic pastureland. In both ecosystems traps baited with human feces sampled greater abundance and species richness of dung beetles when compared with the other three baits used. Our results showed that human feces is a reliable, easy and inexpensive bait to sample greater abundance and species richness of generalist dung beetles in both native and exotic habitats, with clear structural differences.  相似文献   

20.
The disturbance of natural environments affects, among others, the diversity of dung beetle assemblages, which could have serious consequences for the ecological processes regulated by these insects. The objective of this study was to evaluate and compare species diversity and functional groups of dung beetle assemblages both in the native forest and in three livestock systems that differed in their structure and composition of vegetation: a livestock system with native trees, a livestock system with exotic trees (Pinus taeda), and traditional open pastures, in the semideciduous Atlantic forest of Argentina, in an area previously covered by continuous forest and currently with a heterogeneous landscape of native forest and different land uses. Pitfall traps baited with cow dung were used in the natural forests and the livestock systems studied. A total of 2461 beetles belonging to 38 species were captured. Treed livestock systems showed the highest species richness (0D) and diversity (1D and 2D). Twelve functional groups were identified. The native forest showed the highest functional group richness, while open pastures had the lowest. In general, livestock systems showed a low proportional abundance of telecoprid, diurnal and large beetles. Microclimate (average temperature and humidity) and soil conditions (soil composition: sandy or clayey) were closely associated with the species and functional group composition. Results confirm that cattle ranching with tree retention preserves dung beetle diversity, and suggest that cattle systems without canopy cover have higher impact (negative effects) than silvopastoral systems on both species and functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号