首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freshwater biodiversity loss potentially disrupts ecosystem services related to water quality and may negatively impact ecosystem functioning and temporal community turnover. We analysed a data set containing phytoplankton and zooplankton community data from 131 lakes through 9 years in an agricultural region to test predictions that plankton communities with low biodiversity are less efficient in their use of limiting resources and display greater community turnover (measured as community dissimilarity). Phytoplankton resource use efficiency (RUE = biomass per unit resource) was negatively related to phytoplankton evenness (measured as Pielou's evenness), whereas zooplankton RUE was positively related to phytoplankton evenness. Phytoplankton and zooplankton RUE were high and low, respectively, when Cyanobacteria, especially Microcystis sp., dominated. Phytoplankton communities displayed slower community turnover rates when dominated by few genera. Our findings, which counter findings of many terrestrial studies, suggest that Cyanobacteria dominance may play important roles in ecosystem functioning and community turnover in nutrient‐enriched lakes.  相似文献   

2.
3.
4.
While most biodiversity and ecosystem functioning (BEF) studies have found positive effects of species richness on productivity, it remain unclear whether similar patterns hold for marine phytoplankton with high local richness. We use the continuous trait‐based modelling approach, which assumes infinite richness and represents diversity in terms of the variance of the size distribution, to investigate the effects of phytoplankton size diversity on productivity in a three‐dimensional ocean circulation model driven by realistic physics forcing. We find a slightly negative effect of size diversity on primary production, which we attribute to several factors including functional trait‐environment interactions, flexible stoichiometry and the saturation of productivity at low diversity levels. The benefits of trait optimisation, whereby narrow size distributions enhance productivity under relatively stable conditions, tend to dominate over those of adaptive capacity, whereby greater diversity enhances the ability of the community to respond to environmental variability.  相似文献   

5.
One of the most intriguing environmental gradients connected with variation in diversity is ecosystem productivity. The role of diversity in ecosystems is pivotal, because species richness can be both a cause and a consequence of primary production. However, the mechanisms behind the varying productivity-diversity relationships (PDR) remain poorly understood. Moreover, large-scale studies on PDR across taxa are urgently needed. Here, we examined the relationships between resource supply and phyto-, bacterio-, and zooplankton richness in 100 small boreal lakes. We studied the PDR locally within the drainage systems and regionally across the systems. Second, we studied the relationships between resource availability, species richness, biomass and resource ratio (N:P) in phytoplankton communities using Structural Equation Modeling (SEM) for testing the multivariate hypothesis of PDR. At the local scale, the PDR showed variable patterns ranging from positive linear and unimodal to negative linear relationships for all planktonic groups. At the regional scale, PDRs were significantly linear and positive for phyto- and zooplankton. Phytoplankton richness and the amount of chlorophyll a showed a positive linear relationship indicating that communities consisting of higher number of species were able to produce higher levels of biomass. According to the SEM, phytoplankton biomass was largely related to resource availability, yet there was a pathway via community richness. Finally, we found that species richness at all trophic levels was correlated with several environmental factors, and was also related to richness at the other trophic levels. This study showed that the PDRs in freshwaters show scale-dependency. We also documented that the PDR complies with the multivariate model showing that plant biomass is not mirroring merely the resource availability, but is also influenced by richness. This highlights the need for conserving diversity in order to maintain ecosystem processes in freshwaters.  相似文献   

6.
  1. The interest in understanding ecosystem functioning has grown in recent years due to the effects of species loss on ecosystem processes. Even though biotic and abiotic factors control ecosystem processes, their relative influence may vary according to ecosystem dynamics. In flood and coastal plains, these dynamics are mainly represented by flood pulses and hydroregime, respectively. The objective of this study was to investigate the importance of abiotic and biotic factors for the ecosystem processes represented by zooplankton secondary production (SP), biomass (ZB), and resource use efficiency (RUE) in lentic waterbodies subjected to different hydrological regimes. We hypothesised that abiotic factors would more strongly determine the ecosystem processes in temporary waterbodies and floodplain lakes, given their greater susceptibility to environmental changes. Biotic factors would be more relevant in coastal lagoons due to their greater temporal stability.
  2. Sampling was undertaken quarterly over 1 year in eight coastal lagoons, 10 temporary ponds and five floodplain lakes. The environments were characterised in relation to limnological variables, and zooplankton functional divergence, functional dispersion (FDis), functional evenness, functional richness, and taxonomic richness were measured. Analysis of variance (ANOVA) was used to verify seasonal changes in SP, ZB, RUE, functional diversity, richness, and abiotic factors. Linear mixed models were used to determine which abiotic and biotic factors were the most important for ZB, SP, and RUE.
  3. In the coastal lagoons, RUE differed over time. In the temporary ponds and floodplain lakes, no seasonal significant differences were observed for any of the zooplankton production variables. The linear mixed model analyses showed that models composed mainly of biotic factors were better fitted to the production variables. For coastal lagoons, phytoplankton density affected ZB, SP, and RUE increasing them by 9.9 mg DW/m3, 12.4 mg DW/m3, and 1.23, respectively. For temporary ponds, FDis lowered ZB by 6.9 mg DW/m3 and taxonomic richness increased SP and RUE by 14.2 mg DW/m3 and 1.17, respectively. For floodplain lakes, FDis lowered ZB it by 9.9 mg DW/m3 and functional divergence lowered RUE by 0.81.
  4. The present study demonstrates that biotic factors are the main determinants of ecosystem processes in neotropical lentic waterbodies, irrespective of their annual hydrological regimes. Complementarity effects and high functional diversity are more important in more stable environments, whereas redundancy and low functional diversity prevail in environments subject to more frequent environmental changes. Biotic factors play a major role in ensuring the functioning of aquatic ecosystems and indicate the important role of biodiversity in enabling ecosystem states to be maintained after disturbances and to prevent changes in ecosystem processes.
  相似文献   

7.
Much of our knowledge on biodiversity and ecosystem functioning comes from studies examining the effects of biodiversity on biomass production within a trophic group. A large number of these studies have found that increasing biodiversity tends to increase biomass production, leading many ecologists to believe that there exists a general positive relationship between biodiversity and ecosystem functioning. Here we argue that such a positive relationship may not be general, particularly for ecosystem functions other than biomass. Our argument centers on the potential importance of the negative selection effect, which operates where competitively dominant species do not contribute significantly to the function of interest. We suggest that negative selection effects may be potentially common for non-biomass functions, for which species competitive ability may often be a poor indictor of its functional impact. We conclude that diverse (positive, negative, and neutral) BEF relationships are possible for non-biomass functions and that for a particular function, the exact form of the BEF relationship may depend on how species functional impacts relate to their competitive abilities in the community.  相似文献   

8.
迄今生物多样性与生态系统功能关系的研究主要在物种组成随机配置的人工生态系统中进行, 在自然生态系统中研究较少, 且未考虑环境因子如何影响生态系统功能及其与生物多样性的关系。本研究选取亚热带广泛分布的次生林为研究对象, 利用模型拟合的方法, 探讨亚热带次生林中物种丰富度与生物量和生产力之间的关系, 以及环境因子(海拔、坡度、坡向、土层厚度)和次生林恢复时间(林龄)对生物量、生产力、物种丰富度与生物量和生产力间关系的影响。结果表明, 当不考虑环境因子时, 物种丰富度与生物量之间存在显著的线性正相关关系, 而与生产力之间存在显著的二次关系(先增加后减少的驼峰型)。当考虑环境因子时, 个体密度和土层厚度对生物量具有显著影响, 而环境因子对生产力并无显著效应。在坡度较陡、坡向朝南及土层较厚的环境条件下, 物种丰富度与生物量具有显著的线性正相关关系; 而在坡度较缓、坡向朝北及土层较薄的环境条件下, 物种丰富度不影响生物量。在较高海拔环境条件下, 生产力随物种丰富度先增加后减少(驼峰形状), 而在其他环境条件下, 生产力均不响应物种丰富度。以上结果说明自然森林生态系统中物种丰富度与生物量和生产力的关系存在差异, 且其相互间的关系依赖于环境因子。  相似文献   

9.
Biodiversity and ecosystem functioning in naturally assembled communities   总被引:1,自引:0,他引:1  
Approximately 25 years ago, ecologists became increasingly interested in the question of whether ongoing biodiversity loss matters for the functioning of ecosystems. As such, a new ecological subfield on Biodiversity and Ecosystem Functioning (BEF) was born. This subfield was initially dominated by theoretical studies and by experiments in which biodiversity was manipulated, and responses of ecosystem functions such as biomass production, decomposition rates, carbon sequestration, trophic interactions and pollination were assessed. More recently, an increasing number of studies have investigated BEF relationships in non‐manipulated ecosystems, but reviews synthesizing our knowledge on the importance of real‐world biodiversity are still largely missing. I performed a systematic review in order to assess how biodiversity drives ecosystem functioning in both terrestrial and aquatic, naturally assembled communities, and on how important biodiversity is compared to other factors, including other aspects of community composition and abiotic conditions. The outcomes of 258 published studies, which reported 726 BEF relationships, revealed that in many cases, biodiversity promotes average biomass production and its temporal stability, and pollination success. For decomposition rates and ecosystem multifunctionality, positive effects of biodiversity outnumbered negative effects, but neutral relationships were even more common. Similarly, negative effects of prey biodiversity on pathogen and herbivore damage outnumbered positive effects, but were less common than neutral relationships. Finally, there was no evidence that biodiversity is related to soil carbon storage. Most BEF studies focused on the effects of taxonomic diversity, however, metrics of functional diversity were generally stronger predictors of ecosystem functioning. Furthermore, in most studies, abiotic factors and functional composition (e.g. the presence of a certain functional group) were stronger drivers of ecosystem functioning than biodiversity per se. While experiments suggest that positive biodiversity effects become stronger at larger spatial scales, in naturally assembled communities this idea is too poorly studied to draw general conclusions. In summary, a high biodiversity in naturally assembled communities positively drives various ecosystem functions. At the same time, the strength and direction of these effects vary highly among studies, and factors other than biodiversity can be even more important in driving ecosystem functioning. Thus, to promote those ecosystem functions that underpin human well‐being, conservation should not only promote biodiversity per se, but also the abiotic conditions favouring species with suitable trait combinations.  相似文献   

10.
In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures.  相似文献   

11.
A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale‐dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population  synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross‐scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.  相似文献   

12.

Background

The positive relationship between biodiversity and ecosystem functioning (BEF) is due mainly to complementarity between species. Most BEF studies primarily focused on plant interactions; however, plants are embedded in a dense network of multitrophic interactions above and below the ground, which are likely to play a crucial role in BEF relationships.

Scope

In the present review I point out the relevance of aboveground–belowground interactions as a source of complementarity effects in grassland biodiversity experiments. A review of the current knowledge on the role of decomposers, arbuscular mycorrhizal fungi, rhizobia, plant growth promoting rhizobacteria, invertebrate ecosystem engineers, herbivores, pathogens and predators in biodiversity experiments, indicates that soil biota can drive both positive and negative complementarity between plant species via a multitude of mechanisms.

Conclusions

I pose four main processes by which aboveground–belowground interactions determine positive complementarity effects: enlarging biotope space, mediating legume effects, increasing plant community resistance, and maintaining plant diversity. By contrast, soil biota may also reinforce negative complementarity effects by competing with plants for nutrients or by exerting herbivore or pathogen pressure, thereby reducing community productivity. Thus, considering aboveground–belowground interactions as well as interactions between antagonistic and mutualistic consumers may improve the mechanistic understanding of complementarity effects in plant diversity–ecosystem functioning experiments and should inspire future research.  相似文献   

13.
 人们担心生物多样性的空前丧失会危及到生态系统的服务功能,因此有关生物多样性-生态系统生产力这一古老命题的讨论成为当今生态学的热点议题之一。20世纪90年代以David Tilman和Shahid Naeem为代表的生态学家利用大规模的受控实验,对物种多样性与生态系统功能的诸多方面进行  相似文献   

14.
Evenness is an important property of communities. Species richness alone does not capture the fact that one or a few species may dominate total abundance and biomass of a community. This in turn has important consequences for ecosystem functioning and species interactions. Evenness has been observed to vary systematically along environmental and productivity gradients. However, a truly general theory about which factors control evenness in a community has yet to emerge. Prior research on evenness has suggested that high richness, biomass and abundance should lead to lower community evenness in our study system of bats in Panama. However, only few empirical studies examine the simultaneous effects of species richness, biomass or abundance on evenness. For the first time, we applied path analysis in the study of evenness to tease apart the relative importance and direction (positive or negative) of causality among these three factors. As predicted, we found that evenness decreases with increasing species richness, abundance and biomass. The negative effect of abundance was mediated by the positive joint effect of biomass and richness. The selected models varied in the strength of the correlation between the three variables with evenness but their direction was consistent. Overall, we argue that rarity, high mobility and differences in resource availability at sites with lower environmental stress can explain the negative effects of richness on evenness.  相似文献   

15.
Biodiversity–ecosystem functioning experiments typically inspect functioning in randomly composed communities, representing broad gradients of taxonomic richness. We tested if the resulting evenness gradients and evenness–functioning relationships reflect those found in communities facing evenness loss caused by anthropogenic stressors. To this end, we exposed marine benthic diatom communities to a series of treatments with the herbicide atrazine, and analysed the relationship between the resulting gradients of evenness and ecosystem functioning (primary production, energy content and sediment stabilization). Atrazine exposure resulted in narrower evenness gradients and steeper evenness–functioning relations than produced by the design of random community assembly. The disproportionately large decrease in functioning following atrazine treatment was related to selective atrazine effects on the species that contributed most to the ecosystem functions considered. Our findings demonstrate that the sensitivity to stress and the contribution to ecosystem functioning at the species level should be both considered to understand biodiversity and ecosystem functioning under anthropogenic stress. Synthesis Biodiversity loss affects ecosystem functioning, yet biodiversity–ecosystem functioning relations have mainly been investigated using communities with random species loss. In nature however, species are lost according to their sensitivity to environmental stress. In the present study, biodiversity loss and biodiversity–ecosystem functioning relations in randomly composed diatom communities were compared to those induced by the pesticide atrazine. Stress exposure resulted in smaller biodiversity loss but steeper decrease in functioning than in randomly composed communities, due to selective atrazine effects on the best performing species. Therefore, species‐specific sensitivity and contribution to ecosystem functioning need to be considered to predict biodiversity and ecosystem functioning under anthropogenic stress.  相似文献   

16.
Although species richness effects on ecosystem functioning have been studied thoroughly in countless experiments, the effects of the other side of diversity – species evenness – remain less identified, especially at high species richness. Due to the large number of different model ecosystems that need to be created, the explanatory power of the experimental approach for evenness is indeed limited. We show here that experimental studies on the influence of species richness on ecosystem functions contain hidden information on the influence of species evenness. Both the effects of maximum and minimum evenness, and of a key set of intermediate evenness levels, can be derived from species richness – ecosystem function curves, and that for every richness level, by using communities with low species richness as the equivalent of highly uneven communities with higher richness. We show that evenness effects on ecosystem functioning have the same direction as richness effects, however with increasing effect sizes at higher richness levels. We validated our technique for a wide range of ecosystem functions and applied it to the species richness – community biomass data from an existing biodiversity experiment. Our approach could provide a fast and easy alternative to resource‐intensive experiments in which evenness is experimentally varied, as we can build on the elaborate existing literature on species richness to assess its effects.  相似文献   

17.
Biodiversity, both aboveground and belowground, is negatively affected by global changes such as drought or warming. This loss of biodiversity impacts Earth's ecosystems, as there is a positive relationship between biodiversity and ecosystem functioning (BEF). Even though soils host a large fraction of biodiversity that underlies major ecosystem functions, studies exploring the relationship between soil biodiversity and ecosystem functioning (sBEF) as influenced by global change drivers (GCDs) remain scarce. Here we highlight the need to decipher sBEF relationships under the effect of interactive GCDs that are intimately connected in a changing world. We first state that sBEF relationships depend on the type of function (e.g., C cycling or decomposition) and biodiversity facet (e.g., abundance, species richness, or biomass) considered. Then, we shed light on the impact of single and interactive GCDs on soil biodiversity and sBEF and show that results from scarce studies studying interactive effects range from antagonistic to additive to synergistic when two individual GCDs cooccur. This indicates the need for studies quantitatively accounting for the impacts of interactive GCDs on sBEF relationships. Finally, we provide guidelines for optimized methodological and experimental approaches to study sBEF in a changing world that will provide more valuable information on the real impact of (interactive) GCDs on sBEF. Together, we highlight the need to decipher the sBEF relationship in soils to better understand soil functioning under ongoing global changes, as changes in sBEF are of immediate importance for ecosystem functioning.  相似文献   

18.
Measures of functional diversity are expected to predict community responses to land use and environmental change because, in contrast to taxonomic diversity, it is based on species traits rather than their identity. Here, we investigated the impact of landscape homogenisation on plants, butterflies and birds in terms of the proportion of arable field cover in southern Finland at local (0.25 km2) and regional (> 10 000 km2) scales using four functional diversity indices: functional richness, functional evenness, functional divergence and functional dispersion. No uniform response in functional diversity across taxa or scales was found. However, in all cases where we found a relationship between increasing arable field cover and any index of functional diversity, this relationship was negative. Butterfly functional richness decreased with increasing arable field cover, as did butterfly and bird functional evenness. For butterfly functional evenness, this was only evident in the most homogeneous regions. Butterfly and bird functional dispersion decreased in homogeneous regions regardless of the proportion of arable field cover locally. No effect of landscape heterogeneity on plant functional diversity was found at any spatial scale, but plant species richness decreased locally with increasing arable field cover. Overall, species richness responded more consistently to landscape homogenisation than did the functional diversity indices, with both positive and negative effects across species groups. Functional diversity indices are in theory valuable instruments for assessing effects of land use scenarios on ecosystem functioning. However, the applicability of empirical data requires deeper understanding of which traits reliably capture species’ vulnerability to environmental factors and of the ecological interpretation of the functional diversity indices. Our study provides novel insights into how the functional diversity of communities changes in response to agriculturally derived landscape homogenisation; however, the low explanatory power of the functional diversity indices hampers the ability to reliably anticipate impacts on ecosystem functioning.  相似文献   

19.
Agricultural intensification (AI) is currently a major driver of biodiversity loss and related ecosystem functioning decline. However, spatio-temporal changes in community structure induced by AI, and their relation to ecosystem functioning, remain largely unexplored. Here, we analysed 16 quantitative cereal aphid–parasitoid and parasitoid–hyperparasitoid food webs, replicated four times during the season, under contrasting AI regimes (organic farming in complex landscapes vs. conventional farming in simple landscapes). High AI increased food web complexity but also temporal variability in aphid–parasitoid food webs and in the dominant parasitoid species identity. Enhanced complexity and variability appeared to be controlled bottom-up by changes in aphid dominance structure and evenness. Contrary to the common expectations of positive biodiversity–ecosystem functioning relationships, community complexity (food-web complexity, species richness and evenness) was negatively related to primary parasitism rates. However, this relationship was positive for secondary parasitoids. Despite differences in community structures among different trophic levels, ecosystem services (parasitism rates) and disservices (aphid abundances and hyperparasitism rates) were always higher in fields with low AI. Hence, community structure and ecosystem functioning appear to be differently influenced by AI, and change differently over time and among trophic levels. In conclusion, intensified agriculture can support diverse albeit highly variable parasitoid–host communities, but ecosystem functioning might not be easy to predict from observed changes in community structure and composition.  相似文献   

20.
Biodiversity has been declining in many areas, and there is great interest in determining whether this decline affects ecosystem functioning. Most biodiversity—ecosystem functioning studies have focused on the effects of species richness on net primary productivity. However, biodiversity encompasses both species richness and evenness, ecosystem functioning includes other important processes such as decomposition, and the effects of richness on ecosystem functioning may change at different levels of evenness. Here, we present two experiments on the effects of litter species evenness and richness on litter decomposition. In the first experiment, we varied the species evenness (three levels), identity of the dominant species (three species), and micro-topographic position (low points [gilgais] or high points between gilgais) of litter in three-species mixtures in a prairie in Texas, USA. In a second experiment, we varied the species evenness (three levels), richness (one, two, or four species per bag), and composition (random draws) of litter in a prairie in Iowa, USA. Greater species evenness significantly increased decomposition, but this effect was dependent on the environmental context. Higher evenness increased decomposition rates only under conditions of higher water availability (in gilgais in the first experiment) or during the earliest stages of decomposition (second experiment). Species richness had no significant effect on decomposition, nor did it interact with evenness. Micro-topographic position and species identity and composition had larger effects on decomposition than species evenness. These results suggest that the effects of litter species diversity on decomposition are more likely to be manifested through the evenness component of diversity than the richness component, and that diversity effects are likely to be environmentally context dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号