首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A peroxide-resistant mutant (PR) was isolated from Proteus mirabilis using the hydrogen peroxide mutagenic property. Under the same conditions, resistance of mutant PR bacteria to H2O2 was 50 to 100 times greater than that of the wild type. The total amount of catalase produced by P. mirabilis PR was on the average 10 times greater than that of the wild type. When PR bacteria were subjected to high doses of H2O2 (150mM), the determination of catalasic activity in vivo increased; paradoxically, there was a net decrease in the activity of the solubilized catalase after the breakdown of the cells. The hypothesis of an enzyme transfer from the inside towards the periphery of the cells is discussed. The behavior of a membrane enzyme (L-phenylalanine oxidase) of the PR mutant shows that H2O2 may cause lesions way up to the internal membrane of bacteria.  相似文献   

3.
The Bacillus subtilis PerR repressor regulates the adaptive response to peroxide stress. The PerR regulon includes the major vegetative catalase (katA), an iron storage protein (mrgA), an alkylhydroperoxide reductase (ahpCF), a zinc uptake system (zosA), heme biosynthesis enzymes (hemAXCDBL), the iron uptake repressor (fur), and perR itself. A perR null strain is resistant to hydrogen peroxide, accumulates a porphyrin-like compound, and grows very slowly. The poor growth of the perR mutant can be largely accounted for by the elevated expression of two proteins: the KatA catalase and Fur. Genetic studies support a model in which poor growth of the perR null mutant is due to elevated repression of iron uptake by Fur, exacerbated by heme sequestration by the abundant catalase protein. Analysis of the altered-function allele perR991 further supports a link between PerR and iron homeostasis. Strains containing perR991 are peroxide resistant but grow nearly as well as the wild type. Unlike a perR null allele, the perR991 allele (F51S) derepresses KatA, but not Fur, which likely accounts for its comparatively rapid growth.  相似文献   

4.
5.
Pseudomonas aeruginosa is a ubiquitous environmental bacterium whose major catalase (KatA) is highly stable, extracellularly present, and required for full virulence as well as for peroxide resistance in planktonic and biofilm states. Here, we dismantled the function of P. aeruginosa KatA (KatA(Pa)) by comparing its properties with those of two evolutionarily related (clade 3 monofunctional) catalases from Bacillus subtilis (KatA(Bs)) and Streptomyces coelicolor (CatA(Sc)). We switched the coding region for KatA(Pa) with those for KatA(Bs) and CatA(Sc), expressed the catalases under the potential katA-regulatory elements in a P. aeruginosa PA14 katA mutant, and verified their comparable protein levels by Western blot analysis. The activities of KatA(Bs) and CatA(Sc), however, were less than 40% of the KatA(Pa) activity, suggestive of the difference in intrinsic catalatic activity or efficiency for posttranslational activity modulation in P. aeruginosa. Furthermore, KatA(Bs) and CatA(Sc) were relatively susceptible to proteinase K, whereas KatA(Pa) was highly stable upon proteinase K treatment. As well, KatA(Bs) and CatA(Sc) were undetectable in the extracellular milieu. Nevertheless, katA(Bs) and catA(Sc) fully rescued the peroxide sensitivity and osmosensitivity of the katA mutant, respectively. Both catalase genes rescued the attenuated virulence of the katA mutant in mouse acute infection and Drosophila melanogaster models. However, the peroxide susceptibility of the katA mutant in a biofilm growth state was rescued by neither katA(Bs) nor catA(Sc). Based on these results, we propose that the P. aeruginosa KatA is highly stable compared to the two major catalases from gram-positive bacteria and that its unique properties involving metastability and extracellular presence may contribute to the peroxide resistance of P. aeruginosa biofilm and presumably to chronic infections.  相似文献   

6.
Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis.  相似文献   

7.
D K Bol  R E Yasbin 《Gene》1991,109(1):31-37
A Bacillus subtilis library of Tn917::lacZ insertions was screened for mutants that were unable to grow in the presence of normally sublethal concentrations of hydrogen peroxide. The identification and subsequent analysis of one mutant strain, YB2003, which carried the mutation designated kat-19, revealed that this strain was deficient in the expression of a vegetative catalase. Regions of the chromosome both 5' and 3' to the site of the Tn917 insertion, as well as the gene without the insertion (kat-19+) were cloned. The presence of the functional kat-19+ gene on a high-copy plasmid restored catalase activity to the kat-19::Tn917 strain as well as to strains of B. subtilis that carried the katA 1 mutation. While the katA+ locus is believed to represent the structural gene for the vegetative catalase of B. subtilis [Loewen and Switala, J. Bacteriol. 169 (1987) 5848-5851], the sequence analysis of the cloned kat-19+ DNA fragments revealed an open reading frame that showed significant homology between the deduced amino acid sequence of this gene product and that of known eukaryotic catalases.  相似文献   

8.
9.
Mutant strains in the tsaA gene encoding alkyl hydroperoxide reductase were more sensitive to O(2) and to oxidizing agents (paraquat, cumene hydroperoxide and t-butylhydroperoxide) than the wild type, but were markedly more resistant to hydrogen peroxide. The mutant strains resistance phenotype could be attributed to a 4-fold and 3-fold increase in the catalase protein amount and activity, respectively compared to the parent strain. The wild type did not show an increase in catalase expression in response to sequential increases in O(2) exposure or to oxidative stress reagents, so an adaptive compensatory mutation has probably occurred in the mutants. In support of this, chromosomal complementation of tsaA mutants restored alkyl hydroperoxide reductase, but catalase was still up-expressed in all complemented strains. The katA promoter sequence was the same in all mutant strains and the wild type. Like its Helicobacter pylori counterpart strain, a H. hepaticus tsaA mutant contained more lipid hydroperoxides than the wild type strain. Hepatic tissue from mice inoculated with a tsaA mutant had lesions similar to those inoculated with the wild type, and included coagulative necrosis of hepatocytes. The liver and cecum colonizing abilities of the wild type and tsaA mutant were comparable. Up-expression of catalase in the tsaA mutants likely permits the bacterium to compensate (in colonization and virulence attributes) for the loss of an otherwise important oxidative stress-combating enzyme, alkyl hydroperoxide reductase. The use of erythromycin resistance insertion as a facile way to screen for gene-targeted mutants, and the chromosomal complementation of those mutants are new genetic procedures for studying H. hepaticus.  相似文献   

10.
11.
The effects of polymyxins (Pmx) B and E on smooth and rough Proteus mirabilis strains were investigated. P. mirabilis mutant R4/028 which completely lacked 4-amino-4-deoxy-L-arabinose was sensitive towards both polymyxins, and the other P. mirabilis strains investigated were resistant. Lipopolysaccharide (LPS) from Pmx-sensitive R4/028 strain, binds 50% more Pmx B than LPS derived from resistant P. mirabilis strains. The presence of iodoacetamide, N-ethylmaleimide and chloramphenicol rendered the Pmx-resistant P. mirabilis strains sensitive towards both polymyxins.  相似文献   

12.
Expression of the peroxide stress genes alkyl hydroperoxide reductase (ahpC) and catalase (katA) of the microaerophile Campylobacter jejuni is repressed by iron. Whereas iron repression in gram-negative bacteria is usually carried out by the Fur protein, previous work showed that this is not the case in C. jejuni, as these genes are still iron repressed in a C. jejuni fur mutant. An open reading frame encoding a Fur homolog (designated PerR for "peroxide stress regulator") was identified in the genome sequence of C. jejuni. The perR gene was disrupted by a kanamycin resistance cassette in C. jejuni wild-type and fur mutant strains. Subsequent characterization of the C. jejuni perR mutants showed derepressed expression of both AhpC and KatA at a much higher level than that obtained by iron limitation, suggesting that expression of these genes is controlled by other regulatory factors in addition to the iron level. Other iron-regulated proteins were not affected by the perR mutation. The fur perR double mutant showed derepressed expression of known iron-repressed genes. Further phenotypic analysis of the perR mutant, fur mutant, and the fur perR double mutant showed that the perR mutation made C. jejuni hyperresistant to peroxide stress caused by hydrogen peroxide and cumene hydroperoxide, a finding consistent with the high levels of KatA and AhpC expression, and showed that these enzymes were functional. Quantitative analysis of KatA expression showed that both the perR mutation and the fur mutation had profound effects on catalase activity, suggesting additional non-iron-dependent regulation of KatA and, by inference, AhpC. The PerR protein is a functional but nonhomologous substitution for the OxyR protein, which regulates peroxide stress genes in other gram-negative bacteria. Regulation of peroxide stress genes by a Fur homolog has recently been described for the gram-positive bacterium Bacillus subtilis. C. jejuni is the first gram-negative bacterium where non-OxyR regulation of peroxide stress genes has been described and characterized.  相似文献   

13.
Tannins are plant-derived polyphenols with antimicrobial effects. The mechanism of tannin toxicity towards Escherichia coli was determined by using an extract from Acacia mearnsii (Black wattle) as a source of condensed tannins (proanthocyanidins). E. coli growth was inhibited by tannins only when tannins were exposed to oxygen. Tannins auto-oxidize, and substantial hydrogen peroxide was generated when they were added to aerobic media. The addition of exogenous catalase permitted growth in tannin medium. E. coli mutants that lacked HPI, the major catalase, were especially sensitive to tannins, while oxyR mutants that constitutively overexpress antioxidant enzymes were resistant. A tannin-resistant mutant was isolated in which a promoter-region point mutation increased the level of HPI by 10-fold. Our results indicate that wattle condensed tannins are toxic to E. coli in aerobic medium primarily because they generate H(2)O(2). The oxidative stress response helps E. coli strains to overcome their inhibitory effect.  相似文献   

14.
15.
Agrobacterium tumefaciens possesses two catalases, a bifunctional catalase-peroxidase, KatA and a homologue of a growth phase regulated monofunctional catalase, CatE. In stationary phase cultures and in cultures entering stationary phase, total catalase activity increased 2-fold while peroxidase activity declined. katA and catE were found to be independently regulated in a growth phase dependent manner. KatA levels were highest during exponential phase and declined as cells entered stationary phase, while CatE was detectable at early exponential phase and increased during stationary phase. Only small increases in H2O2 resistance levels were detected as cells entering stationary phase. The katA mutant was more sensitive to H2O2 than the parental strain during both exponential and stationary phase. Inactivation of catE alone did not significantly change the level of H2O2 resistance. However, the katA catE double mutant was more sensitive to H2O2 during both exponential and stationary phase than either of the single catalase mutants. The data indicated that KatA plays the primary role and CatE acts synergistically in protecting A. tumefaciens from H2O2 toxicity during all phases of growth. Catalase-peroxidase activity (KatA) was required for full H2O2 resistance. The expression patterns of the two catalases in A. tumefaciens reflect their physiological roles in the protection against H2O2 toxicity, which are different from other bacteria.  相似文献   

16.
Three genes encoding heme hydroperoxidases (katA, katB, and katC) have been identified in the soil bacterium Sinorhizobium meliloti. The recombinant proteins were overexpressed in Escherichia coli and purified in order to achieve a spectral and kinetic characterization. The three proteins contain heme b with high-spin Fe(III). KatB is an acidic bifunctional homodimeric catalase-peroxidase exhibiting both catalase (k(cat) = 2400 s(-1)) and peroxidase activity and having a high affinity for hydrogen peroxide (apparent K(M) = 1.6 mM). KatA and KatC are acidic monofunctional homotetrameric catalases. Although different in size (KatA is a small subunit catalase while KatC is a large subunit catalase) both enzymes exhibit the same heme type and a similar affinity for H(2)O(2) (apparent K(M) values of 160 and 150 mM). However, the turnover rate of KatA (k(cat) = 279000 s(-1)) exceeds that of KatC (k(cat) = 3100 s(-1)) significantly. The kinetic parameters are in good agreement with the physiological role of these heme proteins. KatB is the housekeeping hydroperoxidase exhibiting the highest affinity for hydrogen peroxide, while KatA has the lowest H(2)O(2) affinity but the highest k(cat)/K(M) value (1.75 x 10(6) M(-1) s(-1)), in agreement with the hydrogen peroxide inducibility of the encoding gene. Moreover, the lower catalytic efficiency of KatC (2.1 x 10(4) M(-1) s(-1)) appears to be enough for growing in the stationary phase and/or under heat or salt stress (conditions that are known to favor katC expression).  相似文献   

17.
R plasmid R772 was isolated from a strain of Proteus mirabilis and is a self-transmissible P-1 incompatibility group plasmid having a molecular weight of about 27 x 10(6). It renders bacterial hosts resistant to kanamycin. Phage PR772 was isolated as a phage dependent on the presence of R772 in bacterial hosts. It is hexagonal-shaped with a diameter of 53 nm, has a thick inner membrane and no tail. Vaguely defined appendages are sometimes apparent at some vertices and the phage possesses double-stranded DNA. The DNA has a guanine plus cytosine molar content of 48%. The phage is sensitive to chloroform and has a buoyant density of 1.26 g cm(-3). These observations suggested that the inner membrane of the phage could contain lipid. Phage PR772 differs in morphology from the double-stranded DNA plasmid-specific phages PR4 and PRR1 which adsorb to tips and sides, respectively, of sex pili coded for by P-1 incompatibility group plasmids. Phage PR772 formed clear plaques which varied in diameter. Serologically, phages PR772 and PR4 are possibly related though very distantly, but the two phages have identical host ranges. Phage PR772 adsorbed by one of its apices to tips of sex pili coded for by plasmid R772 in Escherichia coli. It also formed plaques on Salmonella typhimurium Proteus morganii and Providence strains harbouring this plasmid as well as strains of E. coli carrying plasmids of incompatibility groups N or W. The phage produced areas of partial clearing on lawns of P. mirabilis PM5006 harbouring plasmid R772, the P-1 incompatibility group plasmid RP4, the W group plasmid RSa or the N group plasmid N3, and on lawns of Providence strain P29 carrying plasmid RP4.  相似文献   

18.
19.
20.
The role of peroxide and catalase on NUV radiation sensitivity was examined in two repair competent E. coli strains, AB1157 and B/r. Exponential phase B/r is considerably more sensitive to NUV radiation than exponential phase AB1157. However, resistance to 5 mmol dm-3 H2O2 was induced in both AB1157 and B/r by pretreating growing cells with 30 mumol dm-3 H2O2. Pretreatment also induced resistance to broad-band NUV radiation in these strains. The addition of catalase to the post-irradiation plating medium increased survival to the same extent as that provided by pretreatment with 30 mumol dm-3 H2O2, in both strains. The NUV radiation sensitivity seen in B/r does not appear to be due to a deficiency in enzymes that scavenge H2O2, as a catalase deficient mutant, E. coli UM1, is more resistant to NUV radiation than B/r. Also, assays for H2O2 scavenging ability show little difference between AB1157 and B/r in this respect. Two hypotheses are put forward to account for the sensitivity of exponential phase B/r. Whilst it is apparent that peroxides and catalase do have a role in NUV radiation damage, it is clear that other factors also influence survival under certain conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号