首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blastocyst MHC is a mouse MHC class Ib gene that is selectively expressed in blastocysts and placenta like human HLA-G, which protect fetal trophoblasts and some tumor cells from NK cell attack, and in TAP-dependent expression on the cell surface. We expressed blastocyst MHC cDNA in beta2-deficient EL-4 S3 or beta2m-transfected EL-4 S3 cells. In parental EL-4 S3 cells, only 47-kDa blastocyst MHC protein was expressed and retained in the cytoplasm. However, additional 51-kDa blastocyst MHC protein was expressed on the surface of beta2m-transfected EL-4 S3 cells. The 51-kDa protein was resistant to Endo-H, whereas the 47-kDa protein was sensitive for Endo-H. The results suggested that beta2m as well as TAP was necessary for the transportation of blastocyst MHC from endoplasmic reticulum to cell surfaces through the Golgi apparatus, similar to other MHC class I molecules.  相似文献   

2.
For a proper development of the placenta, maternal NK cells should not attack the fetal extravillous cytotrophoblast cells. This inhibition of maternal NK cells is partially mediated via the nonclassical MHC class I molecule HLA-G. Recently, we demonstrated that HLA-G forms disulfide-linked high molecular complexes on the surface of transfected cells. In the present study, we demonstrate that HLA-G must associate with beta(2)m for its interaction with CD85J/leukocyte Ig-like receptor-1 (LIR-1). Although HLA-G free H chain complexes are expressed on the surface, they are not recognized and possibly interfere with CD85J/LIR-1 and HLA-G interaction. The formation of these complexes on the cell surface might represent a novel mechanism developed specifically by the HLA-G protein aimed to control the efficiency of the CD85J/LIR-1-mediated inhibition. We also show that endogenous HLA-G complexes are expressed on the cell surface. These findings provide novel insights into the delicate interaction between extravillous cytotrophoblast cells and NK cells in the decidua.  相似文献   

3.
Unlike CD1d-restricted NK1.1(+)TCRalphabeta(+) (NKT) cells, which have been extensively studied, little is known about CD1d-independent NKT cells. To characterize their functions, we analyzed NKT cells in beta(2)-microglobulin (beta(2)m)-deficient B6 mice. They are similar to NK cells and expressed NK cell receptors, including Ly49, CD94/NKG2, NKG2D, and 2B4. NKT cells were found in normal numbers in mice that are deficient in beta(2)m, MHC class II, or both. They were also found in the male HY Ag-specific TCR-transgenic mice independent of positive or negative selection in the thymus. For functional analysis of CD1d-independent NKT cells, we developed a culture system in which CD1d-independent NKT cells, but not NK, T, or most CD1d-restricted NKT cells, grew in the presence of an intermediate dose of IL-2. IL-2-activated CD1d-independent NKT cells were similar to IL-2-activated NK cells and efficiently killed the TAP-mutant murine T lymphoma line RMA-S, but not the parental RMA cells. They also killed beta(2)m-deficient Con A blasts, but not normal B6 Con A blasts, indicating that the cytotoxicity is inhibited by MHC class I on target cells. IL-2-activated NKT cells expressing transgenic TCR specific for the HY peptide presented by D(b) killed RMA-S, but not RMA, cells. They also killed RMA (H-2(b)) cells that were preincubated with the HY peptide. NKT cells from beta(2)m-deficient mice, upon CD3 cross-linking, secreted IFN-gamma and IL-2, but very little IL-4. Thus, CD1d-independent NKT cells are significantly different from CD1d-restricted NKT cells. They have hybrid phenotypes and functions of NK cells and T cells.  相似文献   

4.
The non-classical HLA-G protein is distinguished from the classical MHC class I molecules by its expression pattern, low polymorphism and its ability to form complexes on the cell surface. The special role of HLA-G in the maternal-fetal interface has been attributed to its ability to interact with specific receptors found on maternal immune cells. However this interaction is restricted to a limited number of receptors. In this study we elucidate the reason for this phenomenon by comparing the specific contact residues responsible for MHC-KIR interactions. This alignment revealed a marked difference between the HLA-G molecule and other MHC class I molecules. By mutating these residues to the equivalent classical MHC residues, the HLA-G molecule regained an ability of interacting with KIR inhibitory receptors found on NK cells derived either from peripheral blood or from the decidua. Functional NK killing assays further substantiated the binding results. Furthermore, double immunofluorescent staining of placental sections revealed that while the conformed form of HLA-G was expressed in all extravillous trophoblasts, the free heavy chain form of HLA-G was expressed in more distal cells of the column, the invasion front. Overall we suggest that HLA-G protein evolved to interact with only some of the NK inhibitory receptors thus allowing a control of inhibition, while permitting appropriate NK cell cytokine and growth factor production necessary for a viable maternal fetal interface.  相似文献   

5.
NK cells provide a line of defense against tumors and virus-infected cells that have lost the expression of one or more MHC class I isoforms. Here, we investigate whether inhibitors of apoptosis can block the rejection of tumors mediated by NK cells, by introducing the long form of Fas-associated death domain-like IL-1beta-converting enzyme-associated inhibitory protein (FLIP(L)) and poxvirus cytokine response modifier A (CrmA) into the MHC class I-deficient T lymphoma cell line RMA-S. RMA-S cells do not normally express Fas in vitro, and it was previously postulated that the rejection of these tumors by NK cells is strictly perforin dependent. We show that perforin-deficient NK cells directly mediate Fas up-regulation on RMA-S cells and thereafter kill the cells in a Fas-dependent manner, and that RMA-S FLIP(L) and RMA-S CrmA are protected from such killing. When injected in immunocompetent recipients, RMA-S cells up-regulate Fas, rendering in vivo-passed mock-transduced cells sensitive to Fas-mediated apoptosis. Moreover, RMA-S FLIP(L) and RMA-S CrmA cells establish aggressive tumors, in contrast to RMA-S mock cells that are rejected. These results demonstrate that FLIP(L) and CrmA function as tumor progression factors by protecting MHC class I-deficient tumors from rejection mediated by NK cells. Moreover, our data indicate that death receptor-mediated apoptosis has a more prominent role in the clearance of NK-sensitive tumors than previously suggested.  相似文献   

6.
MHC class Ia H chains and beta 2-microglobulin assemble with appropriate peptides to form stable cell surface molecules that serve as targets for Ag-specific CTL. The structural similarities of class Ia and the less polymorphic Q/T/M (class Ib) molecules suggest that class Ib molecules also play a role in antigen presentation, although the origin of the peptides they present remains mostly unclear. The cell line RMA-S has a defect in class I Ag presentation, presumably due to a mutation in a peptide transporter gene. This defect can be overcome by transfection of RMA-S cells with the Tap-2 gene (formerly Ham-2) that encodes an ATP-binding transporter protein. We now show that a substantial portion of alloreactive CTL specific for Qa-1 class Ib molecules recognize Qa-1b on RMA-S cells and thus differ from most class Ia specific CTL. Those anti-Qa-1b CTL that do not recognize untransfected RMA-S do lyse RMA-S transfected with Tap-2. We also examine the effects of Qdm, a gene that maps to the D region and alters recognition of Qa-1. Qdm(k) strains lack an epitope(s) recognized by some (Qdm dependent) anti-Qa-1 CTL whereas Qdm+ strains express this epitope. Thus, Qdm-dependent CTL do not recognize Qa-1 on Qdm(k) targets whereas Qdm-independent CTL recognize Qa-1 epitopes in all strains. Although Qdm-independent CTL varied as to whether they recognized RMA-S vs RMA, all nine Qdm-dependent clones only recognized Qa-1b on RMA and not RMA-S. This result is consistent with Qdm encoding a peptide dependent upon the TAP transporter for cell membrane expression.  相似文献   

7.
We have investigated the primary immunity generated in vivo by MHC class I-deficient and -competent tumor cell lines that expressed the NKG2D ligand retinoic acid early inducible-1 (Rae-1) beta. Rae-1beta expression on class I-deficient RMA-S lymphoma cells enhanced primary NK cell-mediated tumor rejection in vivo, whereas RMA-Rae-1beta tumor cells were rejected by a combination of NK cells and CD8(+) T cells. Rae-1beta expression stimulated NK cell cytotoxicity and IFN-gamma secretion in vitro, but not proliferation. Surprisingly, only NK cell perforin-mediated cytotoxicity, but not production of IFN-gamma, was critical for the rejection of Rae-1beta-expressing tumor cells in vivo. This distinct requirement for perforin activity contrasts with the NK cell-mediated rejection of MHC class I-deficient RMA-S tumor cells expressing other activating ligands such as CD70 and CD80. Thus, these results indicated that NKG2D acted as a natural cytotoxicity receptor to stimulate perforin-mediated elimination of ligand-expressing tumor cells.  相似文献   

8.
HLA-G is a nonclassical MHC class I molecule that plays a major role in maternal-fetal tolerance. Four membrane-bound (HLA-G1 to -G4) and two soluble (HLA-G5, and -G6) proteins are generated by alternative splicing. Only HLA-G1 has been extensively studied in terms of both expression and function. We provide evidence here that HLA-G2, -G3, and -G4 truncated isoforms reach the cell surface of transfected cells, as endoglycosidase H-sensitive glycoproteins, after a 2-h chase period. Moreover, cytotoxicity experiments show that these transfected cells are protected from the lytic activity of both innate (NK cells) and acquired (CTL) effectors. These findings highlight the immunomodulatory role that HLA-G2, -G3, and -G4 proteins will assume during physiologic or pathologic processes in which HLA-G1 expression is altered.  相似文献   

9.
RMA-S cells do not express functional TAP, yet they express MHC class I molecules at the cell surface, especially at reduced temperatures (26 degrees C). It is generally assumed that such class I molecules are "empty," devoid of any associated peptide. A radiochemical approach was used to label class I-associated peptides and to determine the extent to which Kb molecules in RMA-S cells are associated with peptides. These studies revealed that at 26 degrees C Kb molecules in RMA-S cells are occupied with self-peptides. Such peptides stably associate with Kb at 26 degrees C but easily dissociate from them at 37 degrees C, suggesting low-affinity interactions between Kb and the associated peptides. At 26 degrees C, at least some of these Kb molecules are stably expressed in a peptide-receptive state on the cell surface, whereas at 37 degrees C they are short lived and are only transiently capable of binding and presenting exogenously supplied OVA 257-264 peptide for presentation to CD8+ Kb-restricted T lymphocytes. Thus contrary to current models of class I assembly in TAP-deficient RMA-S cells, the presumably "empty" molecules are in fact associated with peptides at 26 degrees C. Together, our data support the existence of an alternative mechanism of peptide binding and display by MHC class I molecules in TAP-deficient cells that could explain their ability to present Ag.  相似文献   

10.
The mutant murine lymphoma cell line RMA-S is unable to present endogenous antigens due to its inability to efficiently assemble class I major histocompatibility complex molecules and antigenic peptides. Therefore, it has been suggested that RMA-S cells are defective either in peptide generation or in peptide transport into the endoplasmic reticulum, where class I major histocompatibility complex molecule assembly is believed to occur. As proteasomes and the putative peptide transporters HAM1 and HAM2 have been implicated in class I antigen processing, we have investigated their expression in RMA-S and its wild-type counterpart RMA. Both proteasomes and HAM1 proteins are expressed at similar levels and show identical subcellular distributions in the two cell lines. However, only one copy of the HAM2 gene is present in RMA-S cells, and it contains a point mutation that leads to a premature stop codon. Thus, the HAM2 protein is absent from RMA-S cells. These data demonstrate that HAM2 is essential for peptide loading onto class I molecules.  相似文献   

11.
The nonclassical class I MHC molecule HLA-G is selectively expressed on extravillous cytotrophoblast cells at the maternal-fetal interface during pregnancy. HLA-G can inhibit the killing mediated by NK cells via interaction with the inhibitory NK cell receptor, leukocyte Ig-like receptor-1 (LIR-1). Comparison of the sequence of the HLA-G molecule to other class I MHC proteins revealed two unique cysteine residues located in positions 42 and 147. Mutating these cysteine residues resulted in a dramatic decrease in LIR-1 Ig binding. Accordingly, the mutated HLA-G transfectants were less effective in the inhibition of NK killing and RBL/LIR-1 induced serotonin release. Immunoprecipitation experiments demonstrated the involvement of the cysteine residues in the formation of HLA-G protein oligomers on the cell surface. The cysteine residue located at position 42 is shown to be critical for the expression of such complexes. These oligomers, unique among the class I MHC proteins, probably bind to LIR-1 with increased avidity, resulting in an enhanced inhibitory function of LIR-1 and an impaired killing function of NK cells.  相似文献   

12.
We have investigated the primary and secondary immunity generated in vivo by a MHC class I-deficient tumor cell line that expressed CD80 (B7-1). CD80 expression enhanced primary NK cell-mediated tumor rejection in vivo and T cell immunity against secondary tumor challenge. CD80 expression enhanced primary NK cell-mediated tumor rejection, and both NK cell perforin and IFN-gamma activity were critical for the rejection of MHC class I-deficient RMA-S-CD80 tumor cells. This primary rejection process stimulated the subsequent development of specific CTL and Th1 responses against Ags expressed by the MHC class I-deficient RMA-S tumor cells. The development of effective secondary T cell immunity could be elicited by irradiated RMA-S-CD80 tumor cells and was dependent upon NK cells and IFN-gamma in the priming response. Our findings demonstrate a key role for IFN-gamma in innate and adaptive immunity triggered by CD80 expression on tumor cells.  相似文献   

13.
MHC class I molecules devoid of peptide are expressed on the cell surface of the mouse mutant lymphoma cell line RMA-S upon culture at reduced temperature. Empty class I molecules are thermolabile at the cell surface and in detergent lysates, but can be stabilized by the addition of presentable peptide; peptide binding appears to be a rapid process. Furthermore, class I molecules on the surface of RMA-S (H-2b haplotype) cells cultured at 26 degrees C can efficiently and specifically bind iodinated peptide presented by H-2Kb. Binding of iodinated peptide is also observed at a lower level for nonmutant cells (RMA) cultured at 26 degrees C. These experiments underscore the role for peptide in maintenance of the structure of class I molecules and, more importantly, provide two assay systems to study the interactions of peptides with MHC class I molecules independent of the availability of T cells that recognize a particular peptide-MHC class I complex.  相似文献   

14.
In this study we focused on the structure and expression of the HLA-E, F, and G class I complexes in placental tissue. Structural analysis included an examination of the peptides bound to soluble and membrane forms of the HLA-G complex isolated directly from placenta. An important distinction was observed from HLA-G bound peptides previously isolated from transfectant cells. Thus, the number of distinct moieties bound to placental-derived proteins was substantially lower than that bound to transfectant-derived HLA-G. Indeed, a single peptide species derived from a cytokine-related protein alone accounted for 15% of the molar ratio of HLA-G bound peptide. To further examine HLA-E and its potential to bind peptide, notably that derived from HLA-G, we combined new Abs to examine expression in placental tissues for all the known forms of the nonclassical class I molecules. Whereas membrane HLA-G was found in extravillous trophoblasts, soluble HLA-G was found in all placental trophoblasts, including villous cytotrophoblasts and syncitiotrophoblasts. Further, HLA-E was found in all cells that expressed either form of HLA-G, consistent with HLA-E being complexed with the HLA-G signal sequence-derived nonamer in these cells. Finally, using new reagents specific for HLA-F, a restricted pattern of expression was observed, primarily on extravillous trophoblasts that had invaded the maternal decidua. Comparative staining indicated that HLA-F was on the surface of these cells, defining them as the first to demonstrate surface expression of this Ag and the first cell type identified to express all three nonclassical HLA class I Ags simultaneously.  相似文献   

15.
NK cells are known to kill tumor cells and produce proinflammatory cytokines that lead to the generation of tumor-specific CTLs. Many studies have used MHC class I-deficient tumor cells and/or adjuvants that induce NK cell responses. In this study, the focus was on less-immunogenic lymphoma cells that express MHC class I as a model to study NK cell responses to tumors that do not directly stimulate NK cell activation. When RMA tumor cells that expressed a truncated version of OVA, or RMA cells alone, were injected into mice that were depleted of NK cells, the mice developed an increased number of tumor-specific CTLs, increased IFN-gamma responses, and a higher amount of Ag presentation in draining LNs compared with mice with intact NK cells. These data suggest that NK cells can inhibit the development of effective adaptive immunity in the absence of signals that trigger NK cell activation.  相似文献   

16.
Human NK cells contribute a significant role to host defense as well as xenogeneic cytotoxicity. Previous studies using human 721.221 cell line have shown that peptides derived from the leader sequence of the HLA-G binds and up-regulates the surface expression of HLA-E molecules, which was considered to consequently provide negative signals to human NK cells. However, the direct role of HLA-G in inhibiting human NK cells remains controversial. In this study, we showed that the expression of HLA-G or HLA-E in porcine endothelial cells directly protected sensitive porcine cells from human NK cell-mediated xenogeneic cytotoxicity. Ab blocking assays using F(ab')2 of the HLA class I-specific mAb PA2.6 indicated that the protection was directly mediated by the expression of HLA-G and HLA-E on the porcine cells. The HLA-E-mediated protection was blocked by anti-human CD94 Ab. In addition, the engagement of HLA-E lead to the phosphorylation of the CD94/NKG2 complex and the recruitment of SH2 domain-containing protein phosphatase 1 (SHP-1) to the complex. Therefore, HLA-E protected porcine cells from xenoreactive human NK cells through a CD94/NKG2-dependent pathway. In contrast, HLA-G inhibited human NK cells in the absence of CD94/NKG2 phosphorylation or SHP-1 recruitment, and the inhibition was not blocked by anti-CD94 Ab. Therefore, HLA-G protected porcine cells from human NK cells through a CD94/NKG2-independent pathway. These results demonstrated that both HLA-E and HLA-G could directly inhibit human NK cells in the absence of other endogenous HLA class I molecules. These results also have practical implications in preventing xenograft rejection mediated by human NK cells.  相似文献   

17.
HLA-G is a non-classical HLA class-Ib molecule expressed mainly by the extravillous cytotrophoblasts (EVT) of the placenta. The expression of HLA-G on these fetal cells protects the EVT cells from immune rejection and is therefore important for a healthy pregnancy. The mechanisms controlling HLA-G expression are largely unknown. Here we demonstrate that miR-148a and miR-152 down-regulate HLA-G expression by binding its 3'UTR and that this down-regulation of HLA-G affects LILRB1 recognition and consequently, abolishes the LILRB1-mediated inhibition of NK cell killing. We further demonstrate that the C/G polymorphism at position +3142 of HLA-G 3'UTR has no effect on the miRNA targeting of HLA-G. We show that in the placenta both miR-148a and miR-152 miRNAs are expressed at relatively low levels, compared to other healthy tissues, and that the mRNA levels of HLA-G are particularly high and we therefore suggest that this might enable the tissue specific expression of HLA-G.  相似文献   

18.
19.
CD94/NKG2 receptors on mouse NK cells recognize the nonclassical class I molecule Qa1 and can deliver inhibitory signals that prevent NK cells from lysing Qa1-expressing cells. However, the exact circumstances under which Qa1 protects cells from NK lysis and, in particular, the role of the dominant Qa1-associated peptide, Qdm, are unclear. In this study, we examined in detail the lysis of Qa1-expressing cells by fetal NK cells that express CD94/NKG2 receptors for Qa1 but that lack receptors for classical class I molecules. Whereas mouse L cells and human C1R cells transfected with Qa1 were resistant to lysis by these effectors, Qa1-transfected TAP-deficient human T2 cells showed no resistance despite expressing high levels of surface Qa1. However, these cells could be efficiently protected by exposure to low concentrations of Qdm peptide or certain Qdm-related peptides. By contrast, even prolonged exposure of TAP-deficient RMA/S cells to high doses of Qdm peptide failed to induce levels of surface Qa1 detectable with a Qa1-specific mAb or to protect them from NK lysis, although such treatment induced sensitivity to lysis by Qa1-specific CTL. Collectively, these findings indicate that high surface expression of Qa1 is necessary but not sufficient for protection, and that effective protection requires the expression of sufficient levels of suitable Qa1-peptide complexes to overcome activatory signals. Results obtained with a series of substituted Qdm peptides suggest that residues at positions 3, 4, 5, and 8 of the Qdm sequence, AMAPRTLLL, are important for recognition of Qa1-Qdm complexes by inhibitory CD94/NKG2 receptors.  相似文献   

20.
The nonclassical MHC class I locus HLA-G is expressed primarily in the placenta, although other sites of expression have been noted in normal and pathological situations. In addition, soluble HLA-G isoforms have been detected in the serum of pregnant and nonpregnant women as well as men. The rhesus monkey placenta expresses a novel nonclassical MHC class I molecule Mamu-AG, which has features remarkably similar to those of HLA-G. We determined that the rhesus placenta expresses Mamu-AG mRNA (Mamu-AG5), retaining intron 4 as previously noted in HLA-G5. Immunostaining experiments with Ab 16G1 against the soluble HLA-G5 intron 4 peptide demonstrated that an immunoreactive protein(s) was present in the syncytiotrophoblasts of the chorionic villi of the rhesus placenta, within villous cytotrophoblasts, and occasionally within cells of the villous stroma. The Mamu-AG5 mRNA was readily detected in rhesus testis (although not in ejaculated sperm). Whereas an Ab against membrane-bound Mamu-AG stained few cells, primarily in the interstitium of the testis, there was consistent immunostaining for Mamu-AG5 in cells within the seminiferous tubules, which was corroborated by localization of Mamu-AG mRNA by in situ hybridization. While primary spermatocytes were negative, Sertoli cells, spermatocytes, and spermatids were consistently positive for 16G1 immunostaining. The specific recognition of the soluble Mamu-AG isoform was confirmed by Western blotting of Mamu-AG5 expressed in heterologous cells. The results demonstrate that a soluble nonclassical MHC class I molecule is expressed in the rhesus monkey placenta and testis, and confirm and extend the unique homology between HLA-G and the rhesus nonclassical molecule Mamu-AG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号