首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heart mitochondria from female senescence-accelerated (SAMP8) and senescence-resistant (SAMR1) mice of 5 or 10 months of age, were studied. Mitochondrial oxidative stress was determined by measuring the levels of lipid peroxidation, glutathione and glutathione disulfide and glutathione peroxidase and reductase activities. Mitochondrial function was assessed by measuring the activity of the respiratory chain complexes and ATP content. The results show that the age-dependent mitochondrial oxidative damage in the heart of SAMP8 mice was accompanied by a reduction in the electron transport chain complex activities and in ATP levels. Chronic melatonin administration between 1 and 10 months of age normalized the redox and the bioenergetic status of the mitochondria and increased ATP levels. The results support the presence of significant mitochondrial oxidative stress in SAM mice at 10 months of age, and they suggest a beneficial effect of chronic pharmacological intervention with melatonin, which reduces the deteriorative and functional oxidative changes in cardiac mitochondria with age.  相似文献   

2.
The mechanism of Cr(VI)-induced toxicity in plants and animals has been assessed for mitochondrial bioenergetics and membrane damage in turnip root and rat liver mitochondria. By using succinate as the respiratory substrate, ADP/O and respiratory control ratio (RCR) were depressed as a function of Cr(VI) concentration. State 3 and uncoupled respiration were also depressed by Cr(VI). Rat mitochondria revealed a higher sensitivity to Cr(VI), as compared to turnip mitochondria. Rat mitochondrial state 4 respiration rate triplicated in contrast to negligible stimulation of turnip state 4 respiration. Chromium(VI) inhibited the activity of the NADH-ubiquinone oxidoreductase (complex I) from rat liver mitochondria and succinate-dehydrogenases (complex II) from plant and animal mitochondria. In rat liver mitochondria, complex I was more sensitive to Cr(VI) than complex II. The activity of cytochrome c oxidase (complex IV) was not sensitive to Cr(VI). Unique for plant mitochondria, exogenous NADH uncoupled respiration was unaffected by Cr(VI), indicating that the NADH dehydrogenase of the outer leaflet of the plant inner membrane, in addition to complexes III and IV, were insensitive to Cr(VI). The ATPase activity (complex V) was stimulated in rat liver mitochondria, but inhibited in turnip root mitochondria. In both, turnip and rat mitochondria, Cr(VI) depressed mitochondrial succinate-dependent transmembrane potential (Deltapsi) and phosphorylation efficiency, but it neither affected mitochondrial membrane permeabilization to protons (H+) nor induced membrane lipid peroxidation. However, Cr(VI) induced mitochondrial membrane permeabilization to K+, an effect that was more pronounced in turnip root than in rat liver mitochondria. In conclusion, Cr(VI)-induced perturbations of mitochondrial bioenergetics compromises energy-dependent biochemical processes and, therefore, may contribute to the basal mechanism underlying its toxic effects in plant and animal cells.  相似文献   

3.
The effect of acute respiratory hypoxia in rats on mitochondrial respiration, adenine nucleotides and some amino acids of the heart was studied. The decrease in the total (ATP + ADP + AMP) and exchangeable (ATP + ADP) adenine nucleotide pool of the mitochondria was accompanied by a pronounced loss of state 3 respiration with glutamate plus malate and a slight decrease with succinate plus rothenone. The uncoupled respiration of mitochondria with glutamate and malate was decreased in the same degree as in the absence of 2,4-dinitrophenol. State 4 respiration with substrates of both types was unaffected by hypoxia. These data point to a hypoxia-induced impairment of complex I of the respiratory chain. The decrease of tissue and mitochondrial glutamate was accompanied by the elevation of alanine content in the heart and an increase in intramitochondrial aspartate. The ADP-stimulated respiration of mitochondria was correlated with mitochondrial glutamate and ATP as well as with exchangeable adenine nucleotide pools during hypoxia. The experimental results suggest that mitochondrial dysfunction induced by hypoxia may also be attributed to the low level of mitochondrial glutamate.  相似文献   

4.
The mitochondrial content of skeletal muscles is proportional to activity level, with the assumption that intrinsic mitochondrial function is the same in all muscles. This may not hold true for all muscles. For example, the diaphragm is a constantly active muscle; it is possible that its mitochondria are intrinsically different compared with other muscles. This study tested the hypothesis that mitochondrial respiration rates are greater in the diaphragm compared with triceps surae (TS, a limb muscle). We isolated mitochondria from diaphragm and TS of adult male Sprague Dawley rats. Mitochondrial respiration was measured by polarography. The contents of respiratory complexes, uncoupling proteins 1, 2, and 3 (UCP1, UCP2, and UCP3), and voltage-dependent anion channel 1 (VDAC1) were determined by immunoblotting. Complex IV activity was measured by spectrophotometry. Mitochondrial respiration states 3 (substrate and ADP driven) and 5 (uncoupled) were 27 ± 8% and 24 ± 10%, respectively, lower in diaphragm than in TS (P < 0.05 for both comparisons). However, the contents of respiratory complexes III, IV, and V, UCP1, and VDAC1 were higher in diaphragm mitochondria (23 ± 6, 30 ± 8, 25 ± 8, 36 ± 15, and 18 ± 8% respectively, P ≤ 0.04 for all comparisons). Complex IV activity was 64 ± 16% higher in diaphragm mitochondria (P ≤ 0.01). Mitochondrial UCP2 and UCP3 content and complex I activity were not different between TS and diaphragm. These data indicate that diaphragm mitochondria respire at lower rates, despite a higher content of respiratory complexes. The results invalidate our initial hypothesis and indicate that mitochondrial content is not the only determinant of aerobic capacity in the diaphragm. We propose that UCP1 and VDAC1 play a role in regulating diaphragm aerobic capacity.  相似文献   

5.
Accumulation of high levels of mutagenic oxidative mitochondrial DNA (mtDNA) lesions like 8-oxodeoxyguanine (8-oxodG) is thought to be involved in the development of mitochondrial dysfunction in aging and in disorders associated with aging. Mice null for oxoguanine DNA glycosylase (OGG1) are deficient in 8-oxodG removal and accumulate 8-oxodG in mtDNA to levels 20-fold higher than in wild-type mice (N.C. Souza-Pinto et al., 2001, Cancer Res. 61, 5378-5381). We have used these animals to investigate the effects on mitochondrial function of accumulating this particular oxidative base modification. Despite the presence of high levels of 8-oxodG, mitochondria isolated from livers and hearts of Ogg1-/- mice were functionally normal. No differences were detected in maximal (chemically uncoupled) respiration rates, ADP phosphorylating respiration rates, or nonphosphorylating rates with glutamate/malate or with succinate/rotenone. Similarly, maximal activities of respiratory complexes I and IV from liver and heart were not different between wild-type and Ogg1-/- mice. In addition, there was no indication of increased oxidative stress in mitochondria from Ogg1-/- mice, as measured by mitochondrial protein carbonyl content. We conclude, therefore, that highly elevated levels of 8-oxodG in mtDNA do not cause mitochondrial respiratory dysfunction in mice.  相似文献   

6.
The effect of acute hypoxia on adenine nucleotides, glutamate, aspartate, alanine and respiration of heart mitochondria was studied in rats. The losses of intramitochondrial adenine nucleotides (ATP+ADP+AMP) during hypoxia were related to depression of state 3 respiration supported by glutamate and malate, as well as decrease in uncoupled respiration. Hypoxia had less prominent effect on succinate-dependent state 3 respiration. Non-phosphorylating (state 4) respiratory rates and ADP/O ratios were slightly affected by oxygen deprivation. Glutamate fall in tissue and mitochondria of hypoxic hearts was concomitant with significant increase in tissue alanine and mitochondrial aspartate. The losses of intramitochondrial ATP and respiratory activity with NAD-dependent substrates during hypoxia were related to a decrease in mitochondrial glutamate. The results suggest that hypoxia-induced impairment of complex I of respiratory chain and a loss of glutamate from the matrix may limit energy-producing capacity of heart mitochondria.  相似文献   

7.
The aging brain suffers mitochondrial dysfunction and a reduced availability of energy in the form of ATP, which in turn may cause or promote the decline in cognitive, sensory, and motor function observed with advancing age. There is a need for animal models that display some of the pathological features of human brain aging in order to study their prevention by e.g. dietary factors. We thus investigated the suitability of the fast-aging senescence-accelerated mouse-prone 8 (SAMP8) strain and its normally aging control senescence-accelerated mouse-resistant 1 (SAMR1) as a model for the age-dependent changes in mitochondrial function in the brain. To this end, 2-months old male SAMR1 (n = 10) and SAMP8 mice (n = 7) were fed a Western type diet (control groups) for 5 months and one group of SAMP8 mice (n = 6) was fed an identical diet fortified with 500 mg curcumin per kg. Dissociated brain cells and brain tissue homogenates were analyzed for malondialdehyde, heme oxygenase-1 mRNA, mitochondrial membrane potential (MMP), ATP concentrations, protein levels of mitochondrial marker proteins for mitochondrial membranes (TIMM, TOMM), the mitochondrial permeability transition pore (ANT1, VDAC1, TSPO), respiration complexes, and fission and fusion (Fis, Opa1, Mfn1, Drp1). Dissociated brain cells isolated from SAMP8 mice showed significantly reduced MMP and ATP levels, probably due to significantly diminished complex V protein expression, and increased expression of TSPO. Fission and fusion marker proteins indicate enhanced mitochondrial fission in brains of SAMP8 mice. Treatment of SAMP8 mice with curcumin improved MMP and ATP and restored mitochondrial fusion, probably by up-regulating nuclear factor PGC1α protein expression. In conclusion, SAMP8 compared to SAMR1 mice are a suitable model to study age-dependent changes in mitochondrial function and curcumin emerges as a promising nutraceutical for the prevention of neurodegenerative diseases that are accompanied or caused by mitochondrial dysfunction.  相似文献   

8.
9.
10.
Early onset increases in oxidative stress and tau pathology are present in the brain of senescence-accelerated mice prone (SAMP8). Astrocytes play an essential role, both in determining the brain's susceptibility to oxidative damage and in protecting neurons. In this study, we examine changes in tau phosphorylation, oxidative stress and glutamate uptake in primary cultures of cortical astrocytes from neonatal SAMP8 mice and senescence-accelerated-resistant mice (SAMR1). We demonstrated an enhancement of abnormally phosphorylated tau in Ser(199) and Ser(396) in SAMP8 astrocytes compared with that of SAMR1 control mice. Gsk3beta and Cdk5 kinase activity, which regulate tau phosphorylation, was also increased in SAMP8 astrocytes. Inhibition of Gsk3beta by lithium or Cdk5 by roscovitine reduced tau phosphorylation at Ser(396). Moreover, we detected an increase in radical superoxide generation, which may be responsible for the corresponding increase in lipoperoxidation and protein oxidation. We also observed a reduced mitochondrial membrane potential in SAMP8 mouse astrocytes. Glutamate uptake in astrocytes is a critical neuroprotective mechanism. SAMP8 astrocytes showed a decreased glutamate uptake compared with those of SAMR1 controls. Interestingly, survival of SAMP8 or SAMR1 neurons cocultured with SAMP8 astrocytes was significantly reduced. Our results indicate that alterations in astrocyte cultures from SAMP8 mice are similar to those detected in whole brains of SAMP8 mice at 1-5 months. Moreover, our findings suggest that this in vitro preparation is suitable for studying the molecular and cellular processes underlying early aging in this murine model. In addition, our study supports the contention that astrocytes play a key role in neurodegeneration during the aging process.  相似文献   

11.
Summary The effects of the microtubular inhibitor, podophyllotoxin, on mitochondrial respiration were determined using isolated, digitonin-permeabilized hepatocytes and isolated mitochondria. In hepatocytes, podophyllotoxin (1.5 mM) inhibited coupled and uncoupled respiration of both FAD and NAD-linked substrates. In mitochondria, podophyllotoxin inhibited State III respiration, prevented the return to State IV respiration, and inhibited uncoupled respiration. There was no inhibition of ascorbate/TMPD oxidation in either the hepatocytes or the mitochondria. Podophyllotoxin had no effect upon oligomycin inhibition of coupled respiration. Oligomycin had no effect on the podophyllotoxin-inhibition of uncoupled respiration in either hepatocytes or mitochondria. The results indicate that podophyllotoxin alters electron flow at a site early in the electron transport chain.  相似文献   

12.
Respiratory activity in hepatic mitochondria have been examined following administration of the carcinogen aflatoxin, (AFB1) to rats. Measurement in isolated mitochondria of respiration rates in presence of ADP (state 3) and after its depletion (state 4) revealed that these rates were not significantly altered in livers of rats obtained 4–8 hours after single injection of AFB1 (7 mg/kg of body weight). After 12–24 hours, however, a generalized inhibition in state 3 respiration rate and ADP phosphorylation rate had been evident with several FAD- and NAD-linked oxidizing substrates. But the ADP:0 ratio did not show any alteration. State 4 respiration rates, on the other hand, were increased remarkably (38–94% depending on substrate used), thereby recording in each case a decrease in respiratory control ratio (state 3:state 4 ratio), indicating probable damage to mitochondrial membrane as a result of AFB1 ingestion. This was also evident from greater basal ATPase and Mg2+-ATPase activities and low total ATPase activity. After 48–72 hours of AFB1 treatment, the respiratory rates as well as the ATPase activities returned to normal levels, suggesting probable recovery of mitochondrial functions from the toxic effects of AFB1. © 1997 John Wiley & Sons, Inc.  相似文献   

13.
Senescence-accelerated mice (SAM) strains are useful models to understand the mechanisms of age-dependent degeneration. In this study, measurements of the mitochondrial membrane potential (Δψm) of platelets and the Adenosine 5-triphosphate (ATP) content of hippocampi and platelets were made, and platelet mitochondria were observed in SAMP8 (faster aging mice) and SAMR1 (aging resistant control mice) at 2, 6 and 9 months of age. In addition, an Aβ-induced (Amyloid beta-protein) damage model of platelets was established. After the addition of Aβ, the Δψm of platelets of SAMP8 at 1and 6 months of age were measured. We found that platelet Δψm, and hippocampal and platelet ATP content of SAMP8 mice decreased at a relatively early age compared with SAMR1. The platelets of 6 month-old SAMP8 showed a tolerance to Aβ-induced damages. These results suggest that mitochondrial dysfunction might be one of the mechanisms leading to age-associated degeneration in SAMP mice at an early age and the platelets could serve as a biomarker for detection of mitochondrial function and age related disease.  相似文献   

14.
Catechins, which are abundant in green tea, possess a variety of biologic actions, and their clinical application has been extensively investigated. In this study, we examined the effects of tea catechins and regular exercise on the aging-associated decline in physical performance in senescence-accelerated prone mice (SAMP1) and age-matched senescence-accelerated resistant mice (SAMR1). The endurance capacity of SAMR1 mice, measured as the running time to exhaustion, tended to increase over the 8-wk experimental period, whereas that of SAMP1 mice decreased by 17%. On the other hand, the endurance capacity of SAMP1 mice fed 0.35% (wt/wt) catechins remained at the initial level and was significantly higher than that of SAMP1 mice not fed catechins. In SAMP1 mice fed catechins and given exercise, oxygen consumption was significantly increased, and there was an increase in skeletal muscle fatty acid beta-oxidation. The mRNA levels of mitochondria-related molecules, such as peroxisome proliferator-activated receptor-gamma coactivator-1, cytochrome c oxidase-II, III, and IV in skeletal muscle were also higher in SAMP1 mice given both catechins and exercise. Moreover, oxidative stress measured as thiobarbituric reactive substances was lower in SAMP1 groups fed catechins than in the SAMP1 control group. These results suggest that long-term intake of catechins, together with habitual exercise, is beneficial for suppressing the aging-related decline in physical performance and energy metabolism and that these effects are due, at least in part, to improved mitochondrial function in skeletal muscle.  相似文献   

15.
Previously mildronate, an aza-butyrobetaine derivative, was shown to be a cytoprotective drug, through its mechanism of action of inhibition of carnitine palmitoyltransferase-1, thus protecting mitochondria from long-chain fatty acid accumulation and subsequent damage. Recently in an azidothymidine (AZT)-induced cardiotoxicity model in vivo (in mice), we have found mildronate's ability of protecting heart tissue from nuclear factor kappaB abnormal expression. Preliminary data also demonstrate cerebro- and hepatoprotecting properties of mildronate in AZT-toxicity models. We suggest that mildronate may target its action predominantly to mitochondria. The present study in isolated rat liver mitochondria was designed to clarify mitochondrial targets for mildronate by using AZT as a model compound. The aim of this study was to investigate: (1) whether mildronate may protect mitochondria from AZT-induced toxicity; and (2) which is the most critical target in mitochondrial processes that is responsible for mildronate's regulatory action. The results showed that mildronate protected mitochondria from AZT-induced damage predominantly at the level of complex I, mainly by reducing hydrogen peroxide generation. Significant protection of AZT-caused inhibition of uncoupled respiration, ADP to oxygen ratio, and transmembrane potential were also observed. Mildronate per se had no effect on the bioenergetics, oxidative stress, or permeability transition of rat liver mitochondria. Since mitochondrial complex I is the first enzyme of the respiratory electron transport chain and its damage is considered to be responsible for different mitochondrial diseases, we may account for mildronate's effectiveness in the prevention of pathologies associated with mitochondrial dysfunctions.  相似文献   

16.
Abstract: The effects of 1-methyl-4-phenylpyridinium (MPP+) on the oxygen consumption, ATP production, H2O2 production, and mitochondrial NADH-CoQ1 reductase (complex I) activity of isolated rat brain mitochondria were investigated. Using glutamate and malate as substrates, concentrations of 10–100 µ M MPP+ had no effect on state 4 (−ADP) respiration but decreased state 3 (+ADP) respiration and ATP production. Incubating mitochondria with ADP for 30 min after loading with varying concentrations of MPP+ produced a concentration-dependent decrease in H2O2 production. Incubation of mitochondria with ADP for 60 min after loading with 100 µ M MPP+ caused no loss of complex I activity after washing of MPP+ from the mitochondrial membranes. These data are consistent with MPP+ initially binding specifically to complex I and inhibiting both the flow of reducing equivalents and the production of H2O2 by the mitochondrial respiratory chain, without irreversibly damaging complex I. However, mitochondria incubated with H2O2 in the presence of Cu2+ ions showed decreased complex I activity. This study provides additional evidence that cellular damage initiated by MPP+ is due primarily to energy depletion caused by specific binding to complex I, any increased damage due to free radical production by mitochondria being a secondary effect.  相似文献   

17.
The respiratory properties of mitochondria isolated from the livers of rats infected with the parasite Fasciola hepatica were examined. Oligomycin-sensitive ATPase activity was also examined during the acute stage (2-4 weeks post-infection). At 2,4 and 6 weeks post-infection, mitochondrial respiration in vitro (supported by site I and site II substrates) was completely uncoupled. Limited respiratory control had returned by 11 weeks post-infection, but complete recovery was not observed even at 21 weeks post-infection. At 4 weeks post-infection, uncoupled respiration (from all three energy-conserving sites) was also markedly attenuated (to the greatest extent with NADH-linked substrate). Except for pyruvate-supported respiration, this attenuation was not apparent at any other stage of the infection. The attenuation of pyruvate-supported respiration declined, but was still present, at 6 weeks post-infection. In addition to these perturbations in mitochondrial respiratory properties, mitochondrial ATPase activity at 4 weeks post-infection was insensitive to oligomycin, indicating a change in the structural integrity of the ATPase complex.  相似文献   

18.
NH4C1 inhibited oxygen consumption (State 3, ADP induced) by rat liver mitochondria respiring on palmitoyl-L-carnitine or octanoic acid but not on succinate or malate + glutamate. The inhibition became apparent at 0.02 mM reaching a plateau (40%) at 2 mM NH4C1. Similar inhibition was observed with uncoupled (in the presence of 2, 4-dinitrophenol) mitochondria. The inhibition of uncoupled mitochondria was reversible as the rate of respiration with palmitoyl-L-carnitine was further increased by succinate and the total rate was unaffected by NH4C1. Therefore, NH+4 inhibition of mitochondrial respiration may lead to fatty infiltration and be one of the causes of the pathophysiology in children with Reye's syndrome and disorders of urea cycle enzymes.  相似文献   

19.
It has been shown that KM values for ADP when rat liver mitochondria oxidized succinate were strictly dependent on the values of the respiratory control ratios. The Ki values for palmitoyl-CoA inhibition of the ADP-stimulated succinate oxidation and the inhibition of the uncoupler-stimulated ATPase activity were equal to 0.5 muM. Mitochondria from livers of starved rats showed 30% inhibition of the state 3 respiratory rate (compared to the uncoupled respiratory rate) which was abolished by addition of carnitine. It was supposed that this inhibition was due to the influence of acyl-CoAs bound to the inner mitochondrial membrane on the adeninenucleotide translocase. Mitochondria from livers of fed rats showed a strong inhibition of succinate oxidation both in state 4 and state 3, although the rate of uncoupled respiration was normal. It was assumed that in this case the changes in mitochondrial behaviour was caused by the decrease in the concentration of ADP and ATP in the matrix space of mitochondria.  相似文献   

20.
Mitochondrial respiration was studied as a function of the total adenine nucleotide content of rat liver mitochondria. The adenine nucleotide content was varied by treating isolated mitochondria with pyrophosphate or by incubating pyrophosphate-treated mitochondria with ATP. Mitochondria with at least 4 nmol adenine nucleotides/mg protein maintained at least 80% of the State 3 activity of control mitochondria, which had approximately 10 nmol/mg protein. However, State 3 decreased rapidly once the adenine nucleotide content fell below 4 nmol/mg protein. Between 2 and 4 nmol adenine nucleotides/mg, State 3 was not limited by the maximal capacity of electron flow as measured by the uncoupled respiration. However, at very low adenine nucleotide levels (<2 nmol/mg), the uncoupled rates of respiration were markedly depressed. State 4 was not affected by changes in the mitochondrial adenine nucleotide content. Adenine translocase activity varied in almost direct correlation with changes in the adenine nucleotide content. Therefore, adenine translocase activity was more sensitive than State 3 to changes in total adenine nucleotides over the range of 4 to 10 nmol/mg protein. The results suggest that (i) State 3 is dependent on the level of intramitochondrial adenine nucleotides, particularly in the range below 4 nmol/mg protein, (ii) adenine translocase activity is not rate-limiting for oxidative phosphorylation in mitochondria with the normal complement of adenine nucleotides, however, at low adenine nucleotide levels, depressed State 3 rates may be explained in part by the low rate of ADP translocation, and (iii) a mechanism of net ATP uptake exists in mitochondria with low internal adenine nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号