首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Oertle  P F Spahr 《Journal of virology》1990,64(12):5757-5763
Rous sarcoma virus nucleocapsid protein (NC) has been shown by site-directed mutagenesis to be involved in viral RNA packaging and in the subsequent maturation of genomic RNA in the progeny viral particles. To investigate whether NC exerts these activities as a free protein or as a domain of the polyprotein precursor Pr76gag, we have constructed several mutants unable to process Pr76gag and analyzed their properties in a transient-transfection assay of chicken embryo fibroblasts, the natural host of Rous sarcoma virus. A point mutation in the protease (PR) active site completely prevents Pr76gag processing. The full-length Pr76gag polyprotein is still able to package viral RNA, but cannot mature it. A shorter gag precursor polyprotein lacking the C-terminal PR domain, but retaining that of the NC protein, is however, unable even to package viral RNA. This indicates that the NC protein can participate in packaging viral RNA only as part of a full-length Pr76gag and that the PR domain is, indirectly or directly, also involved in RNA packaging. These results also demonstrate that processing of Pr76gag is necessary for viral RNA dimerization.  相似文献   

2.
3.
4.
Several retroviruses have recently been shown to promote translation of their gag gene products by internal ribosome entry. In this report, we show that mRNAs containing the human immunodeficiency virus type 1 (HIV-1) gag open reading frame (ORF) exhibit internal ribosome entry site (IRES) activity that can promote translational initiation of Pr55(gag). Remarkably, this IRES activity is driven by sequences within the gag ORF itself and is not dependent on the native gag 5'-untranslated region (UTR). This cap-independent mechanism for Pr55(gag) translation may help explain the high levels of translation of this protein in the face of major RNA structural barriers to scanning ribosomes found in the gag 5' UTR. The gag IRES activity described here also drives translation of a novel 40-kDa Gag isoform through translational initiation at an internal AUG codon found near the amino terminus of the Pr55(gag) capsid domain. Our findings suggest that this low-abundance Gag isoform may be important for wild-type replication of HIV-1 in cultured cells. The activities of the HIV-1 gag IRES may be an important feature of the HIV-1 life cycle and could serve as a novel target for antiretroviral therapeutic strategies.  相似文献   

5.
A new method for identifying ribosome-binding sites was developed to determine whether AUG codons in the 5'-terminal RNA sequence of Rous sarcoma virus were used to initiate protein synthesis. We found that when translation is inhibited, the major ribosome-binding site on Rous sarcoma virus RNA is at the 5'-proximal AUG codon, even though the primary translational product from this RNA, Pr76gag, is encoded behind the fourth AUG codon 331 bases downstream from the observed initiation site. These results suggest that ribosomes can initiate translation on Rous sarcoma virus RNA at more than one site, thereby producing a seven-amino-acid peptide, as well as the gag gene polyprotein precursor of Mr 76,000.  相似文献   

6.
Unspliced cytoplasmic retroviral RNA in chronically infected cells either is encapsidated by Gag proteins in the manufacture of virus or is used to direct synthesis of Gag proteins. Several models have been suggested to explain the sorting of viral RNA for these two purposes. Here we present evidence supporting a simple biochemical mechanism that accounts for the routing of retroviral RNA. Our results indicate that ribosomes compete with the Gag proteins to determine the fate of nascent retroviral RNA. Although the integrity of the entire Rous sarcoma virus leader sequence is important for retroviral packaging and translation, the RNA structure around the third small open reading frame, which neighbors the psi site required for packaging of the RNA, is particularly critical for maintenance of the balance between translation and packaging. These results support the hypothesis that Gag proteins autogenously regulate their synthesis and encapsidation of retroviral RNA and that an equilibrium exists between RNA destined for translation and packaging that is based on the intracellular levels of Gag proteins and ribosomes. To test the model, mRNAs with natural or mutated 5' leader sequences from Rous sarcoma virus were expressed in avian cells in the presence and absence of Pr76gag. We demonstrate that Pr76gag acts as a translational repressor of these mRNAs in a dose-dependent manner, supporting the hypothesis that Pr76gag can sort retroviral RNA for translation and encapsidation.  相似文献   

7.
D Bonnet  P F Spahr 《Journal of virology》1990,64(11):5628-5632
In avian cells, the product of the gag gene of Rous sarcoma virus, Pr76gag, has been shown to be targeted to the plasma membrane, to form virus particles, and then to be processed into mature viral gag proteins. To explore how these phenomena may be dependent upon cellular (host) factors, we expressed the Rous sarcoma virus gag gene in a lower eucaryote, Saccharomyces cerevisiae, and studied the behavior of the gag gene product. We show here that Pr76gag is processed in yeast cells and that this processing is specific, since it is abolished in a mutant in which the active site of the gag protease has been destroyed. In this mutant, the uncleaved precursor is found associated with the yeast plasma membrane, yet no virus particles were detected in cells or in the culture medium. From our results, we can speculate either that in yeast cells, a host protease initiates Pr76gag processing in the cytosol or that in avian cells, an inhibitor prevents the processing until the viral particle is formed.  相似文献   

8.
We determined the sites at which ribosomes form initiation complexes on Rous sarcoma virus RNA in order to determine how initiation of Pr76gag synthesis at the fourth AUG codon from the 5' end of Rous sarcoma virus strain SR-A RNA occurs. Ribosomes bind almost exclusively at the 5'-proximal AUG codon when chloride is present as the major anion added to the translational system. However, when chloride is replaced with acetate, ribosomes bind at the two 5'-proximal AUG codons, as well as at the initiation site for Pr76gag. We confirmed that the 5'-proximal AUG codon is part of a functional initiation site by identifying the seven-amino acid peptide encoded there. Our results suggest that (i) translation in vitro of Rous sarcoma virus virion RNA results in the synthesis of at least two polypeptides; (ii) the pattern of ribosome binding observed for Rous sarcoma virus RNA can be accounted for by the modified scanning hypothesis; and (iii) the interaction between 40S ribosomal subunits or 80S ribosomal complexes is stronger at the 5'-proximal AUG codon than at sites farther downstream, including the initiation site for the major viral proteins.  相似文献   

9.
重组人血小板生成素在大肠杆菌中表达的研究   总被引:2,自引:0,他引:2  
采用化学法全合成了编码人血小板生成素(thrombopoietin,TPO)成熟肽N端153氨基酸的基因序列,构建基于该合成基因的表达质粒,结果以谷胱甘肽转硫酶-TPO153(GST-TPO153)融合蛋白的方式获得了占全菌蛋白40%的高效表达.进一步采用PCR方法分别对TPO合成基因及TPOcDNA的翻译起始区(TIR)序列进行定点突变,以降低这一区域的G-C含量.将突变序列分别插入到pBV220表达载体中,重组质粒在转化大肠杆菌JM109后,均获得了表达,其中TIR区突变后的合成基因表达产物约占全菌蛋白的15%.为研究基因下游结构对表达的影响,在不改变氨基酸组成的基础上,构建了TPO合成基因与TPOcDNA的杂合序列表达质粒.研究结果表明翻译起始效率是影响rh-TPO在大肠杆菌中表达的重要因素之一,同时基因下游序列的组成对表达水平也会产生影响.  相似文献   

10.
The region located downstream of the initiation codon constitutes part of the translation initiation signal, significantly affecting the level of protein expression in E. coli. In order to determine its influence on translation initiation, we inserted random 12-base sequences downstream of the initiation codon of the lacZ gene. A total of 119 random clones showing higher beta-galactosidase activities than the control lacZ gene were isolated and subsequently sequenced. Analysis of these clones revealed that their insertion sequences are strikingly rich in A and T, but poor in G, with no consensus sequences among them. Toeprinting experiments and polysome profile analysis confirmed that the A/T-rich sequences enhance translation at the level of initiation. Collectively, the present data demonstrate that A/T richness of the region following the initiation codon plays a significant role in E. coli gene expression.  相似文献   

11.
In vitro translation of avian myeloblastosis virus RNA.   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

12.
The content of viral structural (gag) protein sequences in polypeptides encoded by replication-defective avian erythroblastosis virus (AEV) and myelocytomatosis virus MC29 was assessed by immunological and peptide analyses. Direct comparison with gag proteins of the associated helper viruses revealed that MC29 110K polypeptide contained p19, p12, and p27, whereas the AEV 75K polypeptide had sequences related only to p19 and p12. Both of these polypeptides contained some information that was unrelated to gag, pol, or env gene products. In addition, no homology was detected between these unique peptides of MC29 110K and AEV 75K. The AEV 75K polypeptide shared strain-specific tryptic peptides with the p19 encoded by its naturally occurring helper virus; this observation suggests that gag-related sequences in 75K were originally derived from the helper viral gag gene. Digestion of oxidized MC29 110K and AEV 75K proteins with the Staphylococcus aureus V8 protease generated a fragment which comigrated with N-acetylmethionylsulfoneglutamic acid, a blocked dipeptide which is the putative amino-terminal sequence of structural protein p19 and gag precursor Pr76gag. This last finding is evidence that the gag sequences are located at the N-terminal end of the MC29 110K and AEV 75K polypeptides.  相似文献   

13.
Rous sarcoma virus encodes a transcriptional activator   总被引:33,自引:0,他引:33  
S Broome  W Gilbert 《Cell》1985,40(3):537-546
  相似文献   

14.
Analysis of gag proteins from mouse mammary tumor virus.   总被引:9,自引:9,他引:0       下载免费PDF全文
Structural proteins designated p10gag, p21gag, p8gag, p3gag, p27gag, and p14gag from the C3H strain of mouse mammary tumor virus (MMTV) were purified by reversed-phase high-pressure liquid chromatography. The N- and C-terminal amino acid sequences and amino acid composition of each protein were determined and compared with the amino acids encoded by the proviral DNA sequences for the MMTV gag gene. The results show that each of the purified proteins is a proteolytic cleavage product derived from the predicted primary translational product of the gag gene (Pr77gag) and that their order in Pr77gag is p10-pp21-p8-p3-n-p27-p14 (where n represents 17 predicted residues that were not identified among the purified proteins). Purified p10gag lacks the initiator methionine and has a myristoyl group attached in amide linkage to the N-terminal glycine residue predicted by the second codon of the gag gene. The cleavage products are contiguous in the sequence of Pr77gag, and the C-terminal residue of p14gag is encoded by the last codon of the gag gene. By analogy with other retrovirus, p14gag is the viral nucleocapsid protein, p10gag is the matrix protein, and p27gag is the capsid protein of mature MMTV. Proteolytic cleavage sites in MMTV Pr77gag bear a striking resemblance to cleavage sites in the gag precursors of D-type retroviruses, suggesting that these viral proteases have similar specificities.  相似文献   

15.
16.
Intracellular Moloney murine leukemia viral precursor polyproteins were compared with mature viral proteins by immunoprecipitation and tryptic peptide mapping experiments. The results were consistent with precursor roles for Pr65gag, Pr200gag-pol, Pr135pol, and gPr83env. The glycosylated gag gene product gPr85gag, although containing sequences characteristic of all four core proteins plus additional sequences not found in Pr65gag, lacked a major tyrosine-containing p30 tryptic peptide, suggesting that gPr85gag is not processed to p30.  相似文献   

17.
Numerous data accumulated during the last decade have shown that the Shine-Dalgarno (SD) sequence is not a unique initiator of translation for Escherichia coli. Several other sequences, mostly of viral origin, have demonstrated their capability of either enhancing or initiating translation in vivo. A phage T7 gene 10 sequence, called "epsilon" (epsilon), has shown its high enhancing activity on translation in both Escherichia coli and Agrobacterium tumefaciens cells. In this study the epsilon, together with three other nucleotide sequences derived from the 5' non-translated regions of tobacco mosaic virus (TMV), papaya mosaic virus (PMV) and clover yellow mosaic virus (CYMV) RNAs are tested for translation initiation activity in A. tumefaciens cells. The obtained results indicate that none of them was capable of initiating translation in vivo of chloramphenicol acetyltransferase (CAT) mRNA. To determine whether their inactivity was related with structural differences in the ribosomal protein S1, the rpsA gene (coding for S1 protein in E. coli) was co-expressed in A. tumefaciens together with the cat gene placed under the translational control of the above sequences. Our results showed that the rpsA gene product did not make any of the four viral enhancers active in A. tumefaciens cells. The inability of A. tumefaciens ribosomes to translate mRNAs devoid of SD sequences indicates for a substantial difference in the ribosome structure of the two Gram negative bacteria E. coli and A. tumefaciens.  相似文献   

18.
Mouse mammary tumor virus (MMTV) derived from the culture medium of GR cells contained seven proteins, identified as gp55, gp33, p25, pp20, p16, p12, and p10. The major viral phosphoprotein was the 20,000-molecular-weight protein, pp20. Immunoprecipitation of cytoplasmic extracts from pulse-labeled GR cells identified three MMTV gag-specific proteins, termed Pr78(gag), Pr110(gag), and Pr180(gag+). These intracellular polyproteins were precipitable from cytoplasmic extracts by antisera to virions p25 and p12 but not by antisera to gp55. The major intracellular gag-specific precursor polyprotein, Pr78(gag), contained antigenic determinants and tryptic peptides characteristic of p25, p12, p10, and presumably pp20. This precursor is presumably derived from nascent chain cleavage or rapid posttranslational cleavage of the larger intracellular precursor-like protein, designated Pr110(gag). Pr110(gag) contained all but one of the leucine-containing tryptic peptides of Pr78(gag), plus several additional peptides. In addition to Pr78(gag) and Pr110(gag), monospecific antisera to virion p12 and p25 were also capable of precipitating from pulse-labeled cells a small amount of a 180,000-molecular-weight precursor-like protein, designated Pr180(gag+). This large polyprotein contained nearly all of the leucine-containing tryptic peptides of Pr78(gag) and Pr110(gag) plus several additional peptides. By analogy to type C viral systems, Pr180(gag+) is presumed to represent a gag-pol common precursor which is the major pathway for synthesis of MMTV polymerase. Immunoprecipitation of cytoplasmic extracts from pulse-labeled cells with antisera to gp55 identified two env-specific proteins, designated gPr76(env) and gP79(env). The major env precursor, gPr76(env), could be labeled with radioactive glucosamine and was shown to contain antigenic determinants and tryptic peptides characteristic of gp55 and gp33. A minor glycoprotein, gP79(env), contained both fucose and glucosamine and was precipitable from cytoplasmic extracts with monospecific serum to gp55. It is suggested that gP79(env) represents fucosylated gPr76(env) which is transiently synthesized and cleaved rapidly into gp55 and gp33.  相似文献   

19.
To examine the potential role of the GAG precursor polyprotein in morphogenesis and assembly of the simian immunodeficiency virus (SIV), we have expressed the gag gene of SIVMac using a baculovirus expression vector. Infection of insect cells with recombinant virus containing the entire gag gene results in high expression of the GAG precursor protein, Pr57gag. The recombinant protein is myristylated and is released in the culture supernatant in an insoluble particulate form. A point mutation in the N-terminal glycine codon (Gly----Ala) inhibits myristylation. This mutated product is highly expressed but is not found in the culture supernatant. Electron microscopy and immunogold labelling of infected cells show that the native Pr57gag protein assembles into 100-120 nm virus-like particles that bud from the cell plasma membrane and are released in the culture supernatant. The unmyristylated protein also assembles into particulate structures which only accumulate inside the cells. These results demonstrate that the unprocessed GAG precursor of SIV can spontaneously assemble into particles in the absence of other viral proteins. Myristylation of the Pr57gag precursor is necessary for its association with the cell plasma membrane, for budding and for extracellular release.  相似文献   

20.
Pr60gag appears to be the only protein encoded by the murine AIDS (MAIDS)-defective virus. To study the role of Pr60gag or some other sequences of the viral genome in the pathogenicity of the virus, we have generated mutants of the defective viral genome. These mutant defective viruses, prepared as helper-free stocks, were inoculated into susceptible C57BL/6 mice. Mutant Du5H-A virus, which had a stop codon within gag MA(p15), did not induce target cell proliferation or MAIDS. Mutants Du5H-B and -C encoded truncated Pr60gag proteins containing, respectively, MA(p15)-p12 or MA(p15)-p12 and part of CA(p30). These mutants showed a very limited capacity to induce early cell expansion and were poorly pathogenic. Only recombinant (revertant) viruses were recovered from organs of diseased mice inoculated with these two mutants. Mutant Du5H-D was generated by deleting 1.4 kbp of the 3'-end sequences, outside the gag coding region. The levels of RNA and proteins made by this mutant were low. This mutant also reverting frequently but was nevertheless able to induce MAIDS at a low efficiency without reverting. Our results indicate that the Pr60gag protein is necessary and sufficient to induce MAIDS. These data also suggest that the Pr60gag protein needs to be relatively intact to be fully pathogenic. In addition, our study shows a very high reversion rate of some mutants and emphasizes the need to check for the presence of revertant (recombinant) viruses in diseased organs when working with mutants of the MAIDS-defective virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号