首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The characterization of mutations in Japanese patients with lipidosis, particularly in metachromatic leukodystrophy (MLD) and Gaucher disease has been studied in detail. Metachromatic leukodystrophy is characterized by an accumulation of sulfatide in nervous tissues and kidney due to a deficiency of arylsulfatase A (ASA). We analyzed the presence of three known mutant arylsulfatase A alleles in Japanese patients with MLD. Among 10 patients of Japanese patients with MLD, we found that allele 445A mutation has moderately high incidence and also homozygosity of this mutation results in the late infantile form. Allele 2381T was not found in Japanese patients. Furthermore, we found novel mutation which is G- to A mutation at the 1070 nucleotide of the ASA gene (designated 1070 A) in Japanese patients with juvenile onset. This mutation results in a amino acid substitution of Gly245 by Arg and found in heterozygote form. Our studies of molecular analysis in 10 Japanese patients with MLD indicate that Japanese MLD patients have unique characteristics of ASA mutations compared with those of Caucasian patients. On the other hand, Gaucher disease is the most prevalent sphingolipidosis, characterized by an accumulation of glucocerebroside in macrophage derived cells due to a deficiency of lysosomal hydrolase glucocerebrosidase. To study the molecular basis of Gaucher disease in Japanese patients, we analyzed the presence of the two known mutations (6433C and 3548A) in the glucocerebrosidase gene of 15 patients with Gaucher disease. We found that the 6433C and 3548A mutations occur in all subtypes of Japanese patients with Gaucher disease. Most frequent mutations among them was the 6433C mutation, 40% of 30 chromosomes, whereas the novel mutation of the 3548A found in Japanese patients with neuronopathic Gaucher disease was found in 20% (6 out of 30 chromosomes). The characteristics of these mutations in Japanese patients with Gaucher disease is different from those of Caucasian populations reported previously.  相似文献   

2.
Summary A 444leucine to proline mutation detected by a NciI polymorphism in the human glucocerebrosidase gene was studied to investigate the correlation of the three clinical phenotypes of Gaucher disease with this mutation in 11 Japanese patients with Gaucher disease (type I, 8 patients; type II, 1 patient; type III, 2 patients) and to determine the feasibility of the use of genomic probe DNA for carrier detection and prenatal diagnosis in 8 Japanese families with Gaucher disease and agreeable to family study (type I, 6 families; type III, 2 families). The homoallelic 444leucine to proline mutation was found only in patients with type I disease. Of the 8 type I patients, 5 had the homoallelic mutation and 2 had one mutant allele. One patient with type II disease did not have this mutant allele. Of the 2 type III patients, one had a single mutant allele whereas the other exhibited no mutation of this kind. These results suggest that the 444leucine to proline mutation is very common in the type I (non-neuronopathic form) disease and is not tightly associated only with neuronopathic types of Gaucher disease in Japanese patients. These findings seem to conflict with others showing that this mutation is partially responsible for the occurrence of neuronopathic Gaucher disease. Thus, the NciI polymorphism will not be useful for the diagnosis of subtypes of Gaucher disease. Carrier detection was feasible in three families with type I disease of the 8 families analyzed by the NciI polymorphism.  相似文献   

3.
Recently, a mutation at nucleotide 1193 of the glucocerebrosidase gene was described in a patient with type 1 Gaucher disease. This mutation destroys a TaqI site in a polymerase chain reaction (PCR)-amplified fragment. We used digestion with this enzyme to screen DNA samples from Gaucher disease patients representing 23 previously unidentified alleles and discovered that this site had been destroyed in three samples. However, the mutation that caused this change proved to be a CT substitution at cDNA nucleotide 1192 (Genomic 5408; 359ArgEnd). Fortuitously, another TaqI site was destroyed by a different mutation, a GA mutation at nt 1312 (Genomic 5927; 399AspAsn). Both of these mutations were functionally severe in that they were associated with type 2 (acute neuronopathic) Gaucher disease.  相似文献   

4.
Complex alleles of the acid beta-glucosidase gene in Gaucher disease.   总被引:12,自引:5,他引:7       下载免费PDF全文
Gaucher disease is inherited in an autosomal recessive manner and is the most prevalent lysosomal storage disease. Gaucher disease has marked phenotypic variation and molecular heterogeneity, and seven point mutations in the acid beta-glucosidase (beta-Glc) gene have been identified. By means of sequence-specific oligonucleotides (SSO), mutation 6433C has been detected homozygously in neuronopathic type 2 (acute) and type 3 (subacute) patients, as well as in children with severe visceral involvement who are apparently free of neuronopathic disease. To investigate the molecular basis for this puzzling finding, amplified beta-Glc cDNAs from 6433C homozygous type 2 and type 3 Gaucher disease patients were cloned and sequenced. The Swedish type 3 Gaucher disease patient was truly homozygous for alleles only containing the 6433C mutation. In comparison, the type 2 patient contained a singly mutated 6433C allele and a "complex" allele with multiple discrete point mutations (6433C, 6468C, and 6482C). Each of the mutations in the complex allele also was present in the beta-Glc pseudogene. SSO hybridization of 6433C homozygotes revealed that both type 2 patients contained additional mutations in one allele, whereas the 6433C alone was detected in both type 3 and in young severe type 1 Gaucher disease patients. These results suggest that the presence of the complex allele influences the severity of neuronopathic disease in 6433C homozygotes and reveal the central role played by the pseudogene in the formation of mutant alleles of the beta-Glc gene. Analysis of additional cDNA clones also identified two new alleles in a type 3 patient, emphasizing the molecular heterogeneity of neuronopathic Gaucher disease.  相似文献   

5.
To investigate the molecular basis for the distinct neuronopathic phenotypes of Gaucher disease, acid beta-glucosidases expressed from mutant DNAs in Gaucher disease type 2 (acute) and type 3 (subacute) patients were characterized in fibroblasts and with the baculovirus expression system in insect cells. Expression of the mutant DNA encoding a proline-for-leucine substitution at amino acid 444 (L444P) resulted in a catalytically defective, unstable acid beta-glucosidase in either fibroblasts from L444P/L444P homozygotes or in insect cells. This mutation was found to be homoallelic in subacute neuronopathic (type 3) Gaucher disease. In comparison, expression of the mutant cDNA encoding an arginine-for-proline substitution at amino acid 415 (P415R) resulted in an inactive and unstable protein in insect cells. This allele was found only in a type 2 patient with the L444P/P415R genotype. The substantial variation in the type 3 phenotype (L444P homozygotes) suggests the complex nature of the molecular basis of phenotypic variation in Gaucher disease. Yet, the association of neuronopathic phenotypes with alleles producing severely compromised (L444P) or functionally null (P415R) enzymes indicates that the effective level of residual activity at the lysosome is likely to be a major determinant of the severity of Gaucher disease.  相似文献   

6.
We have localized the PvuII polymorphism of the glucocerebrosidase gene complex to intron 6 of the active gene. Using the polymerase chain reaction (PCR) to amplify intron 6 of DNA samples from Pv1.1-/Pv1.1+ individuals, we defined the mutation causing this polymorphism as a G----A single-base substitution at position 3931 of the active gene. By analyzing 54 unrelated Gaucher patients we show strong linkage disequilibrium between the Pv1.1- genotype and the common Jewish mutation 1226 causing the adult type of this disease. Gaucher disease patients heterozygous for the 1226 allele and one unidentified allele (1226/?), particularly those of Jewish ancestry, were predominantly of the Pv1.1-/PV1.1+ genotype. This suggests that one of the unknown alleles may be relatively common and linked to the Pv1.1+ genotype.  相似文献   

7.
In Gaucher disease (glucosylceramide lipidosis), deficiency of glucocerebrosidase causes pathological storage of glucosylceramide, particularly in the spleen. A comparative biochemical and immunological analysis has therefore been made of glucocerebrosidase in spleens from normal subjects (n = 4) and from Gaucher disease patients with non-neuronopathic (n = 5) and neuronopathic (n = 5) phenotypes. The spleens from all Gaucher disease patients showed markedly decreased glucocerebrosidase activity. Discrimination of different phenotypes of Gaucher disease was not possible on the basis of the level of residual enzyme activity, or by measurements, using the immunopurified enzyme, of kinetic constants, pI or molecular mass forms. A severe decrease was found in the specific activity of glucocerebrosidase purified to homogeneity from the spleen of a patient with the non-neuronopathic phenotype of Gaucher disease, as compared with that of the enzyme purified from the spleen of a normal subject. This finding was confirmed by an immunological method developed for accurate assessment of the relative enzyme activity per molecule of glucocerebrosidase protein. The method revealed that the residual enzyme in the spleens of all investigated patients with a non-neuronopathic course of Gaucher disease had a more than 7-fold decreased activity of glucocerebrosidase (measured in the presence of taurocholate) per molecule of enzyme, and that the concentration of glucocerebrosidase molecules in the spleens of these patients was near normal. Observations made with immunoblotting experiments were consistent with these findings. In contrast, in the spleens of patients with neuronopathic phenotypes of Gaucher disease, the concentration of glucocerebrosidase molecules was severely decreased.  相似文献   

8.
Characterization of mutations in Gaucher patients by cDNA cloning.   总被引:16,自引:6,他引:10       下载免费PDF全文
Mutated cDNA clones containing the entire coding sequence of human glucocerebrosidase were isolated from libraries originated from Gaucher patients. Sequence analysis of a mutated cDNA derived from a type II Gaucher patient revealed a C-to-G transversion causing a substitution of an arginine for a proline at residue 415. This change creates a new cleavage site for the enzyme HhaI in the mutated cDNA. Allele-specific oligonucleotide hybridization made it possible to show that this mutation exists in the genomic DNA of the patient. From a cDNA library originated from a type I Gaucher patient, a mutated allele was cloned that contains a T-to-C transition causing a substitution of proline for leucine at residue 444 and creating a new NciI site. This mutation is identical to that described by S. Tsuji and colleagues in genomic DNA from type I, type II, and type III patients. Since the new NciI site generates RFLP, it was used to test the existence of this mutated allele in several Gaucher patients by Southern blot analysis. This allele was found in type I (Jewish and non-Jewish), type II, and type III Gaucher patients. These findings led us to conclude that the patient suffering from type II disease (denoted GM1260) carried both mutations described above. Any one of the amino acid changes described reduces the glucocerebrosidase activity as tested by transfection of COS cells with expression vectors harboring the mutated cDNAs. The base changes in the two mutated cDNAs do not affect the electrophoretic mobility of the corresponding polypeptides on an SDS polyacrylamide gel.  相似文献   

9.
Zirzow  G. C.  Sanchez  O. A.  Murray  G. J.  Brady  R. O.  Oldfield  E. H. 《Neurochemical research》1999,24(2):301-305
Gaucher disease is caused by insufficient activity of the enzyme glucocerebrosidase. Great benefit has been obtained through enzyme replacement therapy for patients with type 1 (non-neuronopathic) Gaucher disease. In contrast, inconsistent effects of enzyme therapy have been observed in patients with type 3 (chronic neuronopathic) Gaucher disease, and no benefit on the lethal course of the disease occurs in patients with Type 2 (acute neuronopathic) Gaucher disease. We examined the use of convection-enhanced delivery to augment the delivery and distribution of exogenous glucocerebrosidase (m.w. 63,000) to the brain by infusing it under slight hydrostatic pressure into the striatal region of rats. The enzyme was comparatively stable under these conditions. It was distributed from the site of injection toward the cerebral cortex where it became primarily localized in neurons. These findings provide considerable incentive for the exploration of intracerebral microinfusion of enzyme to the brain of patients with metabolic storage disorders involving the CNS.  相似文献   

10.
Clinical signs and symptoms of Gaucher disease are more severe in Japanese than in Jewish and other non-Japanese patients. A higher percentage of bone crises and splenectomy was demonstrated by Japanese patients, and there were five fatalities among patients with type 1 Gaucher disease. Additionally, neonatal Gaucher disease, clinically characterized by hydrops foetalis, was observed. Japanese patients with type 2 and type 3 disease also demonstrate clinical heterogeneity. About 100 alleles of patients with Japanese Gaucher disease were examined for genotype determination with the PCR and SSCP methods. About 18 different mutations, including several novel mutations in Japanese patients, were identified. The most common mutations in Japanese patients were 1448C(L444P), accounting for 41 (41%) of alleles. The second most prevalent mutation was 754A(F2131), accounting for 14 (14%) of alleles. Other alleles identified included the 1324C, IVS2 and other mutations. Unidentified alleles comprised 16% of the total number of alleles studied. To date, neither the 1226G (N370S) nor the 84GG mutation has been identified in the Japanese population, although these mutations account for about 70% and 10% of the mutations in Jewish and other non-Japanese populations, respectively. The phenotype-genotype correlation in Japanese patients is more complex compared with that of the Jewish population. In Japanese patients, the 1448C mutation, in either heteroallelic or homoallelic forms, exhibits both neurological and non-neurological phenotypes. Japanese patients with the 754A mutation also exhibit both neuronopathic and non-neuronopathic disease. On the other hand, patients with the D409H mutation show only type 3 neurological disease, and those with the 1447–1466 del 20 ins TG mutation have the severe, neonatal neurological form of Gaucher disease. The 1503T allele was present only in patients with type 1 non-neurological disease. However, since this correlation was observed only in young patients, we do not as yet know the final phenotypic outcome of this mutation. Probably, Japanese patients with Gaucher disease have few mutations that exhibit non-neurological signs and symptoms.  相似文献   

11.
Correlation between genotype and phenotype in Gaucher disease is limited. It is known that the most common mutation N370S is protective of neurological involvement, but for the V394L mutation, described as the fifth most common among Ashkenazi Jews, little data are available. This study reports all known patients from a large referral clinic and from the international registry with Gaucher disease who are documented to have the N370S/V394L genotype. Of 476 patients in the Gaucher Clinic, 7 patients (2.0%) had the N370S/V394L genotype; of 2,836 patients in the registry, there were 14 patients (0.8%) with this genotype. There was an overlap of 3 patients, making a total of 18 patients, reflecting the rarity of this genotype among the studied cohorts. Most of these patients had mild disease; only 8 patients required specific enzyme therapy, none was splenectomized. Only 3 patients had skeletal involvement, but other baseline parameters were very diverse. Although genotype-phenotype correlation in this case may be difficult, because the V394L mutation when seen in a compound heterozygote with a null allele results in neuronopathic disease, one cannot conclude that this mutation is protective of neuronopathic disease and hence this is important for counseling of at-risk populations.  相似文献   

12.
Enzyme replacement therapy has been shown to be particularly effective for patients with type 1 (non-neuronopathic) Gaucher disease. However, intravenously administered glucocerebrosidase does not reverse or halt the progression of brain damage in patients with type 2 (acute neuronopathic) Gaucher disease. A previous investigation revealed that intracerebral infusion of mannose-terminal glucocerebrosidase was safe in experimental animals. The enzyme had a comparatively long half-life in the brain. It was transported by convection from the site of infusion along white matter fiber tracts to the cerebral cortex where it was endocytosed by neurons. In anticipation of intracerebral administration of mannose-terminal glucocerebrosidase to patients with type 2 Gaucher disease, it was important to learn the mechanism involved in its cellular uptake. We therefore compared the endocytosis of this enzyme by J774 macrophage cells with that in two human neuronal cell lines and a human astrocyte cell line. Mannose-terminal glucocerebrosidase was taken up by cholinergic LA-N-2 cells, but to a much lower extent than by macrophages. Considerably less of the enzyme was endocytosed by dopaminergic SH-SY5Y cells. It was not taken up by NHA astrocytes. The findings provide encouragement for an exploration of intracerebral administration of glucocerebrosidase in patients with type 2 Gaucher disease.  相似文献   

13.
Gaucher disease (GD) is caused by mutations in the GBA gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to accumulation of the glycolipid glucocerebroside in the lysosomes of cells of monocyte/macrophage system. Type I GD is the mildest form and is characterized by the absence of neuronopathic affection. Bone compromise in Gaucher disease patients is the most disabling aspect of the disease. However, pathophysiological aspects of skeletal alterations are still poorly understood.  相似文献   

14.
Gaucher disease (OMIM 230800, 230900, 231000), the most common lysosomal storage disorder, is due to a deficiency in the enzyme glucocerebrosidase. Gaucher patients display a wide spectrum of clinical presentation, with hepatosplenomegaly, haematological changes, and orthopaedic complications being the predominant symptoms. Gaucher disease is classified into three broad phenotypes based upon the presence or absence of neurological involvement: Type 1 (non-neuronopathic), Type 2 (acute neuronopathic), and Type 3 (subacute neuronopathic). Nearly 300 mutations have been identified in Gaucher patients, with the majority being missense mutations. Though studies of genotype-to-phenotype correlations have revealed significant heterogeneity, some consistent patterns have emerged to inform prognostic and therapeutic decisions. Recent research has highlighted a potential role for Gaucher disease in other comorbidities such as cancer and Parkinson's Disease. In this review, we will examine the potential relationship between Gaucher disease and the synucleinopathies, a group of neurodegenerative disorders characterized by the development of intracellular aggregates of ??-synuclein. Possible mechanisms of interaction will be discussed.  相似文献   

15.
In patients originally genotyped as homoallelic for the Gaucher disease (GD) L444P (1448C) mutation, we sought to confirm previously reported phenotypic differences between Caucasians and Japanese, to determine the prevalence and phenotypic impact of recombinant alleles, and to explore the phenotypic influence of genetic background. We therefore analyzed data from longer-term clinical follow-up, more comprehensive genotyping and polymorphism and mitochondrial DNA (mtDNA) testing in all known Japanese L444P homozygotes (n=15). Our studies demonstrated that, of 12 patients in our series originally diagnosed with non-neuronopathic GD, 9 developed neurological signs/symptoms during follow-up (at a mean of 14 years 11 months±11 years 4 months). Of three patients originally diagnosed with acute neuronopathic (type 2) GD, all three were compound heterozygotes for L444P and the complex allele RecNci I. In the entire series, Pvu II and liver erythrocyte pyruvate kinase (PKLR) polymorphism and prevalence of the 9 bp mtDNA deletion were heterogeneous, and these background genetic factors could not predict phenotypic expression. Our data suggest that, in Japanese as in Caucasian patients, the L444P/L444P genotype is highly associated with subacute neuronopathic (type 3) GD, and the presence of a complex allele together with an L444P allele leads to type 2 disease. Our findings also underline the importance of comprehensive genotyping (particularly testing for recombinant alleles), long-term follow-up and careful neurological examination in patients with early-onset GD. Such measures ultimately may improve genotype/phenotype correlations and, with them, genetic counseling and therapeutic decision making. Electronic Publication  相似文献   

16.
17.
Sequence of two alleles responsible for Gaucher disease   总被引:13,自引:0,他引:13  
  相似文献   

18.
Polymorphisms in the human glucocerebrosidase gene   总被引:10,自引:0,他引:10  
E. Beutler  C. West  T. Gelbart 《Genomics》1992,12(4):795-800
The two glucocerebrosidase genes from a patient with Gaucher disease were cloned and 8850 bp of each sequenced. Each clone had a single nucleotide change accounting for the clinical glucocerebrosidase deficiency, an A to G transition at cDNA nucleotide 1226 in one clone, and an insertion of a G at cDNA nucleotide 84 in the other clone. Sequence analysis revealed that there were 11 additional differences between the two clones. The clone with the nt 1226 mutation was, as is always the case, Pv1.1- (polymorphic PvuII site present). The 84GG clone was Pv1.1+. Examination of 35 normal subjects and 51 Gaucher disease patients was consistent with the existence of only two major haplotypes. Two additional minor haplotypes were found, one in Africans and one in the white population. These represented additional mutations superimposed on the basic two haplotypes. Two unrelated patients with Gaucher disease seemed to be exceptions in the 5' end of the gene was heterozygous for the + and - haplotypes but the most 3' marker was homozygous. These patients are believed to have a gene deletion on one allele. In addition to these studies, we correct 28 minor errors in the originally published sequence.  相似文献   

19.
Gaucher disease results from an autosomal recessive deficiency of the lysosomal enzyme glucocerebrosidase. The glucocerebrosidase gene is located in a gene-rich region of 1q21 that contains six genes and two pseudogenes within 75 kb. The presence of contiguous, highly homologous pseudogenes for both glucocerebrosidase and metaxin at the locus increases the likelihood of DNA rearrangements in this region. These recombinations can complicate genotyping in patients with Gaucher disease and contribute to the difficulty in interpreting genotype-phenotype correlations in this disorder. In the present study, DNA samples from 240 patients with Gaucher disease were examined using several complementary approaches to identify and characterize recombinant alleles, including direct sequencing, long-template polymerase chain reaction, polymorphic microsatellite repeats, and Southern blots. Among the 480 alleles studied, 59 recombinant alleles were identified, including 34 gene conversions, 18 fusions, and 7 downstream duplications. Twenty-two percent of the patients evaluated had at least one recombinant allele. Twenty-six recombinant alleles were found among 310 alleles from patients with type 1 disease, 18 among 74 alleles from patients with type 2 disease, and 15 among 96 alleles from patients with type 3 disease. Several patients carried two recombinations or mutations on the same allele. Generally, alleles resulting from nonreciprocal recombination (gene conversion) could be distinguished from those arising by reciprocal recombination (crossover and exchange), and the length of the converted sequence was determined. Homozygosity for a recombinant allele was associated with early lethality. Ten different sites of crossover and a shared pentamer motif sequence (CACCA) that could be a hotspot for recombination were identified. These findings contribute to a better understanding of genotype-phenotype relationships in Gaucher disease and may provide insights into the mechanisms of DNA rearrangement in other disorders.  相似文献   

20.
Three major forms (types I-III) of Gaucher disease (GD) have been identified. The largest group of patients with type III GD has been reported from the province of Norrbotten in Sweden. In the present study the genomes from two GD patients of Norrbottnian origin were examined for abnormalities in the glucocerebrosidase gene. In both individuals, a single nucleotide substitution was found in exon 10. This mutation, which results in the substitution of proline for leucine, is identical to the NciI mutation described by Tsuji and co-workers in GD patients of other ethnic origins. Nine additional patients with Norrbottnian GD were shown to be homozygous for the same mutation by restriction-enzyme digestion of DNA amplified by PCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号