首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Myostatin plays a robust, negative role in controlling muscle mass. A disruption of myostatin function by transgenic expression of its propeptide (the 5'region, 866 nucleotides) results in significant muscle growth (Yang et al., 2001. Mol Rep Dev 60:351-361). Studies from myostatin and the propeptide transgene mRNA indicated that myostatin mRNA was detected at day 10.5 postcoitum in fetal mice. Its level remained low, but increased by 180% during the postnatal fast-growth period (day 0-10). An early, high-level postnatal expression of the transgene was identified as being responsible for a highly muscled phenotype. High-fat diet induces adiposity in rodents. To study the effects of dietary fat on muscle growth and adipose tissue fat deposition in the transgenic mice, we challenged the mice with a high-fat diet (45% kcal fat) for 21 weeks. Transgenic mice showed 24%-50% further enhancement of growth on the high-fat diet compared to the normal-fat diet (P = 0.004) from 17 to 25 weeks of age. The total mass of the main muscles of transgenic mice showed a 27% increase on the high-fat diet compared to the normal-fat diet (P = 0.004), while the white adipose tissue mass of the transgenic mice was not significantly different from that of wild-type mice fed a normal-fat diet (P = 0.434). The high-fat diet induced wild-type mice developed 190% greater mass of white adipose tissues compared to the normal-fat diet (P = 0.008), which primarily resulted from enlarged adipocytes. These results demonstrate that disruption of myostatin function by its propeptide shifted dietary fat utilization toward muscle tissues with minimal effects on adiposity. These results suggest that enhancing muscle growth by myostatin propeptide or other means during the early developmental stage may serve as an effective means for obesity prevention.  相似文献   

2.
Obesity and insulin resistance cause serious consequences to human health. To study effects of skeletal muscle growth on obesity prevention, we focused on a key gene of skeletal muscle named myostatin, which plays an inhibitory role in muscle growth and development. We generated transgenic mice through muscle-specific expression of the cDNA sequence (5'-region 886 nucleotides) encoding for the propeptide of myostatin. The transgene effectively depressed myostatin function. Transgenic mice showed dramatic growth and muscle mass by 9 weeks of age. Here we reported that individual major muscles of transgenic mice were 45-115% heavier than those of wild-type mice, maintained normal blood glucose, insulin sensitivity, and fat mass after a 2-month regimen with a high-fat diet (45% kcal fat). In contrast, high-fat diet induced wild-type mice with 170-214% more fat mass than transgenic mice and developed impaired glucose tolerance and insulin resistance. Insulin signaling, measured by Akt phosphorylation, was significantly elevated by 144% in transgenic mice over wild-type mice fed a high-fat diet. Interestingly, high-fat diet significantly increased adiponectin secretion while blood insulin, resistin, and leptin levels remained normal in the transgenic mice. The results suggest that disruption of myostatin function by its propeptide favours dietary fat utilization for muscle growth and maintenance. An increased secretion of adiponectin may promote energy partition toward skeletal muscles, suggesting that a beneficial interaction between muscle and adipose tissue play a role in preventing obesity and insulin resistance.  相似文献   

3.
Myostatin deficiency causes dramatically increased skeletal muscle mass and reduced fat mass. Previously, myostatin-deficient mice were reported to have unexpectedly low total energy expenditure (EE) after normalizing to body mass, and thus, a metabolic cause for low fat mass was discounted. To clarify how myostatin deficiency affects the control of body fat mass and energy balance, we compared rates of oxygen consumption, body composition, and food intake in young myostatin-deficient mice relative to wild-type (WT) and heterozygous (HET) controls. We report that after adjusting for total body mass using regression analysis, young myostatin-deficient mice display significantly increased EE relative to both WT (+0.81 ± 0.28 kcal/day, P = 0.004) and HET controls (+0.92 ± 0.31 kcal/day, P = 0.005). Since food intake was not different between groups, increased EE likely accounts for the reduced body fat mass (KO: 8.8 ± 1.1% vs. WT: 14.5 ± 1.3%, P = 0.003) and circulating leptin levels (KO: 0.7 ± 0.2 ng/ml vs. WT: 1.9 ± 0.3 ng/ml, P = 0.008). Interestingly, the observed increase in adjusted EE in myostatin-deficient mice occurred despite dramatically reduced ambulatory activity levels (-50% vs. WT, P < 0.05). The absence of hyperphagia together with increased EE in myostatin-deficient mice suggests that increased leptin sensitivity may contribute to their lean phenotype. Indeed, leptin-induced anorexia (KO: -17 ± 1.2% vs. WT: -5 ± 0.3%) and weight loss (KO: -2.2 ± 0.2 g vs. WT: -1.6 ± 0.1, P < 0.05) were increased in myostatin-deficient mice compared with WT controls. We conclude that increased EE, together with increased leptin sensitivity, contributes to low fat mass in mice lacking myostatin.  相似文献   

4.
Myostatin, a member of the transforming growth factor (TGF)-β superfamily, plays a potent inhibitory role in regulating skeletal muscle mass. Inhibition of myostatin by gene disruption, transgenic (Tg) expression of myostatin propeptide, or injection of propeptide or myostatin antibodies causes a widespread increase in skeletal muscle mass. Several peptides, in addition to myostatin propeptide and myostatin antibodies, can bind directly to and neutralize the activity of myostatin. These include follistatin and follistatin-related gene. Overexpression of follistatin or follistatin-related gene in mice increased the muscle mass as in myostatin knockout mice. Follistatin binds to myostatin but also binds to and inhibits other members of the TGF-β superfamily, notably activins. Therefore, follistatin regulates both myostatin and activins in vivo. We previously reported the development and characterization of several follistatin-derived peptides, including FS I-I (Nakatani M, Takehara Y, Sugino H, Matsumoto M, Hashimoto O, Hasegawa Y, Murakami T, Uezumi A, Takeda S, Noji S, Sunada Y, Tsuchida K. FASEB J 22: 477-487, 2008). FS I-I retained myostatin-inhibitory activity without affecting the bioactivity of activins. Here, we found that inhibition of myostatin increases skeletal muscle mass and decreases fat accumulation in FS I-I Tg mice. FS I-I Tg mice also showed decreased fat accumulation even on a control diet. Interestingly, the adipocytes in FS I-I Tg mice were much smaller than those of wild-type mice. Furthermore, FS I-I Tg mice were resistant to high-fat diet-induced obesity and hepatic steatosis and had lower hepatic fatty acid levels and altered fatty acid composition compared with control mice. FS I-I Tg mice have improved glucose tolerance when placed on a high-fat diet. These data indicate that inhibiting myostatin with a follistatin-derived peptide provides a novel therapeutic option to decrease adipocyte size, prevent obesity and hepatic steatosis, and improve glucose tolerance.  相似文献   

5.
Muscle tissue utilizes a large portion of metabolic energy for its growth and maintenance. Previously, we demonstrated that transgenic over-expression of myostatin propeptide in mice fed a high-fat diet enhanced muscle mass and circulating adiponectin while the wild-type mice developed obesity and insulin resistance. To understand the effects of enhanced muscle growth on adipose tissue metabolism, we analyzed adiponectin, PPAR-α, and PPAR-γ mRNA expressions in several fat tissues. Results indicated muscled transgenic mice fed a high-fat diet displayed increased epididymal adiponectin mRNA expression by 12 times over wild-type littermates. These transgenic mice fed either a high or normal fat diet also displayed significantly high levels of PPAR-α and PPAR-γ expressions above their wild-type littermates in epididymal fat while their expressions in mesenteric fats were not significantly different between transgenic mice and their littermates. This study demonstrates that enhanced muscle growth has positive effects on fat metabolisms through increasing adiponectin expression and its regulations.  相似文献   

6.
In order to study the effects of diet on fat distribution, circulating leptin levels and ob mRNA expression, diets of different macronutrient composition were fed to lean mice and gold thioglucose-obese mice. A high-fat diet and 2 high-carbohydrate diets, one containing mostly high-glycaemic-index starch and the other containing low-glycaemic-index starch were fed ad libitum for 10 weeks and were compared to standard laboratory chow. Weight gain was attenuated by feeding low-glycaemic-index starch in all mice and by feeding a high-fat diet in lean mice. Reduced adiposity was seen in lean mice fed low-glycaemic-index starch, whereas increased adiposity was seen in both lean and obese mice fed on the high-fat diet. Circulating leptin levels, when corrected for adiposity, were decreased in all mice fed either the high-fat diet or the low-GI diet. In epididymal fat pads, decreased ob mRNA expression was seen after both high-fat and high-glycaemic-index starch feeding. These results show that diet macronutrient composition contributes to the variability of circulating leptin levels by the combined effects of diet on fat distribution and on site-specific changes in ob mRNA expression.  相似文献   

7.
Retrospective and prospective studies show that lean mass or strength is positively associated with metabolic health. Mice deficient in myostatin, a growth factor that negatively regulates skeletal muscle mass, have increased muscle and body weights and are resistant to diet-induced obesity. Their leanness is often attributed to higher energy expenditure in the face of normal food intake. However, even obese animals have an increase in energy expenditure compared to normal weight animals suggesting this is an incomplete explanation. We have previously developed a computational model to estimate energy output, fat oxidation and respiratory quotient from food intake and body composition measurements to more accurately account for changes in body composition in rodents over time. Here we use this approach to understand the dynamic changes in energy output, intake, fat oxidation and respiratory quotient in muscular mice carrying a dominant negative activin receptor IIB expressed specifically in muscle. We found that muscular mice had higher food intake and higher energy output when fed either chow or a high-fat diet for 15 weeks compared to WT mice. Transgenic mice also matched their rate of fat oxidation to the rate of fat consumed better than WT mice. Surprisingly, when given a choice between high-fat diet and Ensure® drink, transgenic mice consumed relatively more calories from Ensure® than from the high-fat diet despite similar caloric intake to WT mice. When switching back and forth between diets, transgenic mice adjusted their intake more rapidly than WT to restore normal caloric intake. Our results show that mice with myostatin inhibition in muscle are better at adjusting energy intake and output on diets of different macronutrient composition than WT mice to maintain energy balance and resist weight gain.  相似文献   

8.
A strong relationship exists between increased inflammatory cytokines and muscle insulin resistance in obesity. This study focused on identifying a relationship between metabolic propensity and myostatin expression in muscle and spleen cells in response to high-fat diet intake. Using a comparative approach, we analyzed the effects of high-fat diet intake on myostatin and follistatin expression, spleen cell composition, and potential cytokine expression in high-fat diet induced obesity (HFDIO) resistant (SWR/J) and susceptible (C57BL/6) mice models. Results demonstrated overall increased myostatin expression in muscle following high-fat diet intake in HFDIO-susceptible mice, while myostatin expression levels decreased initially in muscle from high-fat diet fed resistant mice. In HFDIO-resistant mice, myostatin expression decreased in spleen, while myostatin increased in spleen tissue from HFDIO-susceptible mice. Proinflammatory cytokine (IL-17, IL-1β, and IFNγ) potential increased in splenocytes from HFDIO-susceptible mice. In comparison, C57BL/6 mice fed a high-fat diet exhibited higher frequencies of CD4+/CD44hi and CD8+/CD44hi cells in the spleen compared to control fed mice. Together, these results suggest that susceptibility to high-fat diet induced obesity could be influenced by local myostatin activity in a tissue-specific manner and that splenocytes exhibit differential cytokine production in a strain-dependent manner. This study sets the stage for future investigations into the interactions between growth, inflammation, and metabolism.  相似文献   

9.
Excess energy intake correlates with the development of metabolic disorders. However, different energy-dense foods have different effects on metabolism. To compare the effects of a high-fat diet, a high-fructose diet and a combination high-fat/high-fructose diet on glucose and lipid metabolism, male C57BL/6 mice were fed with one of four different diets for 3 months: standard chow; standard diet and access to fructose water; a high fat diet; and a high fat diet with fructose water. After 3 months of feeding, the high-fat and the combined high-fat/high-fructose groups showed significantly increased body weights, accompanied by hyperglycemia and insulin resistance; however, the high-fructose group was not different from the control group. All three energy-dense groups showed significantly higher visceral fat weights, total cholesterol concentrations, and low-density lipoprotein cholesterol concentrations compared with the control group. Assays of basal metabolism showed that the respiratory quotient of the high-fat, the high-fructose, and the high-fat/high-fructose groups decreased compared with the control group. The present study confirmed the deleterious effect of high energy diets on body weight and metabolism, but suggested that the energy efficiency of the high-fructose diet was much lower than that of the high-fat diet. In addition, fructose supplementation did not worsen the detrimental effects of high-fat feeding alone on metabolism in C57BL/6 mice.  相似文献   

10.
Keipert S  Voigt A  Klaus S 《Aging cell》2011,10(1):122-136
Little is known about how diet and energy metabolism interact in determination of lifespan under ad libitum feeding. From 12 weeks of age until death, male and female wild-type (WT) and transgenic (TG) mice with increased skeletal muscle mitochondrial uncoupling (HSA-mUCP1 mice) were fed one of three different semisynthetic diets differing in macronutrient ratio: control (high-carbohydrate/low-fat-HCLF) and two high-fat diets: high-carbohydrate/high-fat (HCHF), and low-carbohydrate/high-fat (LCHF). Compared to control and LCHF, HCHF feeding rapidly and significantly increased body fat content in WT. Median lifespan of WT was decreased by 33% (HCHF) and 7% (LCHF) compared to HCLF. HCHF significantly increased insulin resistance (HOMA) of WT from 24 weeks on compared to control. TG mice had lower lean body mass and increased energy expenditure, insulin sensitivity, and maximum lifespan (+10%) compared to WT. They showed a delayed development of obesity on HCHF but reached similar maximum adiposity as WT. TG median lifespan was only slightly reduced by HCHF (-7%) and unaffected by LCHF compared to control. Correlation analyses showed that decreased longevity was more strongly linked to a high rate of fat gain than to adiposity itself. Furthermore, insulin resistance was negatively and weight-specific energy expenditure was positively correlated with longevity. We conclude that (i) dietary macronutrient ratios strongly affected obesity development, glucose homeostasis, and longevity, (ii) that skeletal muscle mitochondrial uncoupling alleviated the detrimental effects of high-fat diets, and (iii) that early imbalances in energy homeostasis leading to increased insulin resistance are predictive for a decreased lifespan.  相似文献   

11.
BACKGROUND: Myostatin negatively regulates skeletal muscle growth. Myostatin knockout mice exhibit muscle hypertrophy and decreased interstitial fibrosis. We investigated whether a plasmid expressing a short hairpin interfering RNA (shRNA) against myostatin and transduced using electroporation would increase local skeletal muscle mass. METHODS: Short interfering RNAs (siRNAs) targeting myostatin were co-transfected with a myostatin-expressing plasmid into HEK293 cells and identified for myostatin silencing by Western blot. Corresponding shRNAs were cloned into plasmid shRNA expression vectors. Myostatin or a randomer negative control shRNA plasmid was injected and electroporated into the tibialis anterior or its contralateral muscle, respectively, of nine rats that were sacrificed after 2 weeks. Six other rats received a beta-galactosidase reporter plasmid and were sacrificed at 1, 2, and 4 weeks. Uptake of plasmid was examined by beta-galactosidase expression, whereas myostatin expression was determined by real-time polymerase chain reaction (PCR) and Western blotting. Muscle fiber size was determined by histochemistry. Satellite cell proliferation was determined by PAX7 immunohistochemistry. Myosin heavy chain type II (MHCII) expression was determined by Western blot. RESULTS: beta-Galactosidase reporter plasmid was expressed at 1 and 2 weeks but diminished by 4 weeks in tibialis anterior skeletal muscle. Myostatin shRNA reduced myostatin mRNA and protein expression by 27 and 48%, respectively. Tibialis anterior weight, fiber size, and MHCII increased by 10, 34, and 38%, respectively. Satellite cell number was increased by over 2-fold. CONCLUSIONS: This is the first demonstration that myostatin shRNA gene transfer is a potential strategy to increase muscle mass.  相似文献   

12.
Beta2-integrins are important in leukocyte trafficking and function, and are regulated through the binding of cytoplasmic proteins, such as kindlin-3, to their intracellular domain. Here, we investigate the involvement of beta2-integrins in the regulation of metabolic disease using mice where the kindlin-3 binding site in the beta2-integrin cytoplasmic tail has been mutated (TTT/AAA-beta2-integrin knock-in (KI) mice), leading to expressed but dysfunctional beta2-integrins and significant neutrophilia in vivo. Beta2-integrin KI mice fed on a high fat diet showed normal weight gain, and normal accumulation of macrophages and lymphocytes in white adipose tissue (WAT) and liver, but increased neutrophil numbers especially in WAT. In addition, beta2-integrin KI mice fed on a high fat diet showed significantly increased peripheral insulin resistance in response to high-fat feeding. However, this was associated with improved glucose disposal following glucose load. Interestingly, beta2-integrin KI neutrophils produced more elastase in vitro, in response to stimulation. Beta2-integrin KI mice displayed variability of tissue inflammatory status, with liver and WAT exhibiting little or no difference in inflammation compared to high fat fed controls, whereas skeletal muscle demonstrated a raised inflammatory profile in association with higher elastase levels and diminished signalling through the IRS1-PKB pathway. In conclusion, although expression of dysfunctional beta2-integrins increased neutrophil production and infiltration into tissue, skeletal muscle was the most affected tissue exhibiting evidence of higher neutrophil activity and insulin resistance. Thus, beta2-integrins modulate glucose homeostasis during high fat feeding predominantly through actions on skeletal muscle to affect metabolic phenotype in vivo.  相似文献   

13.
The SMXA-5 strain, a new mouse model for type 2 diabetes, is a recombinant inbred strain derived from non-diabetic SM/J and A/J strains. As dietary fat is a key component in the development of diabetes, we compared the glucose tolerance and diabetes-related traits among the SMXA-5, SM/J, and A/J strains while feeding a high-fat diet for 10 weeks. SMXA-5 fed on a high-fat diet showed an increased serum insulin concentration. Judging from the hyperinsulinemia in SMXA-5, this strain showed insulin resistance, an inability of peripheral tissues to respond to insulin, which was strengthened by feeding with a high-fat diet. When fed on a high-fat diet for 5 weeks, the SMXA-5 mice showed severely impaired glucose tolerance. On the other hand, SM/J showed mildly impaired glucose tolerance, even when fed on a high-fat diet for 10 weeks. These results indicate that SMXA-5 would be available for use as a diabetic model susceptible to a high-fat diet.  相似文献   

14.
In the present study, the effect of a high fat diet on the expression of proteins in insulin target tissues was analyzed using a proteomic approach. Gastrocnemius muscle, white and brown adipose tissue, and liver were taken from C57BL/6 mice either fed on a high-fat or a chow diet. Expression levels of approximately 10 000 polypeptides for all the four tissues were assessed by two-dimensional gel electrophoresis (2-DE). Computer-assisted image analysis allowed the detection of 50 significantly (p < 0.05) differentially expressed proteins between obese and lean mice. Interestingly, more than half of these proteins were detected in the brown adipose tissue. The differentially expressed proteins were identified by tandem mass spectrometry. Several stress and redox proteins were modulated in response to the high-fat diet. A key glycolytic enzyme was found to be downregulated in adipose tissues and muscle, suggesting that at elevated plasma fatty acid concentrations, fatty acids compete with glucose as an oxidative fuel source. Furthermore, in brown adipose tissue there were significant changes in mitochondrial enzymes involved in the Krebs tricarboxylic acid (TCA) cycle and in the respiratory chain in response to the high-fat diet. The brown adipose tissue is an energy-dissipating tissue. Our data suggest that the high-fat diet treated mice were increasing energy expenditure to defend against weight gain.  相似文献   

15.
Dietary-induced hypertrophic--hyperplastic obesity in mice   总被引:1,自引:0,他引:1  
Metabolically intact NMRI mice and genetically obese NZO mice were fed ad lib. either a high-carbohydrate diet (standard) or a high-fat diet for a period of about 11 (NMRI mice) or 38 (NZO mice) wk. In both strains of mice, body weight increased more in the groups fed the high-fat diet. However, caloric intake by NMRI mice fed the high-fat diet was less than that of the controls. In NMRI mice fed the high-fat diet, epididymal and subcutaneous fat cell volumes increased; when these mice were fed the standard diet, only epididymal fat cell volume increased. Epididymal and subcutaneous fat cell numbers increased only in the group fed the high-fat diet. In NMRI mice fed either diet, the postprandial blood glucose was lower in older animals, but plasma insulin remained unchanged. The glucose tolerance deteriorated insignificantly. In NZO mice fed either diet, epididymal fat cell volumes and fat cell numbers increased. In this strain of mice the postprandial blood glucose and plasma insulin exhibited the strain-specific pattern, independent of the diet. In older animals fed either diet the glucose tolerance decreased.  相似文献   

16.
We investigated the effects of non-pungent pepper powder fermented by Bacillus licheniformis SK1230 on the fat accumulation in mice. Four weeks of feeding a high-fat diet with fermented pepper powder resulted in a significantly decreased hepatic total-lipid level and increased serum HDL-cholesterol, and tended to lower the fat weight. These results suggest that fermented pepper powder inhibited fat accumulation and improved lipid metabolism in mice fed the high-fat diet.  相似文献   

17.
目的:观察二氢杨梅素(DHM)对高脂饮食诱导小鼠肥胖的影响,并探讨其作用机制是否与促进WAT棕色化有关。方法:60只c57bl/6j小鼠随机分为6组(n=10):①正常对照组(ND组):普通饲料喂养、②正常对照+低剂量DHM组(ND+L-DHM组):普通饲料喂养同时用低剂量DHM(125 mg/(kg·d))处理、③正常对照+高剂量DHM组(ND+H-DHM组):普通饲料喂养同时用高剂量DHM(250 mg/(kg·d))处理、④高脂饮食组(HFD):高脂饲料喂养、⑤高脂饮食+低剂量DHM组(HFD+L-DHM组):高脂饲料喂养同时用低剂量DHM处理、⑥高脂饮食+高剂量DHM组(HFD+H-DHM组):高脂饲料喂养同时用高剂量DHM处理。16周后小鼠空腹过夜,取血测空腹血糖和血脂,随后处死动物,测体长,算出Lee's指数;取肩胛下、腹股沟和附睾处脂肪组织称重后,甲醛固定、HE染色观察脂肪细胞大小,免疫组化检测解偶联蛋白1(UCP1)的表达;实验期间每4周测一次小鼠体重。结果:与ND组相比较,HFD组小鼠体重显著升高,提示肥胖小鼠模型复制成功。此外,HFD组小鼠体脂重量、脂肪细胞直径、Lee's指数和血糖显著增加、脂肪细胞UCP1的表达升高;使用L-DHM和H-DHM处理HFD小鼠后,体脂重量、脂肪细胞直径、Lee's指数和血糖等指标显著逆转,而脂肪细胞UCP1的表达升高更为显著;但L-DHM和H-DHM对正常小鼠上述指标无显著影响。结论:二氢杨梅素抑制高脂饮食诱导的小鼠肥胖,其机制可能与促进WAT棕色化有关。  相似文献   

18.
Constitutive myostatin gene knockout in mice causes excessive muscle growth during development. To examine the effect of knocking out the myostatin gene after muscle has matured, we generated mice in which myostatin exon 3 was flanked by loxP sequences (Mstn[f/f]) and crossed them with mice bearing a tamoxifen-inducible, ubiquitously expressed Cre recombinase transgene. At 4 mo of age, Mstn[f/f]/Cre+ mice that had not received tamoxifen had a 50-90% reduction in myostatin expression due to basal Cre activity but were not hypermuscular relative to Mstn[w/w]/Cre+ mice (homozygous for wild-type myostatin gene). Three months after tamoxifen treatment (initiated at 4 mo of age), muscle mass had not changed from the pretreatment level in Mstn[w/w]/Cre+ control mice. Tamoxifen administration to 4-mo-old Mstn[f/f]/Cre+ mice reduced myostatin mRNA expression to less than 1% of normal, which increased muscle mass approximately 25% over the following 3 mo in both male and female mice (P<0.005 vs. control). Fiber hypertrophy appeared to be sufficient to explain the increase in muscle mass. The pattern of expression of genes encoding the various myosin heavy-chain isoforms was unaffected by postdevelopmental myostatin knockout. We conclude that, even after developmental muscle growth has ceased, knockout of the myostatin gene induces a significant increase in muscle mass.  相似文献   

19.
To evaluate the hypothesis that the clock gene Bmal1 (brain and muscle arnt like protein-1) plays a role in the development of obesity, 5-week-old male Bmal1-deficient (Bmal1(-/-)) mice and wild-type littermates (Bmal1(+/+)) were kept on a high-fat diet (HFD) for 15 weeks. Despite an initial accelerated weight gain of Bmal1(-/-) mice, body weight and subcutaneous (SC) and gonadal (GON) adipose tissue mass were comparable to Bmal1(+/+) mice at the end of the diet period. Noninvasive magnetic resonance imaging scanning revealed a modest increase in fat content in Bmal1(-/-) mice after 10 weeks of HFD, whereas at the start and the end of the HFD feeding no differences were observed between both genotypes. After 15 weeks of HFD, adipocyte and blood vessel size and density were similar for Bmal1(+/+) and Bmal1(-/-) mice. However, the weight of major organs was significantly reduced in Bmal1(-/-) mice, confirming the premature ageing phenotype. Thus, we hypothesize that an initial accelerated increase in body weight and fat mass of Bmal1(-/-) mice on HFD may have been offset by the effect of premature ageing on organ weight, resulting in comparable weights after 15 weeks of HFD.  相似文献   

20.
目的:通过研究高脂饮食和有氧运动对胰岛素抵抗(IR)小鼠骨骼肌雷帕霉素靶蛋白/核糖体S6激酶1(mTOR/S6K1)通路的影响,试图为运动防治IR提供理论依据。方法:8周C57BL/6小鼠随机分为正常饮食组和高脂饮食组,每组各20只,高脂饮食组喂养8周后建立IR模型。随后将正常饮食组再次随机分为正常饮食安静组(NC)和正常饮食运动组(NE);高脂饮食组也随机分为高脂饮食安静组(HC)和高脂饮食运动组(HE)。各运动组进行为期6周、75%VO2max强度跑台训练,每天1次,每次60min,每周5次。实验结束后采用OGTT检测葡萄糖耐量,组织学检测胰岛形态变化,ELISA法检测血清空腹胰岛素水平,Northern blot、Western blot检测骨骼肌中mTOR和S6K1 mRNA和蛋白及其磷酸化蛋白pS6K1-Thr389的表达。结果:与NC组相比,HC组小鼠体重、空腹血清胰岛素值和胰岛β细胞团面积百分比均呈显著增加,且OGTT曲线显示糖耐量明显受损,然而6周有氧运动后以上各指标呈显著性降低,葡萄糖耐量也得到明显改善;且骨骼肌中mTOR、S6K1、pS6K1-Thr389 mRNA和蛋白表达均明显降低。结论:mTOR/S6K1信号通路与高脂饮食诱导IR的发生密切相关,有氧运动明显增加了机体组织对胰岛素的敏感性,推测有氧运动可能通过抑制mTOR/S6K1信号通路,增加IR小鼠骨骼肌的能量代谢从而改善IR。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号