首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 368 毫秒
1.
Future climate scenarios predict simultaneous changes in environmental conditions, but the impacts of multiple climate change drivers on ecosystem structure and function remain unclear. We used a novel experimental approach to examine the responses of an upland grassland ecosystem to the 2080 climate scenario predicted for the study area (3.5°C temperature increase, 20% reduction in summer precipitation, atmospheric CO2 levels of 600 ppm) over three growing seasons. We also assessed whether patterns of grassland response to a combination of climate change treatments could be forecast by ecosystem responses to single climate change drivers. Effects of climate change on aboveground production showed considerable seasonal and interannual variation; April biomass increased in response to both warming and the simultaneous application of warming, summer drought, and CO2 enrichment, whereas October biomass responses were either non-significant or negative depending on the year. Negative impacts of summer drought on production were only observed in combination with a below-average rainfall regime, and showed lagged effects on spring biomass. Elevated CO2 had no significant effect on aboveground biomass during this study. Both warming and the 2080 climate change scenario were associated with a significant advance in flowering time for the dominant grass species studied. However, flowering phenology showed no significant response to either summer drought or elevated CO2. Species diversity and equitability showed no response to climate change treatments throughout this study. Overall, our data suggest that single-factor warming experiments may provide valuable information for projections of future ecosystem changes in cool temperate grasslands.  相似文献   

2.
The world's ecosystems are subjected to various anthropogenic global change agents, such as enrichment of atmospheric CO2 concentrations, nitrogen (N) deposition, and changes in precipitation regimes. Despite the increasing appreciation that the consequences of impending global change can be better understood if varying agents are studied in concert, there is a paucity of multi‐factor long‐term studies, particularly on belowground processes. Herein, we address this gap by examining the responses of soil food webs and biodiversity to enrichment of CO2, elevated N, and summer drought in a long‐term grassland study at Cedar Creek, Minnesota, USA (BioCON experiment). We use structural equation modeling (SEM), various abiotic and biotic explanatory variables, and data on soil microorganisms, protozoa, nematodes, and soil microarthropods to identify the impacts of multiple global change effects on drivers belowground. We found that long‐term (13‐year) changes in CO2 and N availability resulted in modest alterations of soil biotic food webs and biodiversity via several mechanisms, encompassing soil water availability, plant productivity, and – most importantly – changes in rhizodeposition. Four years of manipulation of summer drought exerted surprisingly minor effects, only detrimentally affecting belowground herbivores and ciliate protists at elevated N. Elevated CO2 increased microbial biomass and the density of ciliates, microarthropod detritivores, and gamasid mites, most likely by fueling soil food webs with labile C. Moreover, beneficial bottom‐up effects of elevated CO2 compensated for detrimental elevated N effects on soil microarthropod taxa richness. In contrast, nematode taxa richness was lowest at elevated CO2 and elevated N. Thus, enrichment of atmospheric CO2 concentrations and N deposition may result in taxonomically and functionally altered, potentially simplified, soil communities. Detrimental effects of N deposition on soil biodiversity underscore recent reports on plant community simplification. This is of particular concern, as soils house a considerable fraction of global biodiversity and ecosystem functions.  相似文献   

3.
Soil microbial response in tallgrass prairie to elevated CO2   总被引:3,自引:0,他引:3  
Terrestrial responses to increasing atmospheric CO2 are important to the global carbon budget. Increased plant production under elevated CO2 is expected to increase soil C which may induce N limitations. The objectives of this study were to determine the effects of increased CO2 on 1) the amount of carbon and nitrogen stored in soil organic matter and microbial biomass and 2) soil microbial activity. A tallgrass prairie ecosystem was exposed to ambient and twice-ambient CO2 concentrations in open-top chambers in the field from 1989 to 1992 and compared to unchambered ambient CO2 during the entire growing season. During 1990 and 1991, N fertilizer was included as a treatment. The soil microbial response to CO2 was measured during 1991 and 1992. Soil organic C and N were not significantly affected by enriched atmospheric CO2. The response of microbial biomass to CO2 enrichment was dependent upon soil water conditions. In 1991, a dry year, CO2 enrichment significantly increased microbial biomass C and N. In 1992, a wet year, microbial biomass C and N were unaffected by the CO2 treatments. Added N increased microbial C and N under CO2 enrichment. Microbial activity was consistently greater under CO2 enrichment because of better soil water conditions. Added N stimulated microbial activity under CO2 enrichment. Increased microbial N with CO2 enrichment may indicate plant production could be limited by N availability. The soil system also could compensate for the limited N by increasing the labile pool to support increased plant production with elevated atmospheric CO2. Longer-term studies are needed to determine how tallgrass prairie will respond to increased C input.  相似文献   

4.
Continuing enrichment of atmospheric CO2 may change plant community composition, in part by altering the availability of other limiting resources including soil water, nutrients, or light. The combined effects of CO2 enrichment and altered resource availability on species flowering remain poorly understood. We quantified flowering culm and ramet production and biomass allocation to flowering culms/ramets for 10 years in C4‐dominated grassland communities on contrasting soils along a CO2 concentration gradient spanning pre‐industrial to expected mid‐21st century levels (250–500 μl/L). CO2 enrichment explained up to 77% of the variation in flowering culm count across soils for three of the five species, and was correlated with flowering culm count on at least one soil for four of five species. In contrast, allocation to flowering culms was only weakly correlated with CO2 enrichment for two species. Flowering culm counts were strongly correlated with species aboveground biomass (AGB; R2 = .34–.74), a measure of species abundance. CO2 enrichment also increased soil moisture and decreased light levels within the canopy but did not affect soil inorganic nitrogen availability. Structural equation models fit across the soils suggested species‐specific controls on flowering in two general forms: (1) CO2 effects on flowering culm count mediated by canopy light level and relative species AGB (species AGB/total AGB) or by soil moisture effects on flowering culm count; (2) effects of canopy light level or soil inorganic nitrogen on flowering and/or relative species AGB, but with no significant CO2 effect. Understanding the heterogeneity in species responses to CO2 enrichment in plant communities across soils in edaphically variable landscapes is critical to predict CO2 effects on flowering and other plant fitness components, and species potential to adapt to future environmental changes.  相似文献   

5.
Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15 % winter rainfall and ?30 % summer rainfall) or ambient climate, achieving +15 % winter rainfall and ?39 % summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha?1 year?1) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands.  相似文献   

6.
Predicting if ecosystems will mitigate or exacerbate rising CO2 requires understanding how elevated CO2 will interact with coincident changes in diversity and nitrogen (N) availability to affect ecosystem carbon (C) storage. Yet achieving such understanding has been hampered by the difficulty of quantifying belowground C pools and fluxes. Thus, we used mass balance calculations to quantify the effects of diversity, CO2, and N on both the total amount of C allocated belowground by plants (total belowground C allocation, TBCA) and ecosystem C storage in a periodically burned, 8-year Minnesota grassland biodiversity, CO2, and N experiment (BioCON). Annual TBCA increased in response to elevated CO2, enriched N, and increasing diversity. TBCA was positively related to standing root biomass. After removing the influence of root biomass, the effect of elevated CO2 remained positive, suggesting additional drivers of TBCA apart from those that maintain high root biomass. Removing root biomass effects resulted in the effects of N and diversity becoming neutral or negative (depending on year), suggesting that the positive effects of diversity and N on TBCA were related to treatment-driven differences in root biomass. Greater litter production in high diversity, elevated CO2, and enhanced N treatments increased annual ecosystem C loss in fire years and C gain in non-fire years, resulting in overall neutral C storage rates. Our results suggest that frequently burned grasslands are unlikely to exhibit enhanced C sequestration with increasing atmospheric CO2 levels or N deposition.  相似文献   

7.
The Hurley Pasture Model was used to examine the short and long-term responses of grazed grasslands in the British uplands to a step increase from 350 to 700 μmol mol–1 CO2 concentration ([CO2]) with inputs of 5 or 100 kg N ha–1 y–1. In N-rich grassland, [CO2] doubling quickly increased net primary productivity (NPP), total carbon (Csys) and plant biomass by about 30%. By contrast, the N-poor grassland underwent a prolonged ‘transient’, when there was little response, but eventually NPP, Csys and plant biomass more than doubled. The ‘transient’ was due to N immobilization and severe depletion of the soil mineral N pool. The large long-term response was due to slow N accumulation, as a result of decreased leaching, decreased gaseous N losses and increased N2-fixation, which amplified the CO2 response much more in the N-poor than in the N-rich grassland. It was concluded that (i) ecosystems use extra carbon fixed at high [CO2] to acquire and retain nutrients, supporting the contention of Gifford et al. (1996 ), (ii) in the long term, and perhaps on the real timescale of increasing [CO2], the response (in NPP, Csys and plant biomass) of nutrient-poor ecosystems may be proportionately greater than that of nutrient-rich ones, (iii) short-term experiments on nutrient-poor ecosystems may observe only the transient responses, (iv) the speed of ecosystem responses may be limited by the rate of nutrient accumulation rather than by internal rate constants, and (v) ecosystem models must represent processes affecting nutrient acquisition and retention to be able to simulate likely real-world CO2 responses.  相似文献   

8.
Elevated CO2 is widely accepted to enhance terrestrial carbon sink, especially in arid and semi‐arid regions. However, great uncertainties exist for the CO2 fertilisation effects, particularly when its interactions with other global change factors are considered. A four‐factor (CO2, temperature, precipitation and nitrogen) experiment revealed that elevated CO2 did not affect either gross ecosystem productivity or ecosystem respiration, and consequently resulted in no changes of net ecosystem productivity in a semi‐arid grassland despite whether temperature, precipitation and nitrogen were elevated or not. The observations could be primarily attributable to the offset of ecosystem carbon uptake by enhanced soil carbon release under CO2 enrichment. Our findings indicate that arid and semi‐arid ecosystems may not be sensitive to CO2 enrichment as previously expected and highlight the urgent need to incorporate this mechanism into most IPCC carbon‐cycle models for convincing projection of terrestrial carbon sink and its feedback to climate change.  相似文献   

9.
In recent years, there has been an increase in research to understand how global changes’ impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking. Therefore, here we initiate such a synthesis to assess whether the effect size of global change drivers (elevated CO2, N deposition, and warming) on soil microbial abundance is related with the effect size of these drivers on ecosystem functioning (plant biomass, soil C cycle, and soil N cycle) using meta‐analysis and structural equation modeling. For N deposition and warming, the global change effect size on soil microbes was positively associated with the global change effect size on ecosystem functioning, and these relationships were consistent across taxa and ecosystem processes. However, for elevated CO2, such links were more taxon and ecosystem process specific. For example, fungal abundance responses to elevated CO2 were positively correlated with those of plant biomass but negatively with those of the N cycle. Our results go beyond previous assessments of the sensitivity of soil microbes and ecosystem processes to global change, and demonstrate the existence of general links between the responses of soil microbial abundance and ecosystem functioning. Further we identify critical areas for future research, specifically altered precipitation, soil fauna, soil community composition, and litter decomposition, that are need to better quantify the ecosystem consequences of global change impacts on soil biodiversity.  相似文献   

10.
The effects of elevated CO2 and drought on ecophysiological parameters in grassland species have been examined, but few studies have investigated the effect of competition on those parameters under climate change conditions. The objective of this study was to determine the effect of elevated CO2 and drought on the response of plant water relations, gas exchange, chlorophyll a fluorescence and aboveground biomass in four grassland species, as well as to assess whether the type of competition modulates that response. Elevated CO2 in well‐watered conditions increased aboveground biomass by augmenting CO2 assimilation. Drought reduced biomass by reducing CO2 assimilation rate via stomatal limitation and, when drought was more severe, also non‐stomatal limitation. When plants were grown under the combined conditions of elevated CO2 and drought, drought limitation observed under ambient CO2 was reduced, permitting higher CO2 assimilation and consequently reducing the observed decrease in aboveground biomass. The response to climate change was species‐specific and dependent on the type of competition. Thus, the response to elevated CO2 in well‐watered grasses was higher in monoculture than in mixture, while it was higher in mixture compared to monoculture for forbs. On the other hand, forbs were more affected than grasses by drought in monoculture, while in mixture the negative effect of drought was higher in grasses than in forbs, due to a lower capacity to acquire water and mineral nutrients. These differences in species‐level growth responses to CO2 and drought may lead to changes in the composition and biodiversity of the grassland plant community in future climate conditions.  相似文献   

11.
Species‐specific responses to atmospheric CO2 enrichment may affect biodiversity, which in turn may alter ecosystem functioning. Here we have explored biodiversity effects in model assemblages of semi‐arid grassland of the northern Negev, Israel, at 280 ppm (pre‐industrial era), 440 ppm (early 21st century) and 600 ppm CO2 (mid to late 21st century). Thirty‐two mostly annual species were grown together in large containers (ca 400 kg each) on native soil and under a dynamic simulation of the Negev winter climate. CO2 enrichment increased concentrations of total non‐structural carbohydrates and C/N ratios, and reduced specific leaf area and nitrogen concentrations in leaves of all species. In contrast to these uniform CO2 effects on leaf quality, biomass and reproductive output remained unchanged in most species, and varied greatly among the few responsive ones (?80 to +145%). Biomass was significantly increased at elevated CO2 in Onobrychis crista‐galli (one of the six legume species) and was reduced in Biscutella didyma (Brassicaceae). Seed yield increased in three out of six legumes and in the root hemiparasite Parentucellia flaviflora, and decreased in the grass Aegilops peregrina. Fruit dry matter tended to be reduced in two Brassicaceae. Onobrychis, the largest and most responsive species present, was the most ‘mesic’ legume, and might have profited most from the higher soil moisture induced by CO2 enrichment. The significant CO2 response of only 5–6 out of 32 species, in particular their altered seed yield, suggests a potential shift in biodiversity. In a future CO2‐enriched atmosphere, ‘mesic’ legumes and root hemiparasites might be favored, while some Brassicaceae and grasses might decline. As indicated by significant 280‐ vs 440‐ppm differences, reductions in leaf nitrogen concentration of grasses and legumes are likely to be under way right now, and may negatively affect grazers. Altered seed yields were more pronounced between 440 and 600 ppm, suggesting that these changes could intensify as the atmospheric CO2 concentration continues to rise.  相似文献   

12.
Plant nutrient responses to 4 years of CO2 enrichment were investigated in situ in calcareous grassland. Beginning in year 2, plant aboveground C:N ratios were increased by 9% to 22% at elevated CO2 (P < 0.01), depending on year. Total amounts of N removed in biomass harvests during the first 4 years were not affected by elevated CO2 (19.9 ± 1.3 and 21.1 ± 1.3 g N m−2 at ambient and elevated CO2), indicating that the observed plant biomass increases were solely attained by dilution of nutrients. Total aboveground P and tissue N:P ratios also were not altered by CO2 enrichment (12.5 ± 2 g N g−1 P in both treatments). In contrast to non-legumes (>98% of community aboveground biomass), legume C/N was not reduced at elevated CO2 and legume N:P was slightly increased. We attribute the less reduced N concentration in legumes at elevated CO2 to the fact that virtually all legume N originated from symbiotic N2 fixation (%Ndfa ≈ 90%), and thus legume growth was not limited by soil N. While total plant N was not affected by elevated CO2, microbial N pools increased by +18% under CO2 enrichment (P = 0.04) and plant available soil N decreased. Hence, there was a net increase in the overall biotic N pool, largely due increases in the microbial N pool. In order to assess the effects of legumes for ecosystem CO2 responses and to estimate the degree to which plant growth was P-limited, two greenhouse experiments were conducted, using firstly undisturbed grassland monoliths from the field site, and secondly designed `microcosm' communities on natural soil. Half the microcosms were planted with legumes and half were planted without. Both monoliths and microcosms were exposed to elevated CO2 and P fertilization in a factored design. After two seasons, plant N pools in both unfertilized monoliths and microcosm communities were unaffected by CO2 enrichment, similar to what was found in the field. However, when P was added total plant N pools increased at elevated CO2. This community-level effect originated almost solely from legume stimulation. The results suggest a complex interaction between atmospheric CO2 concentrations, N and P supply. Overall ecosystem productivity is N-limited, whereas CO2 effects on legume growth and their N2 fixation are limited by P. Received: 12 July 1997 / Accepted: 15 April 1998  相似文献   

13.
Rising atmospheric carbon dioxide concentration ([CO2]) has the potential to stimulate ecosystem productivity and sink strength, reducing the effects of carbon (C) emissions on climate. In terrestrial ecosystems, increasing [CO2] can reduce soil nitrogen (N) availability to plants, preventing the stimulation of ecosystem C assimilation; a process known as progressive N limitation. Using ion exchange membranes to assess the availability of dissolved organic N, ammonium and nitrate, we found that CO2 enrichment in an Australian, temperate, perennial grassland did not increase plant productivity, but did reduce soil N availability, mostly by reducing nitrate availability. Importantly, the addition of 2 °C warming prevented this effect while warming without CO2 enrichment did not significantly affect N availability. These findings indicate that warming could play an important role in the impact of [CO2] on ecosystem N cycling, potentially overturning CO2‐induced effects in some ecosystems.  相似文献   

14.
Rising atmospheric CO2 concentrations may alter C cycling and community composition, however, long-term studies in (semi-)natural ecosystems are still rare. In May 1998, the Giessen FACE (Free Air Carbon dioxide Enrichment) experiment started in a grassland ecosystem near Giessen, Germany, consisting of three enrichment (E plots) and three ambient control rings (A plots). Carbon dioxide concentrations were raised to +20% above ambient all-year-round during daylight hours. The wet grassland (Arrhenatheretum elatioris Br.-Bl.; not ploughed for >100 years) has been fertilized with 40 kg ha−1 yr−1 N, and mown two times each year for decades. Since 1993, the biomass has been monitored and since 1997 it was divided into grasses, legumes and non-leguminous forbs.During the 5 years prior to CO2 enrichment, the annual biomass yield from the A plots was non-significantly higher (3%) than the later E plots yield. Under CO2 enrichment, the biomass increased significantly from the third enrichment year on by 9.8%, 7.7% and 11.2% in the years 2000–2002, respectively. The increase was surprisingly high considering the moderate CO2 enrichment regime of only +20% and sub-optimal N supply, possibly suggesting a non-linear response of temperate grassland ecosystems to rising atmospheric CO2 levels.The leaf area index did not change significantly under elevated CO2, nor did the soil moisture in the top 15 cm increase. No correlation existed between the magnitude of the yield stimulation under elevated CO2 and the precipitation sums preceding the respective harvests. The grass biomass increased significantly under FACE, while the forb biomass declined strongly in the fourth and fifth year. The legume fraction was mostly below 1% of the total yield, and did not respond to CO2 enrichment. These findings are in contrast to other grassland results and possible reasons are discussed.  相似文献   

15.
The stability of soil organic matter (SOM) pools exposed to elevated CO2 and warming has not been evaluated adequately in long‐term experiments and represents a substantial source of uncertainty in predicting ecosystem feedbacks to climate change. We conducted a 6‐year experiment combining free‐air CO2 enrichment (FACE, 550 ppm) and warming (+2 °C) to evaluate changes in SOM accumulation in native Australian grassland. In this system, competitive interactions appear to favor C4 over C3 species under FACE and warming. We therefore investigated the role of plant functional type (FT) on biomass and SOM responses to the long‐term treatments by carefully sampling soil under patches of C3‐ and C4‐dominated vegetation. We used physical fractionation to quantify particulate organic matter (POM) and long‐term incubation to assess potential decomposition rates. Aboveground production of C4 grasses increased in response to FACE, but total root biomass declined. Across treatments, C : N ratios were higher in leaves, roots and POM of C4 vegetation. CO2 and temperature treatments interacted with FT to influence SOM, and especially POM, such that soil carbon was increased by warming under C4 vegetation, but not in combination with elevated CO2. Potential decomposition rates increased in response to FACE and decreased with warming, possibly owing to treatment effects on soil moisture and microbial community composition. Decomposition was also inversely correlated with root N concentration, suggesting increased microbial demand for older, N‐rich SOM in treatments with low root N inputs. This research suggests that C3–C4 vegetation responses to future climate conditions will strongly influence SOM storage in temperate grasslands.  相似文献   

16.
The relationship between plant species diversity and ecosystem CO2 and water vapour fluxes was investigated for planted calcareous grassland communities composed of 5, 12, or 32 species assembled from the native plant species pool. These diversity manipulations were done in factorial combination with a CO2 enrichment experiment in order to investigate the degree to which ecosystem responses to elevated CO2 are altered by a loss of plant diversity. Ecosystem CO2 and H2O fluxes were measured over several 24-h periods during the 1994 and 1995 growing seasons. Ecosystem CO2 assimilation on a ground area basis decreased with decreasing plant diversity in the first year and this was related to a decline in above-ground plant biomass. In the second year, however, CO2 assimilation was not affected by diversity, and this corresponded to the disappearance of a diversity effect on above-ground biomass. Irrespective of diversity treatment, CO2 assimilation on a ground area basis was linearly related to peak above-ground biomass in both years. Elevated CO2 significantly increased ecosystem CO2 assimilation in both years with no interaction between diversity and CO2 treatment, and no corresponding increase in above-ground biomass. There were no significant effects of diversity on water vapour flux, which was measured only in the second year. There were indications of a small CO2 effect on water vapour flux (3–9% lower at elevated CO2 depending on the light level). Our findings suggest that decreasing plant species diversity may substantially decrease ecosystem CO2 assimilation during the establishment of such planted calcareous grassland communities, but also suggest that this effect may not persist. In addition, we find no evidence that plant species diversity alters the response of ecosystem CO2 assimilation to elevated CO2.  相似文献   

17.
Alpine plant species have been shown to exhibit a more pronounced increase in leaf photosynthesis under elevated CO2 than lowland plants. In order to test whether this higher carbon fixation efficiency will translate into increased biomass production under CO2 enrichment we exposed plots of narrow alpine grassland (Swiss Central Alps, 2470 m) to ambient (355 μl l-1) and elevated (680 μl l-1) CO2 concentration using open top chambers. Part of the plost received moderate mineral nutrient additions (40 kg ha-1 year-1 of nitrogen in a complete fertilizer mix). Under natural nutrient supply CO2 enrichment had no effect on biomass production per unit land area during any of the three seasons studied so far. Correspondingly, the dominant species Carex curvula and Leontodon helveticus as well as Trifolium alpinum did not show a growth response either at the population level or at the shoot level. However, the subdominant generalistic species Poa alpina strongly increased shoot growth (+47%). Annual root production (in ingrowth cores) was significantly enhanced in C. curvula in the 2nd and 3rd year of investigation (+43%) but was not altered in the bulk samples for all species. Fertilizer addition generally stimulated above-ground (+48%) and below-ground (+26%) biomass production right from the beginning. Annual variations in weather conditions during summer also strongly influenced above-ground biomass production (19–27% more biomass in warm seasons compared to cool seasons). However, neither nutrient availability nor climate had a significant effect on the CO2 response of the plants. Our results do not support the hypothesis that alpine plants, due to their higher carbon uptake efficiency, will increase biomass production under future atmospheric CO2 enrichment, at least not in such late successional communities. However, as indicated by the response of P. alpina, species-specific responses occur which may lead to altered community structure and perhaps ecosystem functioning in the long-term. Our findings further suggest that possible climatic changes are likely to have a greater impact on plant growth in alpine environments than the direct stimulation of photosynthesis by CO2. Counter-intuitively, our results suggest that even under moderate climate warming or enhanced atmospheric nitrogen deposition positive biomass responses to CO2 enrichment of the currently dominating species are unlikely.  相似文献   

18.
Microbial responses to three years of CO2 enrichment (600 μL L–1) in the field were investigated in calcareous grassland. Microbial biomass carbon (C) and soil organic C and nitrogen (N) were not significantly influenced by elevated CO2. Microbial C:N ratios significantly decreased under elevated CO2 (– 15%, P = 0.01) and microbial N increased by + 18% (P = 0.04). Soil basal respiration was significantly increased on one out of 7 sampling dates (+ 14%, P = 0.03; December of the third year of treatment), whereas the metabolic quotient for CO2 (qCO2 = basal respiration/microbial C) did not exhibit any significant differences between CO2 treatments. Also no responses of microbial activity and biomass were found in a complementary greenhouse study where intact grassland turfs taken from the field site were factorially treated with elevated CO2 and phosphorus (P) fertilizer (1 g P m–2 y–1). Previously reported C balance calculations showed that in the ecosystem investigated growing season soil C inputs were strongly enhanced under elevated CO2. It is hypothesized that the absence of microbial responses to these enhanced soil C fluxes originated from mineral nutrient limitations of microbial processes. Laboratory incubations showed that short-term microbial growth (one week) was strongly limited by N availability, whereas P was not limiting in this soil. The absence of large effects of elevated CO2 on microbial activity or biomass in such nutrient-poor natural ecosystems is in marked contrast to previously published large and short-term microbial responses to CO2 enrichment which were found in fertilized or disturbed systems. It is speculated that the absence of such responses in undisturbed natural ecosystems in which mineral nutrient cycles have equilibrated over longer periods of time is caused by mineral nutrient limitations which are ineffective in disturbed or fertilized systems and that therefore microbial responses to elevated CO2 must be studied in natural, undisturbed systems.  相似文献   

19.
Altered dynamics of forest recovery under a changing climate   总被引:2,自引:0,他引:2  
Forest regeneration following disturbance is a key ecological process, influencing forest structure and function, species assemblages, and ecosystem–climate interactions. Climate change may alter forest recovery dynamics or even prevent recovery, triggering feedbacks to the climate system, altering regional biodiversity, and affecting the ecosystem services provided by forests. Multiple lines of evidence – including global‐scale patterns in forest recovery dynamics; forest responses to experimental manipulation of CO2, temperature, and precipitation; forest responses to the climate change that has already occurred; ecological theory; and ecosystem and earth system models – all indicate that the dynamics of forest recovery are sensitive to climate. However, synthetic understanding of how atmospheric CO2 and climate shape trajectories of forest recovery is lacking. Here, we review these separate lines of evidence, which together demonstrate that the dynamics of forest recovery are being impacted by increasing atmospheric CO2 and changing climate. Rates of forest recovery generally increase with CO2, temperature, and water availability. Drought reduces growth and live biomass in forests of all ages, having a particularly strong effect on seedling recruitment and survival. Responses of individual trees and whole‐forest ecosystems to CO2 and climate manipulations often vary by age, implying that forests of different ages will respond differently to climate change. Furthermore, species within a community typically exhibit differential responses to CO2 and climate, and altered community dynamics can have important consequences for ecosystem function. Age‐ and species‐dependent responses provide a mechanism by which climate change may push some forests past critical thresholds such that they fail to recover to their previous state following disturbance. Altered dynamics of forest recovery will result in positive and negative feedbacks to climate change. Future research on this topic and corresponding improvements to earth system models will be a key to understanding the future of forests and their feedbacks to the climate system.  相似文献   

20.
A decline in the availability of nitrogen (N) for plant growth (progressive nitrogen limitation or PNL) is a feedback that could constrain terrestrial ecosystem responses to elevated atmospheric CO2. Several long-term CO2 enrichment experiments have measured changes in plant and soil pools and fluxes consistent with PNL but evidence for PNL in grasslands is limited. In an 11 year Free Air CO2 Enrichment (FACE) experiment on grazed grassland we found the amount of N harvested in aboveground plant biomass was greater at elevated CO2 but declined over time to be indistinguishable from ambient after 5 years. Re-wetting after a major drought resulted in a large input of N from mineralisation and a return to a higher N harvested under elevated CO2 followed by a further decline. Over these two periods the amount of N in soil significantly increased at elevated CO2. Data from mesocosms introduced into the rings at intervals, and therefore having different lengths of exposure to CO2, showed plant N availability declined at elevated CO2 reaching a new equilibrium after 6 years of exposure. We conclude that the availability of N for plants in this grassland is dynamic but the underlying trend at elevated CO2 is for PNL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号