首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:建立胰岛细胞系INS-1E细胞的葡萄糖毒性模型。方法:将INS-1E细胞分别在不同葡萄糖浓度(5.5 mmol/L、16.7mmol/L、25 mmol/L、30 mmol/L)的1640完全培养基中培养不同时间(48 h、72 h、96 h、120 h),分别在不同时间点取细胞进行细胞功能检测,实时荧光定量PCR法检测胰岛素m RNA的表达,ELISA检测葡萄糖刺激的胰岛素的分泌。结果:与对照组相比,高糖浓度(5.5 mmol/L、16.7 mmol/L、25 mmol/L、30 mmol/L)培养基中培养48 h后,INS-1E细胞的胰岛素合成和分泌的功能均增加(P均0.05),随着培养基中葡萄糖浓度的升高以及培养时间的延长,INS-1E细胞胰岛素合成及分泌的功能逐渐下降,当在葡萄糖浓度为30 mmol/L的培养基中培养120 h后,胰岛素m RNA合成及葡萄糖刺激的胰岛素分泌均显著降低(P均0.01)。结论:INS-1E细胞在30 m M的葡萄糖中培养120 h形成稳定的葡萄糖毒性模型。  相似文献   

2.
Zinc accumulation in the lumen of cytoplasmic vesicles is one of the mechanisms by which cells can store significant amounts of this essential but potentially toxic biometal. Previous studies had demonstrated reduced vesicular zinc levels in fibroblasts from mutant mice deficient in adaptor protein 3 (AP-3), a complex involved in protein trafficking to late endosomes and lysosomes. We have observed a similar phenotype in the human fibroblastoid cell line, M1, upon small interference RNA-mediated AP-3 knockdown. A survey of the expression and localization of zinc transporter (ZnT) family members identified ZnT2, ZnT3, and ZnT4 as likely mediators of vesicular zinc accumulation in M1 cells. Expression of green fluorescence protein (GFP)-tagged ZnT2 and ZnT3 promoted accumulation of vesicular zinc as visualized using the indicator zinquin. Moreover, GFP-ZnT2 overexpression elicited a significant accumulation of zinc within mature lysosomes, which in untransfected M1 cells contained little or no chelatable zinc, and restored the zinc storage capability of AP-3-deficient cells. These results suggest that ZnT2 can facilitate vesicular zinc accumulation independently of AP-3 function, and validate the M1 fibroblastoid line as a human cell culture system amenable to the study of vesicular zinc regulation using techniques compatible with functional genomic approaches.  相似文献   

3.
4.
锌及锌转运蛋白ZnT3在小鼠海马苔藓纤维的一致性分布   总被引:1,自引:0,他引:1  
目的 研究游离锌离子和锌转运蛋白ZnT3在小鼠海马的定位以及二的分布是否具有一致性。方法 应用锌TSQ荧光技术、锌金属自显影技术检测含锌神经元内的游离锌离子;应用免疫电镜技术检测ZnT3在含锌神经元轴突终末的分布。结果 游离锌离子和ZnT3免疫反应产物的分布在海马苔藓纤维内的分布具有一致性。在齿状回和CA3区的苔藓纤维内,锌和ZnT3蛋白定位于轴突终末的突触小泡。富含锌离子的含锌神经元轴突终末与CA3区锥体细胞的胞体和树突形成突触。尚可见锌离子存在于突触间隙内。结论 ZnT3向突触小泡内转运锌离子使锌离子聚积在含锌神经元轴突终末的突触小泡内,发挥锌离子的神经生物学功能。  相似文献   

5.
The SLC30A8 gene codes for a pancreatic beta-cell-expressed zinc transporter, ZnT8. A polymorphism in the SLC30A8 gene is associated with susceptibility to type 2 diabetes, although the molecular mechanism through which this phenotype is manifest is incompletely understood. Such polymorphisms may exert their effect via impacting expression level of the gene product. We used an shRNA-mediated approach to reproducibly downregulate ZnT8 mRNA expression by >90% in the INS-1 pancreatic beta cell line. The ZnT8-downregulated cells exhibited diminished uptake of exogenous zinc, as determined using the zinc-sensitive reporter dye, zinquin. ZnT8-downregulated cells showed reduced insulin content and decreased insulin secretion (expressed as percent of total insulin content) in response to hyperglycemic stimulus, as determined by insulin immunoassay. ZnT8-depleted cells also showed fewer dense-core vesicles via electron microscopy. These data indicate that reduced ZnT8 expression in cultured pancreatic beta cells gives rise to a reduced insulin response to hyperglycemia. In addition, although we provide no direct evidence, these data suggest that an SLC30A8 expression-level polymorphism could affect insulin secretion and the glycemic response in vivo.  相似文献   

6.
Zinc enriched (ZEN) neurons and terminals are abundant in the rodent spinal cord. Zinc ions have been suggested to modulate the excitability of primary afferent fibers believed to be important in nociceptive transmission. To test the hypothesis that vesicular zinc concentration is related to neuropathic pain we applied Chung’s rodent pain model on BALB/c mice, and traced zinc transporter 3 (ZnT3) proteins and zinc ions with immunohistochemistry and autometallography (AMG), respectively. Under anesthesia the left fifth lumbar spinal nerve was ligated in male mice in order to produced neuropathic pain. The animals were then sacrificed 5 days later. The ZnT3 immunoreactivity was found to have decreased significantly in dorsal horn of fourth, fifth, and sixth lumbar segments. In parallel with the depressed ZnT3 immunoreactivity the amount of vesicular zinc decreased perceptibly in superficial gray matters of especially layer I-IV of the same segments. The transection-induced reduction of vesicular zinc in ZEN terminals of the dorsal horn was synchronic to reduced pain threshold, as measured by von Frey method. In a separate study, we observed intensive zinc selenite precipitation in somata of the smaller spinal ganglion cell, but 5 days after spinal nerve transection zinc precipitation was also found in the lager ganglion cells. The present results indicate that zinc may be involved in pain mechanism in the spinal ganglion level. These results support the hypothesis that vesicular zinc might have a modulatory role for neuropathic pain. Thus, increased pain sensitivity might be related to reduce vesicular zinc level in the dorsal spinal gray matter.  相似文献   

7.
Zinc plays a crucial role in numerous key physiological functions. Zinc transporters (ZnTs) mediate zinc efflux and compartmentalization in intracellular organelles; thus, ZnTs play a central role in zinc homeostasis. We have recently shown the in situ dimerization and function of multiple normal and mutant ZnTs using bimolecular fluorescence complementation (BiFC). Prompted by these findings, we here uncovered the heterodimerization, altered subcellular localization, and function of multiple ZnTs in live cells using this sensitive BiFC technique. We show that ZnT1, -2, -3, and -4 form stable heterodimers at distinct intracellular compartments, some of which are completely different from their homodimer localization. Specifically, unlike the plasma membrane (PM) localization of ZnT1 homodimers, ZnT1-ZnT3 heterodimers localized at intracellular vesicles. Furthermore, upon heterodimerization with ZnT1, the zinc transporters ZnT2 and ZnT4 surprisingly localized at the PM, as opposed to their vesicular homodimer localization. We further demonstrate the deleterious effect that the G87R-ZnT2 mutation, associated with transient neonatal zinc deficiency, has on ZnT1, ZnT3, and ZnT4 upon heterodimerization. The functionality of the various ZnTs was assessed by the dual BiFC-Zinquin assay. We also undertook a novel transfection competition assay with ZnT cDNAs to confirm that the driving force for heterodimer formation is the core structure of ZnTs and not the BiFC tags. These findings uncover a novel network of homo- and heterodimers of ZnTs with distinct subcellular localizations and function, hence highlighting their possible role in zinc homeostasis under physiological and pathological conditions.  相似文献   

8.
奚晓雪  郭军 《生命科学》2010,(4):321-325
ZnT8(zinc transporter,member8)是锌离子转运蛋白,主要定位于胰岛β细胞,能将胞浆锌离子转运至胰岛素储存/分泌性囊泡内,其转运功能降低会影响胰岛素合成、储存和分泌,能增加2型糖尿病(T2DM)的发病风险。ZnT8蛋白也可作为抗原引起β细胞自身免疫损伤,诱发1型糖尿病(T1DM)。ZnT8基因多态性是引起其锌离子转运功能和免疫原性变化的重要因素,与糖尿病的发生、发展密切相关。该文综述了ZnT8与T1DM和T2DM的研究进展,提示ZnT8可作为糖尿病防治的新药物靶点。  相似文献   

9.
The zinc content in the pancreatic beta cell is among the highest of the body. Zinc appears to be an important metal for insulin-secreting cells as insulin is stored inside secretory vesicles as a solid hexamer bound with two Zn2+ ions per hexamer. Zinc is also an important component of insulin secretion mechanisms and is likely to modulate the function of neighbouring cells via paracrine/autocrine interactions. Therefore beta cells undoubtedly need very efficient and specialized transporters to accumulate sufficient amounts of zinc in secretion vesicles. We report here the discovery and the characteristics of a new zinc transporter, ZnT-8, belonging to the CDF (Cation Diffusion Facilitator) family and expressed only in pancreatic beta cells. This transporter, localized in secretion vesicles membrane, facilitates the accumulation of zinc from the cytoplasm into intracellular insulin-containing vesicles and is a major component for providing zinc to insulin maturation and/or storage processes in insulin-secreting pancreatic beta cells. We discovered mammalian orthologs (rat, mouse, chimpanzee, and dog) and found these ZnT-8 proteins very similar (98% conserved amino acids) to human ZnT-8, indicating a high conservation during evolution.  相似文献   

10.
Zinc plays essential roles in the early secretory pathway for a number of secretory, membrane-bound, and endosome/lysosome-resident enzymes. It enables the enzymes to fold properly and become functional, by binding as a structural or catalytic component. Moreover, zinc secreted from the secretory vesicles/granules into the extracellular space has a pivotal role as a signaling molecule for various physiological functions. Zinc transporters of the Slc30a/ZnT and Slc39a/Zip families play crucial roles in these functions, mediating zinc influx to and efflux from the lumen of the secretory pathway, constitutively or in a cell-specific manner. This paper reviews current knowledge of the ways these two zinc transporters perform these tasks by manipulating zinc homeostasis in the secretory pathway. Recent questions concerning zinc released into the cytoplasm from the secretory pathway, which then functions as an intracellular signaling molecule, are also briefly reviewed, emphasizing zinc transporter functions.  相似文献   

11.
Zinc plays essential roles in the early secretory pathway for a number of secretory, membrane-bound, and endosome/lysosome-resident enzymes. It enables the enzymes to fold properly and become functional, by binding as a structural or catalytic component. Moreover, zinc secreted from the secretory vesicles/granules into the extracellular space has a pivotal role as a signaling molecule for various physiological functions. Zinc transporters of the Slc30a/ZnT and Slc39a/Zip families play crucial roles in these functions, mediating zinc influx to and efflux from the lumen of the secretory pathway, constitutively or in a cell-specific manner. This paper reviews current knowledge of the ways these two zinc transporters perform these tasks by manipulating zinc homeostasis in the secretory pathway. Recent questions concerning zinc released into the cytoplasm from the secretory pathway, which then functions as an intracellular signaling molecule, are also briefly reviewed, emphasizing zinc transporter functions.  相似文献   

12.
Tranilast, N-(3,4-demethoxycinnamoyl)-anthranilic acid, is an anti-allergic agent identified as an inhibitor of mast cell degranulation. Recently, tranilast was shown to decrease albuminuria in a rat model of diabetic nephropathy and to ameliorate vascular hypertrophy in diabetic rats, suggesting that it may be clinically useful in the treatment of diabetic complications. However, the effects of tranilast on glucose tolerance have not been elucidated. Thus, the aim of this study is to investigate the effect of tranilast on insulin secretion in pancreatic beta-cells. Treatment with tranilast significantly suppressed insulin secretion in INS-1E cells and rat islets induced by 16.7 mmol/l glucose. Furthermore, tranilast inhibited tolbutamide-induced insulin secretion. Treatment with tranilast increased (86)Rb (+) efflux from COS-1 cells in which pancreatic beta-cell-type ATP-sensitive K (+) (K (ATP)) channels were reconstructed and suppressed the cytosolic ATP/ADP ratio in INS-1E cells. Interestingly, treatment with tranilast enhanced glucose uptake in INS-1E cells. In the present study, we demonstrated that tranilast inhibited glucose- and tolbutamide-induced insulin secretion through the activation of K (ATP) channels in pancreatic beta-cells.  相似文献   

13.
Zinc ions in the synaptic vesicles of zinc-enriched neurons (ZEN) seem to have an important role in normal physiological and pathophysiological processes in target organ innervation. The factor directly responsible for the transport of zinc ions into synaptic vesicles is zinc transporter 3 (ZnT3), a member of the divalent cation zinc transporters and an excellent marker of ZEN neurons. As data concerning the existence of ZEN neurons in the small intestine is lacking, this study was designed to disclose the presence and neurochemical coding of such neurons in the porcine jejunum. Cryostat sections (10 m?? thick) of porcine jejunum were processed for routine double- and triple-immunofluorescence labeling for ZnT3 in various combinations with immunolabeling for other neurochemicals including pan-neuronal marker (PGP9.5), substance P (SP), somatostatin (SOM), vasoactive intestinal peptide (VIP), nitric oxide synthase (NOS), leu-enkephalin (LENK), vesicular acetylcholine transporter (VAChT), neuropeptide Y (NPY), galanin (GAL), and calcitonin-gene related peptide (CGRP). Immunohistochemistry revealed that approximately 39%, 49%, and 45% of all PGP9.5- positive neurons in the jejunal myenteric (MP), outer submucous (OSP), and inner submucous (ISP) plexuses, respectively, were simultaneously ZnT3+. The majority of ZnT3+ neurons in all plexuses were also VAChT-positive. Both VAChT-positive and VAChT-negative ZnT3+ neurons co-expressed a variety of active substances with diverse patterns of co-localization depending on the plexus studied. In the MP, the largest populations among both VAChT-positive and VAChT-negative ZnT3+ neurons were NOS-positive cells. In the OSP and ISP, substantial subpopulations of ZnT3+ neurons were VAChT-positive cells co-expressing SOM and GAL, respectively. The broad-spectrum of active substances that co-localize with the ZnT3+ neurons in the porcine jejunum suggests that ZnT3 takes part in the regulation of various processes in the gut, both in normal physiological and during pathophysiological processes.  相似文献   

14.
15.

Background

Traumatic brain injury (TBI) is one of the leading causes of disability and death among young people. Although much is already known about secondary brain damage the full range of brain tissue responses to TBI remains to be elucidated. A population of neurons located in cerebral areas associated with higher cognitive functions harbours a vesicular zinc pool co-localized with glutamate. This zinc enriched pool of synaptic vesicles has been hypothesized to take part in the injurious signalling cascade that follows pathological conditions such as seizures, ischemia and traumatic brain injury. Pathological release of excess zinc ions from pre-synaptic vesicles has been suggested to mediate cell damage/death to postsynaptic neurons.

Methodology/Principal Findings

In order to substantiate the influence of vesicular zinc ions on TBI, we designed a study in which damage and zinc movements were analysed in several different ways. Twenty-four hours after TBI ZnT3-KO mice (mice without vesicular zinc) were compared to littermate Wild Type (WT) mice (mice with vesicular zinc) with regard to histopathology. Furthermore, in order to evaluate a possible neuro-protective dimension of chemical blocking of vesicular zinc, we treated lesioned mice with either DEDTC or selenite. Our study revealed that chemical blocking of vesicular zinc ions, either by chelation with DEDTC or accumulation in zinc-selenium nanocrystals, worsened the effects on the aftermath of TBI in the WT mice by increasing the number of necrotic and apoptotic cells within the first 24 hours after TBI, when compared to those of chemically untreated WT mice.

Conclusion/Significance

ZnT3-KO mice revealed more damage after TBI compared to WT controls. Following treatment with DEDTC or selenium an increase in the number of both dead and apoptotic cells were seen in the controls within the first 24 hours after TBI while the degree of damage in the ZnT3-KO mice remained largely unchanged. Further analyses revealed that the damage development in the two mouse strains was almost identical after either zinc chelation or zinc complexion therapy.  相似文献   

16.
小鼠脊髓内存在抑制性含锌神经元   总被引:1,自引:0,他引:1  
目的探讨小鼠脊髓中是否含有抑制性的含锌神经元。方法应用锌金属自显影技术、免疫电镜技术和共聚焦激光扫描显微术,研究游离锌离子、锌转运蛋白(zinc transporter 3,ZnT3)与(glutamic acid decarboxylate,GAD)在小鼠脊髓内的共存情况。结果小鼠脊髓内至少有三种含锌神经元轴突终末,其中大多数为GAD阳性即γ-氨基丁酸能含锌神经元轴突终末,另外两种分别为GAD阴性含扁圆形小泡的甘氨酸能含锌神经元轴突终末和含圆形清亮小泡的兴奋性谷氨酸能含锌神经元轴突终末。结论在哺乳动物脊髓内存在大量的抑制性含锌神经元。锌离子从抑制性含锌神经元轴突终末释放到突触间隙内,作为神经调质作用于突触后的GABA受体或甘氨酸受体,参与脊髓运动和感觉功能的调控。  相似文献   

17.
Insulin secretory granules are β-cell vesicles dedicated to insulin processing, storage, and release. The secretion of insulin secretory granule content in response to an acute increase of glucose concentration is a highly regulated process allowing normal glycemic homeostasis. Type 2 diabetes is a metabolic disease characterized by chronic hyperglycemia. The consequent prolonged glucose exposure is known to exert deleterious effects on the function of various organs, notably impairment of insulin secretion by pancreatic β-cells and induction of apoptosis. It has also been described as modifying gene and protein expression in β-cells. Therefore, we hypothesized that a modulation of insulin secretory granule protein expression induced by chronic hyperglycemia may partially explain β-cell dysfunction. To identify the potential early molecular mechanisms underlying β-cell dysfunction during chronic hyperglycemia, we performed SILAC and mass spectrometry experiments to monitor changes in the insulin secretory granule proteome from INS-1E rat insulinoma β-cells cultivated either with 11 or 30 mm of glucose for 24 h. Fourteen proteins were found to be differentially expressed between these two conditions, and several of these proteins were not described before to be present in β-cells. Among them, neuronal pentraxin 1 was only described in neurons so far. Here we investigated its expression and intracellular localization in INS-1E cells. Furthermore, its overexpression in glucotoxic conditions was confirmed at the mRNA and protein levels. According to its role in hypoxia-ischemia-induced apoptosis described in neurons, this suggests that neuronal pentraxin 1 might be a new β-cell mediator in the AKT/GSK3 apoptotic pathway. In conclusion, the modification of specific β-cell pathways such as apoptosis and oxidative stress may partially explain the impairment of insulin secretion and β-cell failure, observed after prolonged exposure to high glucose concentrations.  相似文献   

18.
Zinc is an essential component for the catalytic activity of numerous zinc-requiring enzymes. However, until recently little has been known about the molecules involved in the pathways required for supplying zinc to these enzymes. We showed recently (Suzuki, T., Ishihara, K., Migaki, H., Matsuura, W., Kohda, A., Okumura, K., Nagao, M., Yamaguchi-Iwai, Y., and Kambe, T. (2005) J. Biol. Chem. 280, 637-643) that zinc transporters, ZnT5 and ZnT7, are required for the activation of zinc-requiring enzymes, alkaline phosphatases (ALPs), by transporting zinc into the lumens of the Golgi apparatus and the vesicular compartments where ALPs locate and converting apoALPs to holoALPs. ZnT6 is also located in the vesicular compartments like ZnT5 and ZnT7. However, the functions of ZnT6 and relationships among these three transporters have not been characterized yet. Here, we characterized the cellular function of ZnT6 together with ZnT5 and ZnT7 by gene-targeting studies using DT40 cells. ZnT6-deficient DT40 cells showed low ALP activity, suggesting that ZnT6 is required for the activation of zinc-requiring enzymes like ZnT5 and ZnT7. Combined disruptions of three transporter genes and re-expressions of transgenes revealed that ZnT5 and ZnT6 work in the same pathway, whereas ZnT7 acts alone. Furthermore, co-immunoprecipitation studies revealed that ZnT5 and ZnT6 formed hetero-oligomers, whereas ZnT7 formed homo-oligomers. Interestingly, the Ser-rich loop in ZnT6, a potential zinc-binding site, was dispensable for the zinc-supplying function of ZnT5/ZnT6 hetero-oligomers, suggesting that the His-rich loop in ZnT5 may be important for zinc binding and that the loop in ZnT6 may acquire another function in the hetero-oligomer formation. These results suggest that two different zinc transport complexes operate to activate ALPs.  相似文献   

19.
Objective of this study was to characterize osmotically-induced insulin secretion in two tumor cell lines. We compared response of freshly isolated rat pancreatic islets and INS-1 and INS-1E tumor cell lines to high glucose, 30 % hypotonic medium and 20 % hypertonic medium. In Ca(2+)-containing medium glucose induced insulin release in all three cell types. Hypotonicity induced insulin secretion from islets and INS-1 cells but not from INS-1E cells, in which secretion was inhibited despite similar increase in cell volume in both cell types. GdCl(3) (100 micromol/l) did not affect insulin response from INS-1E cells to hypotonic challenge. Hypertonic medium inhibited glucose-induced insulin secretion from islets but not from tumor cells. Noradrenaline (1 micromol/l) inhibited glucose-induced but not swelling-induced insulin secretion from INS-1 cells. Surprisingly, perifusion with Ca(2+)-depleted medium showed distinct secretory response of INS-1E cells to hypotonicity while that of INS-1 cells was partially inhibited. Functioning glucose-induced insulin secretion is not sufficient prerequisite for hypotonicity-induced response in INS-1E cells suggesting that swelling-induced exocytosis is not essential step in the mechanism mediating glucose-induced insulin secretion. Both cell lines are resistant to inhibitory effect of hyperosmolarity on glucose-induced insulin secretion. Response of INS-1E cells to hypotonicity is inhibited by the presence of Ca(2+) in medium.  相似文献   

20.
The review collects the emerging information about zinc transporter 3 (ZnT3). ZnT3 has been associated with Alzheimer’s disease, airway diseases and diabetes. ZnT3 was discovered and cloned in 1996. Since then, the major interest in the protein has been in its ability to transport zinc into pre-synaptic vesicles of glutamatergic neurones and its role during the development of amyloid β plaques in Alzheimer’s disease. Increasing evidence suggests that ZnT3 is present in various cell types like different cell types in the brain, cells from adipose tissue, beta-cells from pancreatic islets, epithelial cells, cells from testis, prostate cancer cells and cells from retina. The expression of ZnT3 is regulated by age, hormones, fatty acids, zinc chelation, and glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号