首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effects of ethylene, gibberellins, and kinetin on the germination of two lots of Chenopodium album L. seeds, collected from the field in 1982 and 1983, were studied in relation to the availability of nitrate. The experiments were conducted in darkness and at temperatures ranging from 12 to 32°C. Ethylene induced over 75% germination in the 1983 seed but had little effect on the 1982 seed. Nitrate was only slightly promotive in either of the two seed lots. A combination of ethylene and nitrate, however, acted synergistically on 1982 seed, resulting in as much germination as that induced in 1983 seed by ethylene alone. In 1983 seed, a combination of ethylene and nitrate was only marginally more effective than ethylene. A similar relationship was observed in the effects of gibberellic acid4+7 (GA4+7) and nitrate on seeds from the two lots. The 1982 seed, which responded synergistically to combinations of nitrate with ethylene or GA4+7 was found to contain an extremely low endogenous level of nitrate as compared to 1983 seed. Thus, high levels of either endogenous or applied nitrate appeared to enhance the germination response to ethylene or GA4+7.

Kinetin had no effect on 1982 seed and only a small promotive effect on 1983 seed. There was no synergism between kinetin and nitrate in either of the seed lots.

  相似文献   

2.
Two Sites of Hormonal Action during Germination of Chenopodium album Seeds   总被引:3,自引:0,他引:3  
During the overall germination process in the light-requiring seeds of Chenopodium album L. two sites of hormonal action can be distinguished. The start of visible growth is induced in darkness by the gibberellins 4 and 7 (GA4+7) or by ethylene. Added cytokinins are inactive although 8-14C-kinetin shows rapid penetration into the seed and rapid turnover. The induction of growth by GA4+7 and the uptake of 8-methylene-14C-GA3 are enhanced at lower pH values. Prolonged incubation in darkness results in a decreased responsiveness of the seeds towards GA4+7 and ethylene. A second site of hormonal action is located during the progress of growth inside the covering structures. ABA inhibits radicle growth, while GA4+7, GA3, kinetin, zeatin and ethylene reduce the inhibition.  相似文献   

3.
EGLEY  G. H. 《Annals of botany》1984,53(6):833-840
Ethylene (10 µ1–1) caused about one-third of highlydark-dormant seeds of common purslane (Portulaca oleracea L.)to germinate in the dark. Attempts were made to increase germinationin the dark with nitrate and ethylene combinations. When applieddirectly to the seeds, KNO3 did not stimulate germination andKNO3 plus ethylene did not increase germination above that ofethylene alone. Pre-incubation of seeds in KNO3 for 4 to 7 dbefore the ethylene applications significantly increased germination.The effects of the KNO3 pre-incubation were additive at eachof four ethylene concentrations (0.1–100 µ11–1).Potassium nitrate was effective only when ethylene followedthe KNO3 pre-incubation period. Potassium nitrite stimulatedabout 25 per cent of the seeds to germinate without a pre-incubationperiod and without ethylene. Also, ethylene plus KNO2 enhancedgermination above that achieved by either stimulus alone. Silvernitrate did not block the ethylene promotion of germination,but reversed the typical ethylene inhibition of seedling growthfollowing germination. The results support the views that nitrateexerted its effect via conversion to nitrite within the seedand that the rate of nitrate conversion may be a limiting factorin the dark germination of common purslane seeds. Ethylene mayfacilitate nitrite activity by increasing seed sensitivity tothe stimulus. Common purslane, Portulaca oleracea L., ethylene, nitrate, nitrite, germination, dormancy  相似文献   

4.
BA at 10–5 M, GA3 at 3×10–4 M or GA4+7 at 3×10–5 M partially or largely reversed the inhibition of Amaranthus caudatus seed germination due to JA-Me. BA or GA3 did not affect ethylene production and ACC oxidase activity in vivo in the presence of JA-Me before radicle protrusion. However, both increased ethylene production after 72 h of incubation, when the reversal of the JA-Me inhibition of seed germination was observed. AVG at 3×10–4 M decreased ethylene production when it was applied simultaneously with BA and JA-Me or GA3 and JA-Me, but it had no effect on seed germination. NBD almost completely reversed the stimulatory effect of BA, GA3 or GA4+7 on the germination of seeds in the presence of JA-Me. Exogenous ethylene reversed the inhibitory effect of NBD. The results indicate that action of endogenous ethylene is involved in the response of JA-Me inhibited seeds to BA or GAs.  相似文献   

5.
Impaired germination is common among halophyte seeds exposed to salt stress, partly resulting from the salt-induced reduction of the growth regulator contents in seeds. Thus, the understanding of hormonal regulation during the germination process is a main key: (i) to overcome the mechanisms by which NaCl-salinity inhibit germination; and (ii) to improve the germination of these species when challenged with NaCl. In the present investigation, the effects of ABA, GA3, NO3, and NH+4 on the germination of the oilseed halophyte Crithmum maritimum (Apiaceae) were assessed under NaCl-salinity (up to 200 mM NaCl). Seeds were collected from Tabarka rocky coasts (N-W of Tunisia). The exogenous application of GA3, nitrate (either as NaNO3 or KNO3), and NH4Cl enhanced germination under NaCl salinity. The beneficial impact of KNO3 on germination upon seed exposure to NaCl salinity was rather due to NO3 than to K+, since KCl failed to significantly stimulate germination. Under optimal conditions for germination (0 mM NaCl), ABA inhibited germination over time in a dose dependent manner, but KNO3 completely restored the germination parameters. Under NaCl salinity, the application of fluridone (FLU) an inhibitor of ABA biosynthesis, stimulated substantially seed germination. Taken together, our results point out that NO3 and GA3 mitigate the NaCl-induced reduction of seed germination, and that NO3 counteracts the inhibitory effect of ABA on germination of C. maritimum. To cite this article: A. Atia et al., C. R. Biologies 332 (2009).  相似文献   

6.
The temperature-dependent primary dormancy of cv Florida 683 celery seeds in darkness was broken by GA4/7 (2 × 10-4 M) alone but other growth regulators such as BA, ethephon or daminozide were necessary to break dormancy of cv Lathom Blanching seeds in the presence of GA4/7 at this concentration. Although AgNO3 partially inhibited both the ethephon- and BA- induced germination of cv Lathom Blanching seeds in the presence of GA4/7 in the dark it did not affect the promotive action of daminozide. Ethephon did not overcome the inhibitory action of high concentrations of AgNO3 in the light. The ethylene synthesis inhibitor aminoethoxyvinylglycine (AVG) did not inhibit the germination of cv Lathom Blanching seeds induced by growth regulators in the dark or in the absence of growth regulators in the light. Fusicoccin (FC) did not break celery seed dormancy unless applied in the presence of GA4/7. Germination of cv Lathom Blanching celery seeds treated with GA4/7 at 16°C in the dark was inhibited by the K+ ionophore benzo-18-crown-C-6 (18-C-6) and in the presence of Ca2+ by the Ca2+ ionophore A23187; the 18-C-6 inhibition was reversed by BA.It is concluded that the involvement of gibberellin in celery seed dormancy is not dependent on endogenous ethylene and is directly or indirectly controlled through the action of other hormones on transmembrane ion fluxes.  相似文献   

7.
Germination occurs usually in response to multiple environmental cues. Seeds with the ecophysiological ability to simultaneously sense the previous presence of fire and appropriate levels of temperature, light and soil nitrate could restrict germination to postfire, winter and competition-free microhabitats, where the potential for seedling survival is enhanced. Germination responses of 16 species with a range of life forms, fire responses and seed weights were determined under controlled conditions of 15°C temperature, a 12 h light cycle, exposure to 1 g L?1 nitrate solution, and six conditions of light quality (white, blue, yellow, red, far-red light and darkness). Germination in Oenothera stricta, a weedy naturalized ephemeral, and two small-seeded indigenous Asteraceae species of mulga woodlands, Leucochrysum fitzgibbonii and Craspedia sp., were enhanced by white, yellow or red light compared with germination achieved in the dark, or under far-red or blue light. In red light, KNO3 further enhanced germination of these positively photoblastic species. The germination response of Trachyandra divaricata, a naturalized herb of sandy, seaside locations, and several native jarrah forest legumes (four Acacia species, Bossiaea aquifolium, Gompholobium marginatum and Sphaerolobium vimineum) proved to be negatively photoblastic. Of these seven negatively photoblastic herb and shrub species, exposure to KNO3 overcame the inhibition of light only in the resprouter species, Acacia lateriticola. In the serotinous, negatively photoblastic tree species, Corymbia calophylla and Eucalyptus marginata, KNO3 seemed to be required before the negative response to light exposure was recorded. A dose–curve experiment on two positively photoblastic and three negatively photoblastic species indicated that although KNO3 exposure affected germination in all species, different concentrations of KNO3 (0, 0.5, 1, 2, and 5 g L?1) produced different levels of response. Detailed studies with additions of KNO3 (1 g L?1) and the growth hormone, gibberellic acid (GA3; 50 mg L?1), showed that increased germination percentages of the positively photoblastic species, Oenothera stricta, occurred in the light, but blocking endogenous gibberellic synthesis with paclobutrazol, or adding exogenous GA3 or KNO3 had no effect on the light-induced germination levels. In the negatively photoblastic species Trachyandra divaricata, additions of KNO3 and GA3 had no influence on the germination inhibition induced by exposure to light nor did blocking endogenous GA synthesis. The 16 species growing naturally in Western Australia, Australia show a range of germination responses to environmental conditions, but depending on their natural habitat, the ecophysiology of each species appears to be optimized for subsequent seedling survival.  相似文献   

8.
Abstract. Ethylene was found to promote two distinct processes during germination of redroot pigweed (Amarantus retroflexus L.) seeds: embryo expansion that splits the seed coat (incomplete germination), and radicle penetration through the more elastic endosperm (complete germination). The two events can be separated in time by subjecting seeds to low water potential or low CO2 levels, which arrest germination of some seeds at the incomplete stage. Ethylene applications to incompletely germinated seeds promote complete germination, with a response threshold near 0.02 cm3 m?3 and saturation near 0.5 cm3 m?3. Higher ethylene concentrations (0.5 to 50 cm3 m?3) given during the first day of seed imbibition also increase the percentage of seeds which initiate embryo expansion and split the seed coat. Light and elevated CO2 also promote radicle penetration of the endosperm in seeds incubated under water stress. The results support the view that the germination pause at the incomplete stage is an adaptation to environmental stresses that can be overcome with exogenous ethylene or certain other stimuli.  相似文献   

9.
Ethephon (Eth), gibberellin A3, A4 + 7 (GA3, GA4 + 7), and 6-benzyladenine (BA) removed secondary dormancy of Amaranthus caudatus seeds. The GAs and BA potentiated the effect of ethephon or 1-aminocyclopropane-1-carboxylic acid (ACC), an ethylene biosynthesis precursor, in terms of the rate or final percent of germination. Aminoethoxyvinylglycine (AVG), an ACC synthase activity inhibitor, was observed to simultaneously inhibit the release from dormancy effected by GA3 or BA as well as the ethylene production stimulated by these regulators. Breaking of secondary dormancy by GA3, GA4 + 7 or BA was prevented by 2,5-norbornadiene (NBD), an inhibitor of ethylene binding. Ethylene completely or markedly reversed the inhibitory effect of NBD. We thus conclude that the removal of secondary dormancy in Amaranthus caudatus seeds by gibberellin or benzyladenine involves ethylene biosynthesis and action.  相似文献   

10.
The critically endangered and perennial alpine endemic angiosperms, namely, Aquilegia nivalis, Lagotis cashmeriana and Meconopsis latifolia inhabit such habitats in the Kashmir Himalaya that are characterised by short growing season and heavy snow cover for about 3–4 months during winter season. The seeds of these species under natural conditions experience a long period of pre-chilling during winter prior to their germination in following spring season. Taking cue from such a requirement, present study investigated the effect of chilling and exogenous application of growth hormones, NO3 and NH4 + on total percent germination of otherwise deep-dormant seeds of these species, under alternate light/dark and continuous dark light regimes. Prolonged pre-chilling followed by treatment of seeds with different doses of GA3 had a pronounced stimulatory effect on the total germination percentage in all the three species. In fact, highest germination percentage in A. nivalis was recorded only when pre-chilled seeds were treated with 1.5 mM GA3 under alternate light/dark conditions. Likewise, germination of pre-chilled seeds of L. cashmeriana with ruptured seed coats was improved when treated with various concentrations of GA3. Seed germination in M. latifolia was also favourably influenced by treatment of pre-chilled seeds with GA3 or nitrogen applied either as NO3 or as NH4 + under alternate light/dark conditions. Treatment of seeds with kinetin (6-furfuryl-aminopurine) had no significant influence on germination percentage in any of the three species. Thus, prolonged chilling of seeds followed by their treatment with GA3 under alternate light/dark conditions are the requirements necessary for seed germination in these species.  相似文献   

11.
Suaeda salsa, a leaf succulent shrub in the family Chenopodiaceae, is one of the most important halophytes in China. Suaeda salsa produces dimorphic seeds (soft brown seeds and hard black seeds). Seeds of S. salsa were collected from the coastal salt flats near Huanghua City, China. Experiments were conducted to determine the salinity-alleviating effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of S. salsa. Brown seeds had a higher germination rate than black seeds in all experiments. Black seeds were more sensitive to salt in the absence of light in comparison to brown seeds. Brown seeds absorbed water more quickly in comparison to black seeds and were found to be more tolerant of salt stress. Our results showed that 1-aminocyclopropane-1-carboxylate (ACC, the immediate precursor of ethylene), nitrite, GA4 and BA improved seed germination in the presence of salt. However, nitrate, GA1, GA3 failed to alleviate salt stress. ABA inhibited seed germination and seedling growth. Possible mechanisms involved in the alleviation of salt stress in S. salsa seeds and the ecological adaptation of the seeds to the environment are discussed.  相似文献   

12.
The effects of gibberellic acid (GA3), potassium nitrate (KNO3), prechilling, temperature, salt stress and osmotic potential on seed germination and sowing depth on seedling emergence and burial depth on seed viability of hoary cress (Cardaria draba (L.) Desv.), were studied in a series of laboratory, glasshouse and outdoor experiments. The optimal temperature for hoary cress seed germination was 20°C, both in light/dark and darkness regimes. Seed germination of hoary cress at 400 ppm concentration of GA3 in a light/dark regime was maximal. Potassium nitrate concentrations increased the percentage of germination in comparison with the control treatment. Increasing the duration of dry prechilling to 30 and 45 days promoted the seed germination of hoary cress. Germination of hoary cress markedly decreased as salt and drought stress increased. Seed germination of hoary cress occurred at a range of pH from 3 to 11. Seedling emergence significantly decreased as planting depth increased. Total seed viability decreased with increasing burial depth. The maximum increase in mortality occurred in seeds that were buried at 5‐cm depth.  相似文献   

13.
Application of exogenous ethylene in combination with gibberellic acid (GA3), kinetin (KIN), and/or CO2 has been reported to induce germination of lettuce seeds at supraoptimal temperatures. However, it is not clear whether endogenous ethylene also plays a mediatory role when germination under these conditions is induced by treatment regimes that do not include ethylene. Therefore, possible involvement of endogenous ethylene during the relief of thermoinhibition of lettuce (Lactuca sativa L. cv Grand Rapids) seed germination at 32°C was investigated. Combinations of GA3 (0.5 millimolar), KIN (0.05 millimolar), and CO2 (10%) were used to induce germination. Little germination occurred in controls or upon treatment with ethylene, KIN, or CO2. Neither KIN nor CO2 affected the rate of ethylene production by seeds. Both germination and ethylene production were slightly promoted by GA3. Treatments with GA3+CO2, GA3+KIN, or GA3+CO2+KIN resulted in approximately 10-to 40-fold increases in ethylene production and 50 to 100% promotion of germination as compared to controls. Initial ethylene evolution from the treated seeds was greater than from the controls and a major surge in ethylene evolution occurred at the time of visible germination. Application of 1 millimolar 2-aminoethoxyvinyl glycine (AVG), an inhibitor of ethylene synthesis, in combination with any of above three treatments inhibited the ethylene production to below control levels. This was accompanied by a marked decline in germination percentage. Germination was also inhibited by 2,5-norbornadiene (0.25-2 milliliters per liter), a competitive inhibitor of ethylene action. Application of exogenous ethylene (1-100 microliters per liter) overcame the inhibitory effects of AVG and 2,5-norbornadiene on germination. The results demonstrate that endogenous ethylene synthesis and action are essential for the alleviation of thermoinhibition of lettuce seeds by combinations of GA3, KIN, and CO2. It also appears that these treatment combinations do not act exclusively via promotion of ethylene evolution as the application of exogenous ethylene alone did not promote germination.  相似文献   

14.
Red light (R) has a dual effect on the seed germination of the two related species Arabidopsis thaliana and Sisymbrium officinale. The two species provide different means to separate the light-effects. In S. officinale, stimulation of germination by R depends on the stimultaneous presence of nitrate (light-effect I). The effect of both factors is completely blocked by tetcyclacis, an inhibitor of gibberellin (GA)-biosynthesis. Addition of a mixture of gibberellins A4 and A7 (GA4+7) antagonizes the inhibition. In the absence of nitrate, R shifts germination to lower GA-requirement (light-effect II). In A. thaliana a similar second light-effect is seen on the GA-requirement of GA-deficient ga-1 mutant seeds. R stimulates germination of wild type seeds in water (light-effect I). For both species, light-effect I shows a fluence threshold value of approximately 10−5 moles per square meter, which is independent of the nitrate concentration. Increasing nitrate concentrations narrow the fluence-range required for maximal germination whereby the product of nitrate concentration and fluence value determines the germination level, indicating a multiplicative interaction between R and nitrate. Fluence-response curves for light-effect II are similar for both species. Germination occurs in the range of 10−6 to 10−2 moles per square meter fluence. The maximal level of germination is determined by the level of dark-germination and light-effect II. Increasing GA4+7 concentrations induce a shift to lower fluence values. It is shown that in the second effect the co-action of R and exogenous GA4+7 is clearly additive. It is concluded that light-effect I induces a chain of events leading to GA biosynthesis. Light-effect II seems to enhance the sensitivity of the seeds to GAs.  相似文献   

15.
Abstract Depending on the applied concentration, nitrate can either stimulate or inhibit germination of dormant seeds of Sinapis arvensis L. (wild mustard). Seed NO?3 levels that corresponded to the maximal germination frequencies recorded, ranged from 0.3 to 4.4 nmol seed?1 for applied NO?3 concentrations between 2.5 and 20 mol m?3. Germination was significantly lower in seeds containing more than 5 nmol NO?3. Although the presence of NO?3 within the seed was required to promote germination, seed NO?3 levels were 5 to 15 times less than levels calculated from the volume of solution taken up by the seeds. Seed NO?3 levels also responded in a passive fashion to the external NO3? concentration when the seeds were incubated on filter paper or in soil. In a representative soil containing 26 mg NO?3-N per kg dry weight and 8 to 16% water by weight, the amount of NO?3 taken up by the seeds reached inhibitory levels. Our results suggest that levels of inorganic nitrogen (NO?3, NH+4) in managed soils may play an important role in regulating germination of dormant S. arvensis seeds.  相似文献   

16.
Skotodormant seeds of Lactuca sativa Grand Rapids imbibed in darkness for 10 days (10-day DS) germinated poorly upon terminal treatment with red light (R) or gibberellin A3 (GA3). Soluble sugars in the imbibition solutions influenced the depth of skotodormancy. Ten-day DS seeds, imbibed in 50–500 mm sucrose or 100–500 mm glucose and given terminal GA3 germinated completely and germinated about 80% when imbibed in 100 mm galactose, mannose, lactose, or maltose. In contrast, terminal R applied to 10-day DS seeds caused only 20–50% germination. If given R at day 0 and imbibed for 10 days in darkness in 500 mm sucrose or glucose, seeds washed free of exogenous glucose or sucrose then germinated about 50% in darkness in water. These seeds responded to terminal R or GA3 with complete germination. When seeds were given FR at day 0, germination responses following terminal R or GA3 were significantly lower when the duration of DS was increased from 7–10 day DS to 15 days. In 10-day DS seeds given initial FR and imbibed in either solutions of 50 or 100 mm sucrose and KNO3, either terminal R or GA3 treatment gave complete or near complete germination. It is concluded that seed exposure to certain soluble sugars and/or nitrate during a 10-day DS protected certain substrates and thereby extended the sensitivity of the seeds to terminal R or GA3 treatment. The study provides substantial evidence for nonhormonal factors associated with light and GA action in the control of seed skotodormancy. Received October 30, 1996; accepted April 22, 1997  相似文献   

17.
Skotodormant seeds of Lactuca sativa Grand Rapids imbibed in darkness for 10 days (10-day DS) germinated poorly upon terminal treatment with red light (R) or gibberellin A3 (GA3). Inorganic nitrogen salts in the imbibition solutions reduced seed skotodormancy. Ten-day DS seeds, imbibed in 25 mm salt solutions followed by terminal R, germinated 99% if imbibed in NH4NO3, 70% if imbibed in KNO3 or NH4Cl, and 55% if imbibed in NaNO3. Seeds imbibed in higher salt concentrations germinated fully upon terminal R treatment. Seeds imbibed in 25 mm NH4Cl or in 50 mm NH4NO3 germinated completely upon GA3 treatment. Osmotic effects of imbibition media accounted for only part of the effect, since seeds imbibed in 50 mm CaCl2 or NaCl germinated poorly following R or GA3 treatment. Seeds imbibed in 500 mm polyethylene glycol (PEG) 1000 or mannitol solutions for 10 days still exhibited skotodormancy. Treatments of R or GA3 did not stimulate germination in seeds imbibed in mannitol, but germination was complete if seeds were given 1-h acid immersion plus a water rinse before the terminal R or GA3 treatment. Seeds imbibed in 50–500 mm PEG during 10-day DS germinated significantly better in response to terminal R. Terminal GA3 significantly improved germination only in seeds imbibed at 500 mm PEG. Pfr appeared to function in mannitol-imbibed seed only after an acid treatment. Seed exposure to inorganic nitrogen salts during the 10-day DS maintained seed sensitivity to terminal R or GA3 treatment. The depth of seed skotodormancy was related to the availability of inorganic nitrogen and also involved the levels of Pfr or endogenous GA3.Abbreviations FR far red - DS dark storage - R red - GA3 gibberellin A3 - PEG polyethylene glycol - SHAM salicylhydroxamic acid - ANOVA analysis of variance - GLM general linear model - LSD least squares difference - Pfr far-red absorbing form of phytochrome  相似文献   

18.
Abstract

Desert plant species commonly use seed dormancy to prevent germination during unfavorable environmental conditions and thus increase the probability of seedling survival. Seed dormancy presents a challenge for restoration ecology, particularly in desert species for which our knowledge of dormancy regulation is limited. In the present study the effect of gibberellic acid (GA3) and potassium nitrate (KNO3) on seed dormancy release was investigated on eight Arabian desert species. Both treatments significantly enhanced the germination of most species tested. GA3 was more effective than KNO3 in enhancing germination percentage, reducing mean germination time and synchronizing the germination in most of the studied species. Light requirement during germination was species-specific, but in general the presence of light promoted germination more effectively when combined with KNO3 and GA3. The wide variation in dormancy and germination requirements among the tested species is indicative of distinct germination niches, which might assist their co-existence in similar habitat/environmental conditions. Seed pre-treatments that optimize germination in this habitat must therefore be assessed for individual species to improve the outcomes of ecological restoration.  相似文献   

19.
Hilhorst HW 《Plant physiology》1990,94(3):1096-1102
The role of nitrate as a promoter of germination of Sisymbrium officinale seeds was examined in optimal light conditions. It was shown that the requirement for nitrate was absolute. This was true for all seed lots used. The probit of germination in water was log-linearly related to the level of endogenous nitrate. Preincubation at 15°C resulted in an immediate decrease in germination, whereas in 25 millimolar KNO3 the decrease was delayed. The decline of germination in water was strongly correlated with the rate at which nitrate leached from the seeds. The germination response to a range of KNO3 concentrations was followed during preincubation at 24-hour intervals. During the entire 264-hour preincubation period increasingly higher nitrate concentrations were required to maintain a response. This resulted in a right-hand shift of the dose-response curve parallel to the x axis. After 120 hours the high maximum germination level started to decline. The dose-response curves could be simulated by an equation from the receptor-occupancy theory. It is proposed that induction of secondary dormancy is a result of a decrease of the number of nitrate receptors. After 24 and 48 hours of preincubation, the nitrate-response curves were biphasic. The biphasic character could be related to the level of endogenous nitrate and to a differential requirement for nitrate of two fractions of the seed population. Similarities with the behavior of fluence-response curves after prolonged dark incubation led to the hypothesis that phytochrome and nitrate share the same site of action.  相似文献   

20.
Seed quality is a key critical component to produce well established and vigorous seedlings under cool soil (<10°C) conditions experienced in Western Canada. A simple, relatively quick germination assay is required to separate small differences in seed germination which can have a significant impact on seedling growth. It has long been established that phytohormones regulate seed germination: abscisic acid inhibits germination whereas gibberellins enhance germination. We investigated the effects of ABA, GA, ethylene and inhibitors of these phytohormones alone and in combination on the germination rate of a black and a yellow seed canola (Brassica napus) imbibed at 8°C. The effects of either saline solutions, osmotic solutions, fusicoccin or testa on the germination of canola seeds imbibed at 8°C were also investigated. This temperature is representative of the soil temperatures experienced in the early spring of Western Canada. The two canola seed lines, especially the yellow seed line, were very sensitive to increasing concentration of saline solutions at 8°C, but not at 23°C; however, iso-osmotic solutions that reduced water potential were more inhibitory. The seed coat (testa) including the endosperm was a major factor affecting the germination rate of the yellow seed line at 8°C, however, GA4+7 overcame the inhibitory effect of the testa, whereas ABA exacerbated it. Fusicoccin was more stimulatory to germination than GA4+7, however, unlike GA4+7, it was unable to overcome the inhibitory effect of paclobutrazol, a GA biosynthesis inhibitor. Fluridone, an ABA biosynthesis inhibitor, was unable to overcome the inhibitory effects of a saline solution suggesting that the inhibitory effect was not due to elevated ABA levels. Ethylene, a stimulator of germination did not appear to be involved in the germination of these two lines. Controlled deterioration at 35°C, 85% RH could be either partially or completely overcome by exogenous GA4+7. This study demonstrated the effect of hormones, salinity and testa on the germination of canola seeds under less than ideal environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号