首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
The effects of amino acids and ethanolamine on choline uptake and phosphatidylcholine biosynthesis in baby hamster kidney (BHK-21) cells were investigated. The cells were incubated with labelled choline in the presence of an amino acid or ethanolamine. The uptake of labelled choline was noncompetitively inhibited by amino acids. Glycine, L-alanine, L-serine, L-leucine, L-aspartate, and L-arginine were effective inhibitors and a maximum of 22% inhibition of choline uptake was obtained with 5 mM glycine. Analyses of the labelings in the choline-containing metabolites revealed that the conversion of choline to CDP-choline and subsequently phosphatidylcholine was not affected by the presence of amino acids. The uptake of choline was also inhibited by ethanolamine in a concentration-dependent manner. Kinetic studies on the uptake of choline indicated that the inhibition by ethanolamine was competitive in nature. Although ethanolamine is a potent inhibitor of choline kinase, analyses of the labelings in the choline-containing metabolites indicated that the conversion of choline to phosphocholine was not affected in the cells incubated with ethanolamine. Ethanolamine did not change the pool sizes of phosphocholine and CDP-choline. Based on the specific radioactivity of CDP-choline and the labeling of phosphatidylcholine, the rates of phosphatidylcholine biosynthesis were not significantly different between the control and the ethanolamine-treated cells. In view of the concentrations of amino acids (millimolar) and ethanolamine (micromolar) in most cell culture media, it appeared that only amino acids were important metabolites for the regulation of choline uptake in BHK-21 cells. We conclude that both amino acids and ethanolamine have no direct effect on the biosynthesis of phosphatidylcholine.  相似文献   

2.
Uptake of 10 microM L-tryptophan into isolated rat brain synaptosomes was studied to assess its effect on the rate of serotonin synthesis from tryptophan. The initial rate of uptake was rapid, being two orders of magnitude above the rate of tryptophan hydroxylation. Uptake was highly concentrative, the concentration ratio across the plasma membrane at equilibrium being approximately 9. This concentration ratio was decreased to about 1 in the presence of high concentrations of amino acids transported by the L-type neutral amino acid uptake system. A mixture of the large neutral amino acids at physiological concentrations decreased the internal tryptophan concentration to 58% of that in their absence. Large tryptophan concentration ratios were observed in experiments in which Na+ in the medium was replaced with choline+. The concentrative uptake of tryptophan was energy-dependent, being decreased by inclusion of cyanide and omission of glucose. The concentration gradient was abolished by veratridine or rotenone. Time courses of the changes in ATP content and tryptophan concentration ratio on addition of these and other agents established that tryptophan uptake is probably not driven by ATP hydrolysis or efflux of other amino acids, but by the plasma membrane potential.  相似文献   

3.
Uptake of L-alanine, L-lysine, and choline into both preantral and antral mouse oocytes was enhanced by follicular cells. Follicular cells also enhanced glycine uptake into oocytes at the preantral stage of development, but no effect of these cells was observed at the antral stage. Glycine uptake was predominantly Na+ dependent and inhibited almost completely by 10 mM sarcosine, moderately by proline and its analog pipecolate, and poorly or not at all by other amino acids. By these criteria, glycine transport was mainly via system Gly in follicular cells and the oolemma at both the preantral and antral stages. Moreover, an increase in glycine transport via the oolemma between the preantral and antral stages was more than threefold larger than was the increase in transport of alanine or lysine. This relatively large increase in glycine-specific transport in the oolemma appears to obscure the ability of follicular cells to enhance glycine uptake into antral oocytes. In contrast to other amino acids, leucine uptake into oocytes was not enhanced by follicular cells unless 14 other amino acids were also present at their concentrations in mouse serum. An inhibitor of gap junctional communication, 18-alpha-glycyrrhetinic acid, abolished follicular cell-enhanced uptake of glycine and choline into preantral oocytes. Therefore, the extent to which follicular cells enhance uptake of a particular amino acid into oocytes depends on at least three physiologically important variables. Namely, enhancement may depend on the stage of follicular development, the presence of other amino acids in the environment, and gap junctional communication.  相似文献   

4.
木文研究了多种氨基酸、乙醇胺和甲基乙醇胺对细胞摄取胆碱和合成磷脂酰胆碱(PC)的影响,发现多种氨基酸非竞争性地抑制细胞摄取胆碱。含胆碱代谢物的分析显示胆碱转变成CDP-胆碱,随之形成PC均不受氨基酸影响。乙醇胺竞争性地抑制胆碱摄取,且存在剂量依赖关系。乙醇胺能明显抑制胆碱激酶活性,但细胞内胆碱和磷酸胆碱的代谢池并不改变,提示乙醇胺不影响胆碱转变成磷酸胆碱。根据CDP-胆碱和PC的比放射性分布,乙醇胺也不影响PC的生物合成。甲基乙醇胺抑制胆碱摄入的程度强于乙醇胺,并抑制胆碱激酶和CTP:磷酸胆碱胞苷转移酶活性,含胆碱代谢物以CDP-胆碱下降最显著;提示甲基乙醇胺不仅抑制胆碱摄入而且还干扰了CDP-胆碱通路。  相似文献   

5.
The specificity of amino acid transport in normal (high-glutathione) sheep erythrocytes was investigated by studying the interaction of various neutral and dibasic amino acids in both competition and exchange experiments. Apparent Ki values were obtained for amino acids as inhibitors of L-alanine influx. Amino acids previously found to be transported by high-glutathione cells at fast rates (L-cysteine, L-alpha-amino-n-butyrate) were the most effective inhibitors. D-Alanine and D-alpha-amino-n-butyrate were without effect. Of the remaining amino acids studied, only L-norvaline, L-valine, L-norleucine, L-serine and L-2,4-diamino-n-butyrate significantly inhibited L-alanine uptake. L-Alanine efflux from pre-loaded cells was markedly stimulated by extracellular L-alanine. Those amino acids that inhibited L-alanine influx also stimulated L-alanine efflux. In addition, D-alanine, D-alpha-amino-n-biutyrate, L-threonine, L-asparagine, L-alpha, beta-diaminoproprionate, L-ornithine, L-lysine and S-2-aminoethyl-L-cysteine also significantly stimulated L-alanine efflux. L-Lysine uptake was inhibited by L-alanine but not by D-alanine, and the inhibitory potency of L-alanine was not influenced by the replacement of Na+ in the incubation medium with choline. L-Lysine efflux from pre-loaded cells was stimulated by L-alanine but not by D-alanine. It is concluded that these cells possess a highly selective stero-specific amino acid-transport system. Although the optimum substrates are small neutral amino acids, this system also has a significant affinity for dibasic amino acids.  相似文献   

6.
GABA transport by nerve ending fractions of cat brain   总被引:2,自引:2,他引:0  
Abstract— Nerve ending and mitochondrial fractions were prepared from cat cerebral cortex by differential and sucrose density gradient centrifugation. The isolated fractions were characterized morphologically and enzymatically and the nerve-ending fraction was shown to be particularly rich in glutamate decarboxylase activity. The uptake of [3H] γ-aminobutyric acid (GABA) was studied by trapping the particles on a Millipore filter. GABA uptake was not saturable over the concentration range studied (0.018 to 8000 μM. Tissue/medium ratios were consistently greater than 2·5, and uptake was significantly reduced by ouabain and iodoacetate, or by replacing sodium with lithium or choline chloride. GABA uptake was significantly inhibited by desmethylimipramine (DMI) with an IC50 of approx. 10–20 μM. GABA uptake was reduced by structurally similar amino acids lacking an α-amino group, and also by methionine and phenylalanine, but not by short chain neutral amino acids.  相似文献   

7.
The energetics of amino acid uptake by the developing small intestine was investigated in vitro. L-valine, L-leucine, L-phenylalanine, L-methionine, L-lysine and L-arginine were all actively transported by the newborn rat jejunum. Metabolic inhibitors (e.g. 2,4-dinitrophenol) significantly reduced uptake of all amino acids but uptake against a concentration gradient was not totally abolished. Uptake of all amino acids was reduced at low[Na+]. Inhibition of transport of neutral amino acids by reduced luminal [Na+] was greater than that of basic amino acids, and the tissue was barely able to concentrate the neutral amino acids. [Na+] affected the Michaelis constant (Km) of neutral transport systems for their substrates; for the basic amino acids Km values were unaffected by the presence or absence of Na+. Ouabain significantly inhibited neutral amino acid uptake but had no effect on L-lysine or L-arginine uptake. These results are discussed in terms of the Na+ gradient hypothesis for amino acid transport, and the site of energy input to active transport. The role of glycolysis in providing energy for intestinal transport in the neonatal rat and the efficiency of Na+ dependent and independent transport mechanisms are considered. It is concluded that the energetics of amino acid transport systems in neonatal and adult rats are essentially similar.  相似文献   

8.
The effects of pH (3.5-7.5) on the brain uptake of histidine by the blood-brain barrier (BBB) carriers for neutral and cationic amino acids were tested, in competition with unlabeled histidine, arginine, or phenylalanine, with the single-pass carotid injection technique. Cationic amino acid ( [14C]arginine) uptake was increasingly inhibited by unlabeled histidine as the pH of the injection solution decreased. In contrast, the inhibitory effect of unlabeled histidine on neutral amino acid ( [14C]phenylalanine) uptake decreased with decreasing pH. Brain uptake indices with varying histidine concentrations indicated that the neutral form of histidine inhibited phenylalanine uptake whereas the cationic form competed with arginine uptake. Since phenylalanine decreased [14C]histidine uptake at all pH values whereas arginine did not, it was concluded that the cationic form of histidine had an affinity for the cationic carrier, but was not transported by it. We propose that the saturable entry of histidine into brain is, under normal physiological circumstances, mediated solely by the carrier for neutral amino acids.  相似文献   

9.
Abstract— The effects of high circulating concentrations of several amino acids on the free amino acids of rat brain were measured, to see whether or not the results followed any consistent pattern. High circulating concentrations of large, neutral amino acids (phenylalanine, valine or isoleucine) caused significantly decreased values only of other large, neutral amino acids in the brains. High circulating concentrations of the basic amino acids lysine or arginine caused significantly decreased values only of each other. The data suggest that there are separate systems for the transport of neutral and basic amino acids across the blood-brain barrier. The effects of valine and lysine on the uptake by brain and the con-vulsant action of allylglycine (a neutral amino acid) were consistent with the concept of separate systems for the transport of amino acids across the blood-brain barrier. Valine inhibited the uptake by brain and the convulsant action of allylglycine in mice, but lysine did not. The data suggest that allylglycine and valine are transported into the brain by a common mechanism that does not transport lysine.  相似文献   

10.
The initiation of growth of a polyaromatic auxotrophic mutant of Saccharomyces cerevisiae was inhibited by several amino acids, whereas growth of the parent prototroph was unaffected. A comparative investigation of amino acid transport in the two strains employing (14)C-labeled amino acids revealed that the transport of amino acids in S. cerevisiae was mediated by a general transport system responsible for the uptake of all neutral as well as basic amino acids. Both auxotrophic and prototrophic strains exhibited stereospecificity for l-amino acids and a K(m) ranging from 1.5 x 10(-5) to 5.0 x 10(-5) M. Optimal transport activity occurred at pH 5.7. Cycloheximide had no effect on amino acid uptake, indicating that protein synthesis was not a direct requirement for amino acid transport. Regulation of amino acid transport was subject to the concentration of amino acids in the free amino acid pool. Amino acid inhibition of the uptake of the aromatic amino acids by the aromatic auxotroph did not correlate directly with the effect of amino acids on the initiation of growth of the auxotroph but provides a partial explanation of this effect.  相似文献   

11.
The uptake of glutamate and other acidic amino acids into barnacle single muscle fibres has been characterized. The uptake of glutamate consists of two components, one Na-independent and one Na-dependent. The Na-dependent uptake is saturable (half-maximal at 250 microM external glutamate) and is inhibited by a variety of analogues of which L-cysteate and D- and L-aspartate are the most potent. These amino acids are also transported into the muscle in a Na-dependent manner. The excitatory agonists kainate, quisqualate, and N-methyl-D-aspartate do not inhibit or affect uptake in any way. Progressive replacement of external Na by choline reduces uptake with very little effect on the apparent affinity for glutamate, suggesting that Na and glutamate bind to the transporter independently. The kinetics of activation are consistent with a requirement for at least two Na ions. Na activation of glutamate uptake can be inhibited by guanidinium with kinetics that are consistent with competitive inhibition at the Na binding site. Studies on the efflux of L-glutamate and other analogues have shown that efflux rates are only slightly increased by the removal of Na and do not seem to be affected in any clear manner by external levels of acidic amino acids.  相似文献   

12.
Effect of ammonia on amino acid uptake by brain microvessels   总被引:3,自引:0,他引:3  
NH+4 ions, at a concentration (0.25 mM) similar to that found in the plasma of patients with hepatic encephalopathy, cause, in vitro, a significant stimulation of the uptake by brain microvessels of large neutral amino acids, without any effect on the uptake of alpha-methylaminoisobutyric acid, glutamic acid, or lysine. Such a stimulation occurs essentially through an increase of the maximal transport capacity (Vmax) of the saturable component. It is apparently mediated by the intracellular formation of glutamine, which is then exchanged, through the L-system of transport, for large neutral amino acids such as leucine, phenylalanine, or tyrosine. At higher concentrations (greater than or equal to 0.5 mM), NH+4 ions cause also a decrease of carrier affinity for neutral amino acids, which counteracts the stimulatory effect on their uptake.  相似文献   

13.
Transport of carnitine was studied with immortalized rat brain endothelial cells (RBE4), an in vitro model of the blood-brain barrier. The experiments on uptake and efflux through the luminal membrane excluded any involvement of choline and amino acids transporters, as well as that of glycoprotein P. Acetyl-, octanoylcarnitine, and betaine were without any effect; the only compound decreasing both processes was butyrobetaine. An exposure of the abluminal membrane resulted in a 40% inhibition of carnitine uptake by the substrates of neutral amino acid transporter L, while its efflux through the basolateral membrane, occurring in a form of free carnitine, was sensitive to SH group reagent, mersalyl, and was diminished by butyrobetaine. These features of carnitine transport did not fully correspond to the known characteristics of the proteins transporting carnitine in other tissues (OCTN2 and CT1); however, they did not exclude an involvement of a transporter belonging to the same superfamily. Moreover, such a protein in brain endothelium would fulfill a regulatory role in the transport of carnitine through the blood-brain barrier.  相似文献   

14.
Threonine content of brain decreases in young rats fed a threonine-limiting, low protein diet containing a supplement of small neutral amino acids (serine, glycine and alanine), which are competitors of threonine transport in other systems (Tews et al., 1977). Threonine transport by brain slices was inhibited more by a complex amino acid mixture resembling plasma from rats fed the small neutral amino acid supplement than by mixtures resembling plasma from control rats or from rats fed a supplement of large neutral amino acids. Greater inhibition was seen with mixtures containing only the small neutral amino acids than with mixtures containing only large neutral amino acids. On an equimolar basis, serine and alanine were the most inhibitory; large neutrals were moderately so; and glycine and lysine were without effect. Threonine transport was also strongly inhibited by α-amino-n-butyric acid and homoserine, less so by α-aminoisobutyric acid, and not at all by GABA. The complex amino acid mixtures strongly inhibited α-aminoisobutyric acid transport by brain or liver slices but, in contrast to effects in brain, the extent of the inhibition in liver was not much affected by altering the composition of the mixture. Tryptophan accumulation by brain slices was effectively inhibited by other large neutral amino acids in physiologically occurring concentrations. Threonine, or a mixture of serine, glycine and alanine only slightly inhibited tryptophan uptake; basic amino acids were without effect and histidine stimulated tryptophan transport slightly. These results support the conclusion that a diet-induced decrease in the concentration in brain of a specific amino acid may be related to increased inhibition of its transport into brain by increases in the concentrations of transport-related, plasma amino acids.  相似文献   

15.
We examined the extent to which arbuscular mycorrhizal (AM) fungi root improved the acquisition of simple organic nitrogen (ON) compounds by their host plants. In a greenhouse-based study, we used quantum dots (fluorescent nanoparticles) to assess uptake of each of the 20 proteinaceous amino acids by AM-colonized versus uncolonized plants. We found that AM colonization increased uptake of phenylalanine, lysine, asparagine, arginine, histidine, methionine, tryptophan, and cysteine; and reduced uptake of aspartic acid. Arbuscular mycorrhizal colonization had the greatest effect on uptake of amino acids that are relatively rare in proteins. In addition, AM fungi facilitated uptake of neutral and positively-charged amino acids more than negatively-charged amino acids. Overall, the AM fungi used in this study appeared to improve access by plants to a number of amino acids, but not necessarily those that are common or negatively-charged.  相似文献   

16.
Analog inhibition studies of the uptake of proline, serine, and threonine into human fibroblast lysosomes, purified on Percoll gradients, reveal the presence of three new transport systems. These systems fail to show the Na+ requirement usual for the plasma membrane. Proline uptake into fibroblast lysosomes occurs mainly by two routes: a predominant route half-saturating at 0.01 mM, and a lower-affinity route, half-saturating at 0.07 mM. The latter so far appears specific for L-proline and its 3,4-dehydro derivative. The high affinity route has a broad scope, recognizing best, beyond these two amino acids, various unbranched neutral amino acids not over 5 carbons long. Neither system accepts to a significant extent D-proline, hydroxyproline, cationic or anionic amino acids, nor neutral ones with bulky side chains. 2-Aminoisobutyrate and its N-methyl derivative have little effect on proline uptake, in contrast to their effectiveness on its uptake by the intact fibroblast. The rate of lysosomal proline uptake maximizes at about pH 6.4, is inversely related to the osmolarity of the medium, and is unaffected by the extralysosomal presence of MgATP. The competition among alanine, serine, and threonine points to sharing of the broad-scope system for proline, although the main part of their uptake occurs by a third route that rejects amino acids in which the alpha-amino group is methylated.  相似文献   

17.
Incubation of brain cell suspensions with 14 mM-phenylalanine resulted in rapid alterations of amino acid metabolism and protein synthesis. Both thc rate of uptake and the final intracellular concentration of several radioactively-labelled amino acids were decreased by high concentrations oi phenylalanine. By prelabelling cells with radioactive amino acids, phenylalanine was also shown to effect a rapid loss of the labelled amino acids from brain cells. Amino acid analysis after the incubation of the cells with phenylalanine indicated that several amino acids were decreased in their intracellular concentrations with effects similar to those measured with radioisotopic experiments (large neutral > small and large basic > small neutral > acidic amino acids). Although amino acid uptake and efflux were altered by the presence of 14 mwphenylalanine, little or no alteration was detected in the resulting specific activity of the intracellular amino acids. High levels of phenylalanine did not significantly altcr cellular catabolism of either alanine, lysine, leucine or isoleucine. As determined by the isolation of labcllcd aminoacyl-tRNA from cells incubated with and without phenylalanine, there was little or no alteration in the level of this precursor for radioactive alanine and lysine. There was, however, a detectable decrease in thc labelling of aminoacyl-tRNA for leucine and isoleucine. Only aftcr correcting for the changes of the specific activity of the precursors and thcir availability to translational events, could the effects of phenylalanine on protein synthesis be established. An inhibition of the incorporation into protein for each amino acid was approximately 20%.  相似文献   

18.
Borstlap, A. G, Meenks, J. L. D., van Eck, W. F. and Bicker,J. T. E. 1986. Kinetics and specificity of amino acid uptakeby the duckweed Spirodela polyrhiza (L.) Schleiden.—J.exp. Bot. 37: 1020–1035. Uptake of 14C-labelled amino acids by intact, axenically grownplants of Spirodela polyrhiza (L.) Schleiden was investigated.Experiments in which uptake was measured from the decrease inthe amino acid concentration in the medium, indicated that saturableuptake conforms to the sum of two Michaelis-Menten terms, possiblycorresponding with a high-affinity and a low-affinity system.Further experiments with L-leucine, L-glutamic acid, and L-lysine,in which uptake was measured by assaying the amount of 14 inthe plants, showed the presence of a non-saturable componentin addition to the dual saturable uptake. Uptake of L-glutamic acid precipitously declined between pH4?0 and 6? and that of L-leucine between pH 4?0 and 8? whereasL-lysine uptake was optimal at pH 6?0. No evidence was foundthat the apparent high-affinity and low-affinity systems respondeddifferently to changes in external pH or to the addition ofCCCP. The non-saturable uptake component was not affected bychanges in external pH or by adding CCCP, and might have beendue to free space uptake. Mutual inhibition of uptake was found between acidic and neutralamino acids (L-leucine, L-methionine, L-glutamic acid) and betweenbasic amino acids (L-lysine, L-ornithine). The basic amino acidshad no effect on the uptake of L-leucine, L-methionine and L-glutamicacid, although the uptake of basic amino acids was inhibitedby glutaminc acid and several neutral amino acids. It is suggested that the duckweed has a high-affinity transportsystem for neutral and acidic amino acids, and a distinct high-affinitysystem for basic amino acids. It is argued that the first systemtransports zwitterionic amino acids (z-system), and that thesecond system transports cationic amino acids(y+-system). Thespecificity of the low-affinity system is less certain, butthere is some evidence that it is similar to that of their high-affinitycounterparts. Key words: Kinetics, membrane transport, pH-dependency, transport systems, uptake isotherms  相似文献   

19.
Neutral amino acid transport in isolated rat pancreatic islets   总被引:1,自引:0,他引:1  
The neutral amino acid transport systems of freshly isolated rat pancreatic islets have been studied by first examining the transport of L-alanine and the nonmetabolizable analogue 2-(methylamino)isobutyric acid (MeAIB). By comparing the uptake of MeAIB and L-alanine for their pH dependency profile, choline and Li+ substitution for Na+, tolerance to N-methylation, and competition with other amino acids, the existence in pancreatic islets of both A and ASC amino acid transport systems was established. The systems responsible for the inward transport of five natural amino acids was studied using competition analysis and Na+ dependency of uptake. These studies defined three neutral amino acid transport systems: A and ASC (Na+-dependent) and L (Na+-independent). L-Proline entered rat islet cells mainly by system A; L-leucine by the Na+-independent system L. The uptake of L-alanine, L-serine, and L-glutamine was shared by systems ASC and L, the participation of system A being negligible for these three amino acids. An especially broad substrate specificity for systems L and ASC is therefore suggested for the rat pancreatic islet cells. The regulation of amino acid transport was also investigated in two conditions differing as to glucose concentration and/or availability, i.e. islets from fasted rats and islets maintained in tissue culture at high or low glucose concentrations. Neither alanine nor MeAIB transport was altered by fasting of the islet-donor rats. On the other hand, pancreatic islets maintained for 2 days in tissue culture at high (16.7 mM) glucose transported MeAIB at twice the rate of islets maintained at low (2.8 mM) glucose. Amino acid starvation of pancreatic islets during 11 h of tissue culture resulted in a 2-fold increase in MeAIB transport.  相似文献   

20.
Acetylcholine effects on neuronal firing responses evoked by somatic or dendritic applications of excitatory amino acids were studied in slices of guinea-pig parietal cortex. Excitatory reactions initiated by dendritic activation were enhanced by acetylcholine wherever it was iontophoretically applied: either to soma or dendrites. The effect consisted in shortening spike response latencies and increasing response intensity and duration. The modified responses were recorded within 1-min interval after acetylcholine microinjections at a distance within 300 microns of the soma. Parameters of responses to somatic applications of excitatory amino acids were not significantly changed by acetylcholine. The results suggest that acetylcholine improves dendritic propagation rather than membrane excitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号