首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The consumption of a high-fat diet modifies both the morphology of the small intestine and experimentally tested effects of schistosomiasis mansoni. However, whether a schistosomiasis infection associated with a high-fat diet causes injury to the small intestine has never been investigated. Mice were fed either a high-fat or a standard-fat diet for 6 months and were then infected with Schistosoma mansoni cercariae. Physical characteristics of the intestinal tissue (mucosal thickness, small intestinal villi length and height, and abundance of goblet cells and enterocytes on the villous surface) and the distribution of granulomas along the intestinal segments and their developmental stage were measured at the time of sacrifice (9 or 17 weeks post-infection). The group fed a high-fat diet exhibited different granuloma stages, whereas the control group possessed only exudative granulomas. The chronically infected mice fed a high-fat diet exhibited higher granuloma and egg numbers than the acutely infected group. Exudative, exudative/exudative-productive and exudative-productive granulomas were present irrespective of diet. Computer-aided morphometric analysis confirmed that villus length, villus width, muscular height and submucosal height of the duodenal and jejunal segments were affected by diet and infection. In conclusion, a high-fat diet and infection had a significant impact on the small intestine morphology and morphometry among the animals tested.  相似文献   

2.
High-fat diets induce weight gain and fatty liver in wild-type mice. Schistosomiasis mansoni infection also promotes hepatic injury. This study was designed to quantify hepatic alterations in schistosomiasis mansoni-infected mice fed a high fat-rich chow compared to mice fed a standard rodent chow, using stereology. Female SW mice fed each either high-fat diet (29% lipids) or standard chow (12% lipids) over 8 months, and then were infected with Schistosoma mansoni cercariae. Four experimental groups were studied: infected mice fed a high-fat diet (IHFC) or standard chow (ISC), uninfected mice fed a high-fat diet (HFC) or standard chow (SC). Mice were sacrificed during early infection (9 weeks from exposure). The following hepatic biometry and the stereology parameters were determined: volume density (hepatocytes [h], sinusoids [s], steatosis [st] and hepatic fibrosis [hf]); numerical density (hepatocyte nuclei - Nv[h]); absolute number of total hepatocyte N[h], normal hepatocyte N[nh], and binucleated hepatocyte N[bh], percentage of normal hepatocyte P[nh] and binucleated hepatocyte P[bh]. IHFC and HFC groups exhibited TC, HDL-C, LDL-C, and body mass significantly greater (p < 0.05) than control group. No significant differences were found regards liver volume (p = 0.07). Significant differences were observed regards P[nh] (p = 0.0045), P[bh] (p = 0.0045), Nv[h] (p = 0.0006), N[h] (p = 0.0125), N[bh] (p = 0.0164) and N[nh] (p = 0.0078). IHFC mice group presented 29% of binucleated hepatocytes compared to HFC group (19%), ISC group (17%) and SC (6%). Volume density was significantly different between groups: Vv[h] (p = 0.0052), Vv[s] (p = 0.0025), Vv[st] (p = 0.0004), and Vv[hf] (p = 0.0007). In conclusion, schistosomiasis mansoni infection with concurrent high-fat diet promotes intensive quantitative changes in hepatic structure, contributing to an increasing on hepatic regeneration.  相似文献   

3.
摘要 目的:探究Nrf2激动剂CDDO-Im对高脂饮食诱导的肥胖小鼠肝脏脂肪变性的作用。方法:33只雄性C57BL/6J小鼠随机分为两组:一组16只饲喂普通饲料,另一组17只饲喂高脂饲料建立肥胖模型。造模成功后将小鼠随机分成四组:普通饲料溶剂对照组(Control ND组)、普通饲料Nrf2激动剂组(Nrf2(+) ND组)、高脂饲料溶剂对照组(Control HFD组)和高脂饲料Nrf2激动剂组(Nrf2(+) HFD组)。分别给予Nrf2激动剂CDDO-Im和等体积溶剂灌胃干预6周后,检测各组小鼠血清甘油三酯(TG)、总胆固醇(T-CHO)和低密度脂蛋白-胆固醇(LDL-C)。苏木素-伊红(HE)染色观察肝脏组织形态学变化。RT-qPCR检测肝脏Nrf2下游抗氧化基因Nqo1、Ho1和Gclc的mRNA表达水平,Western Blot检测肝脏NQO1、HO-1和GCLC的蛋白表达水平。结果:与正常小鼠相比,肥胖小鼠的体重、TG和LDL-C升高(P<0.05),肝脏脂肪变性增加,GCLC的蛋白表达水平降低(P<0.05)。在肥胖小鼠中,与溶剂对照组相比,Nrf2激动剂组小鼠的体重、血清TG降低(P<0.05),肝脏脂肪变性减轻,Nqo1和Gclc的mRNA表达水平升高(P<0.05),NQO1和GCLC的蛋白表达水平升高(P<0.05)。结论:Nrf2激动剂CDDO-Im可改善高脂饮食诱导的肥胖小鼠肝脏脂肪变性,可能与Nrf2激动剂CDDO-Im激活抗氧化基因的表达来减轻肝细胞氧化应激有关。  相似文献   

4.
Nonalcoholic steatohepatitis is related to lifestyle, particularly to dietary habits. We developed diet-induced fibrotic steatohepatitis model stroke-prone spontaneously hypertensive 5/Dmcr (SHRSP5/Dmcr) rats showing steatosis, hepatic inflammation, and severe fibrosis induced by high-fat and -cholesterol (HFC) diet feeding. We aimed to clarify the efficacy of dietary intervention on the disease before and after the appearance of fibrosis. Male SHRSP5/Dmcr rats were divided into 9 groups; of these, 6 groups were fed control or HFC diet for several weeks and the remaining 3 groups represented the dietary intervention groups, which were fed the control diet after HFC diet feeding for 2 (before the appearance of fibrosis) or 8 (after the appearance of fibrosis) weeks. Dietary intervention before the appearance of fibrosis significantly improved the steatosis and reset the increased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and serum total cholesterol (TC) levels. However, dietary intervention after the appearance of fibrosis was unable to reset the levels of hepatic TC, serum ALT, and fibrogenesis-related markers and had only a minor influence on hepatic fibrosis, although it reset the increased expression of transforming growth factor (TGF)-β1 and α-smooth muscle actin (SMA). It was noted that dietary intervention improved the increased AST levels; however, aggregated CD68-positive cells were still observed around the fibrosis area, which may be related to the findings of inflammatory cytokine mRNAs. Taken together, dietary intervention for fibrotic steatohepatitis improved steatosis, although it could not completely improve fibrosis.  相似文献   

5.
Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). Mice fed a high-fat diet, especially that of saturated-fat-rich oil, develop fatty liver with an increase in peroxisome proliferator-activated receptor (PPAR) γ2 protein in liver. The fatty liver induced by a high-fat diet is improved by knockdown of liver PPARγ2. In this study, we investigated whether β-conglycinin (a major protein of soy protein) could reduce PPARγ2 protein and prevent high-fat-diet-induced fatty liver in ddY mice. Mice were fed a high-starch diet (70 energy% [en%] starch) plus 20% (wt/wt) sucrose in their drinking water or a high-safflower-oil diet (60 en%) or a high-butter diet (60 en%) for 11 weeks, by which fatty liver is developed. As a control, mice were fed a high-starch diet with drinking water. Either β-conglycinin or casein (control) was given as dietary protein. β-Conglycinin supplementation completely prevented fatty liver induced by each type of diet, along with a reduction in adipose tissue weight. β-Conglycinin decreased sterol regulatory element-binding protein (SREBP)-1c and carbohydrate response element-binding protein (ChREBP) messenger RNAs (mRNAs) in sucrose-supplemented mice, whereas it decreased PPARγ2 mRNA (and its target genes CD36 and FSP27), but did not decrease SREBP-1c and ChREBP mRNAs, in mice fed a high-fat diet. β-Conglycinin decreased PPARγ2 protein and liver triglyceride (TG) concentration in a dose-dependent manner in mice fed a high-butter diet; a significant decrease in liver TG concentration was observed at a concentration of 15 en%. In conclusion, β-conglycinin effectively prevents fatty liver induced by a high-fat diet through a decrease in liver PPARγ2 protein.  相似文献   

6.
Chronic schistosomiasis mansoni is a helminthic infection characterized by cell-mediated anti-egg granulomatous reactions and a variety of associated immunoregulatory phenomena. Soluble immune response suppressor (SIRS) is a lymphokine produced by activated suppressor T lymphocytes in various experimental settings. This report demonstrates the presence of SIRS in the sera of mice with chronic schistosomiasis mansoni (at least 20 wk of infection), but not in the sera of mice with earlier infections. Also, cultures of isolated, intact, hepatic, egg-focused granulomas from chronically infected mice released detectable levels of SIRS. These are the immunomodulated lesions characteristic of this infection. Large, intense, unmodulated granulomas obtained from acutely infected mice did not release SIRS. There is, therefore, a strong association between the presence of SIRS in the serum, the production of SIRS by intact lesions, and the chronic, immunomodulated stage of schistosomiasis mansoni.  相似文献   

7.
To date, the effect of the changes promoted by hypercholesterolemia and experimental schistosomiasis infection on splenic architecture has remained elusive. In this paper, we compared spleen from control and infected mice fed either high-fat (29% lipids) or standard diet (12% lipids), assessing spleen volume by liquid displacement and splenic disorganization by histopathology, morphometry and stereology. Infected mice showed higher spleen volume than in corresponding uninfected mice (P<0.05). The white pulp compartment was reduced, red pulp and germinal center were enhanced (P<0.01). Microscopic examination showed cellular infiltrates characterized by polymorfonuclear cells, with intensive lymphocytic mitosis and Mott cells. Hemosiderin deposits tended to be in less extent in infected mice compared with uninfected controls. The red pulp compartment showed a significantly (P<0.05) increased average number of megakaryocytes compared with uninfected mice, which may be associated with hematopoietic reconstitution. High-fat fed mice showed larger white pulp than controls (P<0.05). Standard fed mice showed exudative-productive granuloma distributed only sparsely in the red pulp, whereas a tissue reaction characterized by a cell infiltration in high-fat fed mice was found. The results of the present study suggest that there is a significant relationship between high-fat diet intake and splenic disorganization such as a decrease in the numerical density of white pulp and, red pulp and germinal center hyperplasia. Such structural disorganization due to co-morbidites (schistosomiasis and dyslipidemia) may affect the microenvironments of the spleen that are necessary for the generation of immune responses to antigens.  相似文献   

8.
Western-type diets can induce obesity and related conditions such as dyslipidemia, insulin resistance and hepatic steatosis. We evaluated the effects of milk sphingomyelin (SM) and egg SM on diet-induced obesity, the development of hepatic steatosis and adipose inflammation in C57BL/6J mice fed a high-fat, cholesterol-enriched diet for 10 weeks. Mice were fed a low-fat diet (10% kcal from fat) (n=10), a high-fat diet (60% kcal from fat) (HFD, n=14) or a high-fat diet modified to contain either 0.1% (w/w) milk SM (n=14) or 0.1% (w/w) egg SM (n=14). After 10 weeks, egg SM ameliorated weight gain, hypercholesterolemia and hyperglycemia induced by HFD. Both egg SM and milk SM attenuated hepatic steatosis development, with significantly lower hepatic triglycerides (TGs) and cholesterol relative to HFD. This reduction in hepatic steatosis was stronger with egg SM supplementation relative to milk SM. Reductions in hepatic TGs observed with dietary SM were associated with lower hepatic mRNA expression of PPARγ-related genes: Scd1 and Pparg2 in both SM groups, and Cd36 and Fabp4 with egg SM. Egg SM and, to a lesser extent, milk SM reduced inflammation and markers of macrophage infiltration in adipose tissue. Egg SM also reduced skeletal muscle TG content compared to HFD. Overall, the current study provides evidence of dietary SM improving metabolic complications associated with diet-induced obesity in mice. Further research is warranted to understand the differences in bioactivity observed between egg and milk SM.  相似文献   

9.
The objective of this research was to determine body composition, total fat content, fat distribution, and serum leptin concentration in hyperlipidemic (high responder, HR) and normolipidemic (low responder, LR) California mice (Peromyscus californicus). In our initial experiments, we sought to determine whether differences in regional fat storage were associated with hyperlipidemia in this species. To further characterize the hepatic steatosis in the mice, we performed 2 additional experiments by using a diet containing 45% of energy as fat. The body fat content of mice fed a low fat-diet (12.3% energy as fat) was higher than that of mice fed a moderate-fat diet (25.8% energy as fat). Total body fat did not differ between HR and LR mice. There was no significant difference between intraabdominal, gonadal, or inguinal fat pad weights. Liver weights of HR mice fed the moderate-fat diet were higher than those of LR mice fed the same diet, and the moderate-fat diet was associated with nonalcoholic fatty liver (NAFL). Mice fed the 45% diet had higher histologic score for steatosis but very little inflammatory response. Chemical analysis indicated increased lipid in the livers of mice fed the high-fat diet compared with those fed the low-fat diet. HR and LR mice had similar serum leptin concentrations. California mice develop NAFL without excess fat accumulation elsewhere. NAFL was influenced by genetic and dietary factors. These mice may be a naturally occuring model of partial lipodystrophy.  相似文献   

10.
The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fructose corn syrup (HFCS) equivalent for 1-16 wk were compared with mice fed standard chow or mice with trans fats or HFCS omitted. Cage racks were removed from western diet mice to promote sedentary behavior. By 16 wk, trans fat-fed mice became obese and developed severe hepatic steatosis with associated necroinflammatory changes. Plasma alanine aminotransferase levels increased, as did liver TNF-alpha and procollagen mRNA, indicating an inflammatory and profibrogenic response to injury. Glucose intolerance and impaired fasting glucose developed within 2 and 4 wk, respectively. Plasma insulin, resistin, and leptin levels increased in a profile similar to that seen in patients with NASH. The individual components of this diet contributed to the phenotype independently; isocaloric replacement of trans fats with lard established that trans fats played a major role in promoting hepatic steatosis and injury, whereas inclusion of HFCS promoted food consumption, obesity, and impaired insulin sensitivity. Combining risk factors for the metabolic syndrome by feeding mice trans fats and HFCS induced histological features of NASH in the context of a metabolic profile similar to patients with this disease. Because dietary trans fats promoted liver steatosis and injury, their role in the epidemic of NASH needs further evaluation.  相似文献   

11.
Maternal malnutrition during the lactation period in early development may have long-term programming effects on adult offspring. We evaluated the combined effects of parasitological behaviour and histopathological features and malnutrition during lactation. Lactating mice and their pups were divided into a control group (fed a normal diet of 23% protein), a protein-restricted group (PR) (fed a diet containing 8% protein) and a caloric-restricted group (CR) (fed according to the PR group intake). At the age of 60 days, the offspring were infected with Schistosoma mansoni cercariae and killed at nine weeks post-infection. Food intake, body and liver masses, leptinaemia, corticosteronaemia, collagen morphometry and neogenesis and the cellular composition of liver granulomas were studied. PR offspring showed reduced weight gain and hypophagia, whereas CR offspring became overweight and developed hyperphagia. The pre-patent period was longer (45 days) in both programmed offspring as compared to controls (40 days). The PR-infected group had higher faecal and intestinal egg output and increased liver damage. The CR-infected group showed a lower number of liver granulomas, increased collagen neogenesis and a higher frequency of binucleate hepatocytes, suggesting a better modulation of the inflammatory response and increased liver regeneration. Taken together, our findings suggest that neonatal malnutrition of offspring during lactation affects the outcome of schistosomiasis in mice.  相似文献   

12.
Certain modified diets containing saturated fatty acids, cholesterol or fructose lead to the development of nonalcoholic steatohepatitis (NASH)-related fibrosis in rodents; however, progression to cirrhosis is rare. Experimental liver cirrhosis models have relied on genetic manipulation or administration of hepatotoxins. This study aimed to establish a reliable dietary model of NASH-related cirrhosis in a relatively short period. Male Sprague–Dawley rats (9 weeks of age) were randomly assigned to normal, high-fat (HF), or two types (1.25% or 2.5% cholesterol) of high-fat and high-cholesterol (HFC) diets for 18 weeks. All HFC diets contained 2% cholic acid by weight. Histopathological analysis revealed that the HFC diets induced obvious hepatic steatosis, inflammation with hepatocyte ballooning and advanced fibrosis (stage 3–4) in all 12 rats at 27 weeks of age. In contrast, all five rats given the HF diet developed mild steatosis and inflammation without fibrosis. The amount of cholesterol in the liver and hepatocellular mitochondrial and microsomal fractions was significantly higher in rats fed the HFC diets than the normal or HF diets. The HFC diets significantly suppressed mRNA levels of microsomal triglyceride transfer protein, adenosine triphosphate binding cassette transporter G5, bile acid CoA: amino acid N-acyltransferase and bile salt export pump, as well as the enzymatic activity of carnitine palmitoyltransferase in the liver. In conclusion, the HFC diets induced liver cirrhosis in conjunction with hepatic features of NASH in Sprague–Dawley rats within 18 weeks, and altered gene expression and enzyme activity to accumulate lipid and bile acid in the liver.  相似文献   

13.
Burgess K  Xu T  Brown R  Han B  Welle S 《PloS one》2011,6(2):e17090
The marked hypermuscularity in mice with constitutive myostatin deficiency reduces fat accumulation and hyperglycemia induced by high-fat feeding, but it is unclear whether the smaller increase in muscle mass caused by postdevelopmental loss of myostatin activity has beneficial metabolic effects during high-fat feeding. We therefore examined how postdevelopmental myostatin knockout influenced effects of high-fat feeding. Male mice with ubiquitous expression of tamoxifen-inducible Cre recombinase were fed tamoxifen for 2 weeks at 4 months of age. This depleted myostatin in mice with floxed myostatin genes, but not in control mice with normal myostatin genes. Some mice were fed a high-fat diet (60% of energy) for 22 weeks, starting 2 weeks after cessation of tamoxifen feeding. Myostatin depletion increased skeletal muscle mass ~30%. Hypermuscular mice had ~50% less weight gain than control mice over the first 8 weeks of high-fat feeding. During the subsequent 3 months of high-fat feeding, additional weight gain was similar in control and myostatin-deficient mice. After 5 months of high-fat feeding, the mass of epididymal and retroperitoneal fat pads was similar in control and myostatin-deficient mice even though myostatin depletion reduced the weight gain attributable to the high-fat diet (mean weight with high-fat diet minus mean weight with low-fat diet: 19.9 g in control mice, 14.1 g in myostatin-deficient mice). Myostatin depletion did not alter fasting blood glucose levels after 3 or 5 months of high-fat feeding, but reduced glucose levels measured 90 min after intraperitoneal glucose injection. Myostatin depletion also attenuated hepatic steatosis and accumulation of fat in muscle tissue. We conclude that blocking myostatin signaling after maturity can attenuate some of the adverse effects of a high-fat diet.  相似文献   

14.
Amorphous material and altered collagen fragments within dilated secretory vesicles and cisternae of fibroblast cytoplasm were the main ultrastructural changes seen in hepatic periovular granulomas formed in mice infected with Schistosoma mansoni and treated with colchicine. Despite promoting ultrastructural changes in the fibroblasts found in hepatic periovular granulomas, colchicine administration to infected mice did not significantly change the light microscopic appearance of the hepatic schistosomal lesions, did not diminish the amount of total hepatic collagen, and did not change the collagen isotypes in the granulomas, as observed after a comparative study with non-colchicine treated infected control mice. When administered to mice two weeks after curative treatment of schistosomiasis with praziquantel, colchicine did not seem to increase extracellular collagen degradation or to induce a more rapid resorption of hepatic periovular granulomas, although still promoting ultrastructural alterations in fibroblasts.  相似文献   

15.
Weaning Swiss mice were percutaneously infected with 30 cercariae of Schistosoma mansoni and submitted to a shifting either from a deficient to a balanced diet or vice-versa, for 24 weeks. The nutritional status was weekly evaluated by measurements of growth curves and food intake. Hepatic fibrosis and periovular granulomas were studied by histological, morphometric and biochemical methods. All mice fed on a deficient diet failed to develop periportal "pipestem" fibrosis after chronic infection. An unexpected finding was the absence of pipestem fibrosis in mice on normal diet, probably related to the sample size. The lower values for nutritional parameters were mainly due to the deficient diet, rather than to infection. Liver/body weight ratio was higher in "early undernutrition" group, after shifting to the balanced diet. Volume density and numerical density of egg granulomas reached lowest values in undernourished animals. The amount of collagen was reduced in undernourished mice, attaining higher concentrations in well-fed controls and in "late undernutrition" (balanced diet shifted to a deficient one), where collagen deposition appeared increased in granulomas. That finding suggested interference with collagen degradation and resorption in "late" undernourished animals. Thus, host nutritional status plays a role in connective tissue changes of hepatic schistosomiasis in mice.  相似文献   

16.
This study addressed the effect of indole-3-carbinol (I3C) supplementation on hepatic steatosis in mice fed a high-fat diet (HFD) and clarified the underlying mechanism. Male C57BL/6N mice were divided into three groups: those who received a normal diet, those fed with HFD and those fed with 0.1% I3C-supplemented diet (I3CD). In the present study, an HFD supplemented with 0.1% I3C significantly decreased body and liver weight as well as plasma and hepatic lipid levels. The activation of the silent mating type information regulation 2 homolog 1 (SIRT1)–AMP-activated protein kinase (AMPK) signaling system by I3C correlated with decreased mRNA levels of sterol regulatory element-binding protein-1c-regulated lipogenic enzymes. In addition, I3C significantly reversed HFD-induced up-regulation of ER stress-mediated signaling molecules in the liver, which may have contributed to the protective effects of I3C against hepatic steatosis. Furthermore, HFD-induced up-regulations of inflammatory genes such as tumor necrosis factor α and interleukin 6 were significantly reversed by dietary I3C supplementation. Our study suggests that the protective action of I3C against hepatic steatosis is mediated, at least in part, through the up-regulation of a SIRT1–AMPK signaling system in the livers of HFD-fed mice. Further investigations revealed that alleviation of the ER stress response represented a critical mechanism underlying the beneficial effects of I3C on hepatic steatosis.  相似文献   

17.
Time-restricted feeding (TRF) can reduce adiposity and lessen the co-morbidities of obesity. Mice consuming obesogenic high-fat (HF) diets develop insulin resistance and hepatic steatosis, but have elevated indices of long-chain polyunsaturated fatty acids (LCPUFA) that may be beneficial. While TRF impacts lipid metabolism, scant data exist regarding the impact of TRF upon lipidomic composition of tissues. We (1) tested the hypothesis that TRF of a HF diet elevates LCPUFA indices while preventing insulin resistance and hepatic steatosis and (2) determined the impact of TRF upon the lipidome in plasma, liver, and adipose tissue. For 12 weeks, male, adult mice were fed a control diet ad libitum, a HF diet ad libitum (HF-AL), or a HF diet with TRF, 12 hours during the dark phase (HF-TRF). HF-TRF prevented insulin resistance and hepatic steatosis resulting from by HF-AL treatment. TRF-blocked plasma increases in LCPUFA induced by HF-AL treatment but elevated concentrations of triacylglycerols and non-esterified saturated fatty acids. Analysis of the hepatic lipidome demonstrated that TRF did not elevate LCPUFA while reducing steatosis. However, TRF created (1) a separate hepatic lipid signature for triacylglycerols, phosphatidylcholine, and phosphatidylethanolamine species and (2) modified gene and protein expression consistent with reduced fatty acid synthesis and restoration of diurnal gene signaling. TRF increased the saturated fatty acid content in visceral adipose tissue. In summary, TRF of a HF diet alters the lipidomic profile of plasma, liver, and adipose tissue, creating a third distinct lipid metabolic state indicative of positive metabolic adaptations following HF intake.  相似文献   

18.
The biochemical differences between simple steatosis, a benign liver disease, and non-alcoholic steatohepatitis, which leads to cirrhosis, are unclear. Fat aussie is an obese mouse strain with a truncating mutation (foz) in the Alms1 gene. Chow-fed female foz/foz mice develop obesity, diabetes, and simple steatosis. We fed foz/foz and wildtype mice a high-fat diet. Foz/foz mice developed serum ALT elevation and severe steatohepatitis with hepatocyte ballooning, inflammation, and fibrosis; wildtype mice showed simple steatosis. Biochemical pathways favoring hepatocellular lipid accumulation (fatty acid uptake; lipogenesis) and lipid disposal (fatty acid beta-oxidation; triglyceride egress) were both induced by high-fat feeding in wildtype but not foz/foz mice. The resulting extremely high hepatic triglyceride levels were associated with induction of mitochondrial uncoupling protein-2 and adipocyte-specific fatty acid binding protein-2, but not cytochrome P4502e1 or lipid peroxidation. In this model of metabolic syndrome, transition of steatosis to steatohepatitis was associated with hypoadiponectinemia, a mediator of hepatic fatty acid disposal pathways.  相似文献   

19.
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR−/−) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR−/− mice fed MCD diet (FXR−/−/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR−/−/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR−/−/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR−/−/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.  相似文献   

20.
目的:探讨孕期和哺乳期的高脂饮食能否导致子代在生命早期出现糖脂代谢紊乱。方法成年雌性C57BL/6J小鼠与正常饮食雄性小鼠进行交配,孕鼠随机分为高脂饮食组和正常饮食组,在孕期和哺乳期喂养高脂饲料或正常饲料,至交配后第一代鼠断乳时(3周龄)观察其糖脂代谢相关性指标以及肝脏病理表现。结果较正常饮食组子鼠相比,高脂饮食子鼠出生体重更低( P<0.05)。在断乳时,高脂饮食组雄性子鼠体重较重( P =0.038),腹腔糖耐量实验30 min和60 min血糖明显升高(P值分别为<0.001和<0.01),糖耐量曲线下面积较大(P=0.0016),HOMA-IR值较大(P<0.05),雌性子鼠腹腔糖耐量实验在30 min血糖高于正常组(P<0.01),而糖耐量曲线下面积和HOMA-IR值在两组之间无明显统计学意义。雄性和雌性子代小鼠空腹胆固醇水平高脂饮食组均高于正常饮食组( P值分别为<0.0001和0.0004),而两组雄性和雌性子代小鼠空腹胰岛素和甘油三酯水平差异均无显著性( P均>0.05)。另外,在断乳时高脂饮食子鼠出现肝脏脂肪变性,雌性和雄性子鼠无明显差异。结论母鼠孕期和哺乳期高脂饮食能够诱导子代在生命早期就能出现糖脂代谢紊乱并且雄性子鼠更易出现肥胖、糖耐量异常、胰岛素抵抗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号