首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Questions: Exotic plant invasion may be aided by facilitation and broad tolerance of environmental conditions, yet these processes are poorly understood in species‐rich ecosystems such as riparian zones. In the southwestern United States (US) two plant species have invaded riparian zones: tamarisk (Tamarix ramosissima, T. chinensis, and their hybrids) and Russian olive (Elaeagnus angustifolia). We addressed the following questions: (1) is Russian olive able to tolerate drier and shadier conditions than cottonwood and tamarisk? (2) Can tamarisk and cottonwood facilitate Russian olive invasion? Location: Arid riparian zones, southwestern US. Methods: We analyzed riparian tree seedling requirements in a controlled experiment, performed empirical field studies, and analyzed stable oxygen isotopes to determine the water sources used by Russian olive. Results: Russian olive survival was significantly higher in dense shade and low moisture conditions than tamarisk and cottonwood. Field observations indicated Russian olive established where flooding cannot occur, and under dense canopies of tamarisk, cottonwood, and Russian olive. Tamarisk and native riparian plant species seedlings cannot establish in these dry, shaded habitats. Russian olive can rely on upper soil water until 15 years of age, before utilizing groundwater. Conclusions: We demonstrate that even though there is little evidence of facilitation by cottonwood and tamarisk, Russian olive is able to tolerate dense shade and low moisture conditions better than tamarisk and cottonwood. There is great potential for continued spread of Russian olive throughout the southwestern US because large areas of suitable habitat exist that are not yet inhabited by this species.  相似文献   

2.
Questions: How does recreational disturbance (human trampling) affect soil characteristics, the performance of the understorey vegetation, and the density and species composition of the soil seed bank in Fagus sylvatica forests? Location: Suburban forests near Basel, northwestern Switzerland. Methods: We compared various soil characteristics and the performance of the understorey vegetation in six beech forest areas frequently disturbed by recreational activities with those in six undisturbed control areas, in spring 2003. In the same forest areas, the soil seed bank was investigated using the seedling emergence method. Samples were obtained from soil cores in January 2003. Results: We found substantial changes in soil compaction, above‐ground vegetation and in the soil seed bank due to recreational activities. In frequently visited areas, soil compaction was enhanced which caused a decrease in cover, height and species richness of both herb and shrub layers. Compared with control areas, the number of trampling‐tolerant species of the seed bank was significantly higher in disturbed areas, and total species richness tended to be higher in disturbed than in control areas. Furthermore, the similarity in species composition between the above‐ground vegetation and seed bank was significant lower in disturbed than in control areas. Conclusions: The intensive use of suburban forests for recreational activities, mainly picnicking, affects the vegetation of natural beech forests. Our study indicates that a restoration of degraded forest areas from the soil seed bank would result in a substantial change of the vegetation composition.  相似文献   

3.
Soil seed banks can play an important role in the regeneration of wetland vegetation. However, their potential role in the restoration of degraded wetland forests is less certain. I surveyed the soil seed bank and extant floras of four sites across a eucalypt wetland forest of variable vegetation condition. At each site, the extant vegetation was surveyed within two 5 × 5 m2 quadrats, each from which five composite soil seed bank samples were collected. Across the four sites, 57 (including 18 exotic) species were identified in the extant vegetation, while from the seed bank samples 6379 seedlings emerged from 80 taxa, 33 of which were exotic species. The soil seed bank was dominated by native and exotic monocots, and contained very few seeds of wetland tree or shrub species. Overall, the similarity between the extant and seed bank floras was very low (~24 %). Soil seed banks are likely to be of limited use in the restoration of degraded wetland forests, because the dominant species in such systems—woody and clonal plants—are typically absent from the soil seed bank. Wetland soil seed banks may contribute to the maintenance and diversity of understorey vegetation, however, they may also act as a source of exotic plant invasions, particularly when a wetland is degraded.  相似文献   

4.
Seed dispersal is a key process in plant community dynamics, and soil seed banks represent seed dispersal in time rather than in space. Despite their potential importance, seed bank dynamics in the Arctic are poorly understood. We investigated soil seed banks and corresponding plant community composition in three contrasting vegetation types in West Greenland, viz. dwarf shrub heaths, herb slopes and fell‐fields. Through germination testing, 31 species were documented in soil seed banks. All of these were herbaceous, while no dwarf‐shrub species, which represents the dominating growth form in the above‐ground vegetation, were emerging from the seed bank. Consequently, across vegetation types, the lowest similarity between seed bank and above‐ground vegetation was found in dwarf shrub heath. Nine plant species were exclusively found in seed bank, all of which were non‐clonal forbs. Seed bank size (total number of seeds) and species richness seemed to increase with the level of natural disturbance. Additionally, we examined the effect of different experimental light and temperature conditions on the quantity and diversity of germinating seeds. The difference in diversity in vegetation and seed bank at the species level will impact population dynamics, regeneration of vegetation after disturbances and its potential to respond to climate change.  相似文献   

5.
Landscape-scale analyses of biological invasion are needed to understand the relative importance of environmental drivers that vary at larger scales, such as climate, propagule pressure, resource availability, and human disturbance. One poorly understood landscape-scale question is, how does human land-use influence riparian plant invasion? To evaluate the relative importance of land-use, climate, propagule pressure, and water availability in riparian invasion, we examined tamarisk (Tamarix ramosissima, T. chinensis, hybrids), Russian olive (Elaeagnus angustifolia), and Siberian elm (Ulmus pumila) occurrence, abundance, and dominance in 238 riparian sites in developed, cultivated, and undeveloped areas of four western USA river basins (281,946 km2). Temperature and propagule pressure from individuals planted nearby largely drove invasive species occurrence, whereas factors likely to affect resource availability (e.g., land-use, precipitation, streamflow intermittency) were more important to abundance and dominance, supporting the argument that species distribution models based on occurrence alone may fail to identify conditions where invasive species have the greatest impact. The role of land-use varied among taxa: urban and suburban land-use increased Siberian elm occurrence, abundance, and dominance, and urban land-use increased Russian olive occurrence, whereas suburban land-use reduced tamarisk dominance. Surprisingly, Siberian elm, which has received scant prior scientific and management attention, occurred as or more frequently than tamarisk and Russian olive (except in undeveloped areas of the Colorado River headwaters) and had higher density and dominance than tamarisk and Russian olive in developed areas. More research is needed to understand the impacts of this largely unrecognized invader on riparian ecosystem services, particularly in urban and suburban areas.  相似文献   

6.
Soil seed banks are important to many plant communities and are recognized as an important component of management plans. Understanding seed bank composition and density is especially important when communities have been invaded by exotic species and must be managed to promote desirable species. We examined germinable soil seed banks in southern California coastal sage scrub (CSS) that is heavily invaded by exotic grasses and in adjacent exotic grassland. Soils from both communities had similar seed banks, dominated by high densities of exotic grass and forb species. Up to 4,000 exotic grass seeds and at least 400 exotic forb seeds/m2 were found in most soils, regardless of aboveground vegetation type. Native forbs averaged 400 seeds/m2 in grass-dominated areas and about 800 in shrub-dominated soils. Shrub seed density was <1 and <10 seeds/m2 in grass- and shrub-dominated areas, respectively, indicating that the shrub seed bank is not persistent compared to annuals. We also compared pre- and post-burn soil seed banks from one location that burned in October 2003. Late-season burning in both grass- and CSS-dominated areas disproportionately reduced exotic grass seed densities relative to native seed densities. The similarity of the seed banks in adjacent grass and shrub communities suggests that without intervention, areas currently dominated by CSS may become more similar to grass-dominated areas in terms of aboveground vegetation. In such areas, the first growing season following a wildfire is a window of opportunity for increasing native diversity at a time when density of exotic grass seeds is low. At time of research, Robert D. Cox was graduate student.  相似文献   

7.
Abstract Invasive woody species frequently change the composition of the established vegetation and the properties of the soil under their canopies. Accordingly, invasion may well affect regenerative phases of the community, especially at the seed bank level, likely influencing community restoration. Pyracantha angustifolia (Rosaceae) is an invasive shrub in central Argentina that affects woody recruitment, particularly enhancing the recruitment of other exotic woody species. There is though no information regarding its effect on the soil seed bank within the invaded community. The present study was set up to gain further insight into the canopy effects of P. angustifolia. We aimed to assess whether the invasive shrub affects seed bank composition, richness and seed density as compared with the dominant native shrub Condalia montana (Rhamnaceae), and to relate the observed seed bank patterns with those of the established vegetation. We evaluated the composition of the germinable seed bank and the established vegetation under the canopy of 16 shrubs of P. angustifolia, 16 shrubs of C. montana, and in 16 control plots (10 m2) without shrub cover. The floristic composition of the seed bank differed among canopy treatments. However, seed bank richness did not differ significantly. There was an overall high seed density of exotic species throughout the study site, though exotic forbs showed significantly lower seed densities under the invasive shrub. Pyracantha angustifolia would not promote the incorporation of new species into the seed bank of the invaded community but rather favour the establishment of woody species that do not depend on seed banks. The absence of dominant woody species in the seed bank, the dominance of exotic forbs, and the high similarity between established exotic species and those present in the seed bank may surely affect community restoration following the main disturbances events observed in the region.  相似文献   

8.
Question: How does the relationship between the viable soil seed bank species composition and the above‐ground vegetation in northern Arizona Pinus ponderosa forests differ under varying historical land use disturbances (low, intermediate, high)? Is above‐ground vegetation correlated to the viable soil seed bank immediately following soil disturbance from restoration thinning treatments? Location: Northern Arizona, USA. Methods: Soil seed bank samples were taken along replicated transects and collected with a 5‐cm diameter bulk density hammer. Samples included a 5 ‐cm diameter O‐horizon sample (at varying depths) plus the underlying mineral soil to a depth of 5 cm. The seedling emergent method was used to quantify seed bank species composition and density. The herbaceous and shrub plant community was quantified along the same transects using the point intercept method. Results: Early‐successional or ruderal species were common in the soil seed bank at all three disturbance sites. Non‐native species, notably Verbascum thapsus, were more numerous (up to 940 seeds/m2) under high disturbance with overgrazing and logging, and less common or absent under low disturbance. Most viable seeds were found in the O‐horizon and the upper 5 cm of mineral soil; there was little correlation between species in the soil seed bank and the above‐ground vegetation. Conclusions: We recommend that restoration plans be geared toward minimizing activities, such as severe soil disturbance, that may promote the spread of non‐native invasive species, and that manual seeding be explored as an option to restore plant species diversity and abundance.  相似文献   

9.
Soil seed banks of two montane riparian areas: implications for restoration   总被引:8,自引:0,他引:8  
Understanding the role of seed banks can be important for designing restoration projects. Using the seedling emergence method, we investigated the soil seed banks of two montane, deciduous riparian forest ecosystems of southeastern Arizona. We contrasted the seed banks and extant vegetation of Ramsey Canyon, which is the site of riparian restoration activities, with that of Garden Canyon, which has been less affected by human land uses. Fewer plant species were found at Ramsey Canyon than Garden Canyon, for both the seed bank and extant vegetation, and the vegetation at Ramsey Canyon (seed bank and extant) had consistently drier wetland indicator scores. As well, vegetation patterns within sampling zones (channel margins and adjacent riparian forests) differed between canyons. At Garden Canyon channel margins, the seed bank and extant vegetation had relatively high similarity, with herbaceous wetland perennial species dominating. Extant vegetation in the floodplain riparian forest zone at Garden Canyon had a drier wetland indicator score than the seed bank, suggesting that the floodplains are storing seeds dispersed from wetter fluvial surfaces. Vegetation patterns for Ramsey Canyon channel margins were similar to those for Garden Canyon floodplains. Vegetation patterns in the Ramsey Canyon riparian forest zone were indicative of non-flooded conditions with an abundance of upland species in the soil seed bank and extant vegetation. Channel geomorphology measurements indicated that much of the riparian forest zone at Ramsey Canyon is functionally a terrace, a condition that may be a legacy of channel erosion from historic land uses. Steep, erodible channel slopes may contribute to the low seed bank germinant density at Ramsey Canyon channel margins, and narrower flood-prone area may explain the greater terrestrialization of the vegetation in both sampling zones. We recommend testing the use of donor soils from more diverse stream reaches to restore biodiversity levels at Ramsey Canyon, following restoration activities such as channel-widening. Seed banks from Garden Canyon, for example, although predominantly consisting of herbaceous perennials, would supply species with a range of moisture tolerances, life spans, and growth forms. We also recommend that restorationists take care not to harm seed banks exposed during removal of introduced species; at Ramsey Canyon, soil seed banks were equally diverse in areas with high and low cover of the introduced Vinca major (a legacy of Ramsey Canyon land use).  相似文献   

10.
Soil seed banks are the ecological memory of plant communities and might represent their regeneration potential. This study examines the soil seed bank in hardwood floodplain forests of the biosphere reserve “Valle del Ticino” (Northern Italy) to find out whether the natural forest vegetation can potentially be restored by the soil seed bank. We compared near natural forests of the phytosociological association Polygonato multiflori–Quercetum roboris with stands dominated by the nonnative tree species Robinia pseudoacacia and Prunus serotina in order to investigate whether the composition of the soil seed bank is significantly influenced by the composition of the main canopy tree species and soil properties. Soil seed bank samples were taken from 20 randomly selected plots in stands that were differentiated into four groups related to the dominant forest canopy species. The germinated plants were counted and their species determined. A total of 2,427 plants belonging to 84 species were recorded. The composition of the dominant tree species and soil parameters significantly influence the composition of the seed bank. The similarity with the standing vegetation was very low. Only 13% of the species in the soil seed bank represent the target vegetation. The low percentage of target species and the high percentage of nonnative species imply that the regeneration of near‐natural forest vegetation from the soil seed bank is not feasible. Consequently, disturbances that may activate the soil seed bank should be minimized. Thus, we recommend stopping the mechanical removal of the nonnative tree species in the Ticino Park .  相似文献   

11.
Questions: How does urbanisation influence soil mineral nitrogen stocks (nitrate and ammonium stocks) and what are the consequences of these modifications on the functional diversity of the herbaceous vegetation (vascular plants) and the seed bank? Location: Nine study sites were located on an urbanisation gradient in the city of Rennes, France. Methods: Three urbanisation levels were defined: urban areas (high grey/green ratio), suburban (medium grey/green ratio) and periurban (low grey/green ratio). For each urbanisation level, nitrates and ammonium stocks were quantified; the herbaceous vegetation was surveyed as well as the soil seed bank (using the seedling emergence method). Results: Nitrate concentration increased with urbanisation (the nitrate level in urban plots was twice the concentration in periurban ones) whereas the ammonium level was higher in periurban areas than in urban areas. In urban plots, the vegetation and the seed bank were more nitrophilous, whereas the nitrogen requirement was lower for periurban species. The relationship between the seed bank and the above‐ground vegetation was not significant. Conclusions: The higher nitrate concentration in the urban area appeared to be related to higher concentrations of atmospheric pollutants found in this area and lower ammonium levels may be related to the higher temperature in urban areas (leading to higher nitrification rates). The shift in the composition of the seed bank and vegetation appeared to be a consequence of higher nitrate stocks. The dissimilarity between the seed bank and vegetation may be caused by enhanced emergence of nitrophilous species in urban areas.  相似文献   

12.
Abstract. Exotic plants were surveyed in 208 plots within the Dungeness and Hoh river watersheds on the Olympic Peninsula, Washington, USA. Landscape patch types included uplands (clearcuts, young and mature forests) and riparian zones (cobble bars, shrub patches, riparian forests, and alder flats). Patterns of exotic plant invasions were assessed between watersheds, between riparian and upland areas, among patch types, and within clearcuts. 52 exotic plant species were encountered, accounting for 23% of the flora in each watershed. In both watersheds, exotic species richness was approximately 33% greater in riparian zones than in uplands, and mean number and cover of exotic species were > 50% greater in riparian zones than in uplands. Among landscape patch types, richness and mean number and cover of exotics was highest in young riparian patches, intermediate in clearcuts and riparian forests, and lowest in young and mature forests. The exception to this was Hoh alder flats, which had the highest mean cover of exotic plants. Cover of exotic plants peaked in uplands 3 to 7 yr after clearcutting, then decreased with increased canopy closure. Disturbance type and time since disturbance were major factors influencing invasibility. Landscape patch size, position within watershed (distance from patch to human population centers, major highway, or river mouth), and environmental variables (slope, aspect, and elevation) were not important indicators of landscape patch invasibility. Riparian zones facilitated movement of exotic plants through landscapes, but did not appear to act as sources of exotic plants for undisturbed upland areas.  相似文献   

13.
采用种子萌发法,研究了河水漫溢对塔里木河下游荒漠河岸林地表植被与土壤种子库的影响.结果表明:塔里木河下游漫溢区地表植被分属8科13属14种,非漫溢区为10科21属26种植物;与非漫溢区相比,漫溢区地表植被中出现了一些浅根系和喜湿的草本植物;漫溢区单位面积物种数、植被盖度、植株密度、物种多样性指数和丰富度指数均比非漫溢区有明显增加.漫溢区土壤种子库中有物种19种,比非漫溢区增加了5种;漫溢区土壤种子库总密度比非漫溢区增加了3.94倍;与非漫溢区相比,漫溢区1年生草本植物种子的比例增加了23.07%,而灌木植物种子比例减少了20.99%;多年生草本的变化则不明显;河水漫溢提高了土壤种子库的生物多样性.漫溢区和非漫溢区土壤种子库与地表植被的共有物种分别为18和9种,土壤种子库与地表植被的相似性系数分别为0.842和 0.667.  相似文献   

14.
The ability of plant communities to recover after non-native species invasion will depend upon the nature of their soil seed bank and seed rain characteristics. This study assessed changes in the soil seed bank and seed rain associated with the invasion of the non-native shrub Cytisus scoparius in subalpine vegetation. Soil seed bank and seed rain composition, density and richness were investigated at three areas of different stages of invasion: (i) recent (8–10 years), (ii) mature (15–16 years) and (iii) long-term (25 years). There were few changes in seed bank composition or richness regardless of invasion stage. By contrast, the seed rain composition, richness and density was substantially different within long-invaded areas. Very few seeds were able to colonise the dense barrier characteristic of larger, more mature C. scoparius stands. Some prominent herbs from the native vegetation were under-represented or absent from the seed bank, both in invaded and uninvaded areas. Laboratory germination experiments demonstrated that most native species germinate easily, which may imply a transient seed bank, rather than a persistent one. The majority of herbaceous and shrub species were capable of resprouting vegetatively. Therefore, regeneration appeared more reliant on the bud and tuber bank than a persistent soil seed bank. The dominance of graminoid species and C. scoparius rather than other herbaceous, shrub or tree species suggests that the regenerating vegetation will be dominated by grass species and/or C. scoparius. Hence, in areas where long-invaded C.␣scoparius stands are present the recovery of native subalpine vegetation maybe difficult. Recovery may only be possible through wind dispersal from the surrounding intact vegetation or through actively reseeding the area. This study highlights the importance of early intervention in invasive species management.  相似文献   

15.
土壤种子库作为地上植被遗传信息库,对植被自然演替更新以及生态修复建设具有重要作用。为探明桂北喀斯特石漠化地区植被自然恢复潜力和恢复策略,该文选取恭城瑶族自治县喀斯特石漠化地区3种典型植物群落为研究对象,分析不同群落的土壤种子库结构、多样性及其对土壤养分特征的响应,以期为该地区石漠化治理和植被恢复提供理论依据。结果表明:(1)共计监测到幼苗3 648株,隶属于33科51属55种,其中1年生和2年生草本幼苗共20种,多年生草本幼苗21种,藤本幼苗5种、灌木幼苗3种、乔木幼苗6种;不同植物群落土壤种子库平均密度为三华李经济林(22 493 grain·m-2)>青冈次生林(1 033 grain·m-2)>金竹灌丛(793 grain·m-2)。(2)土壤种子库植物生活型方面,三华李经济林主要分布1年生恶性杂草,青冈次生林和金竹灌丛则以多年生草本为主,木本植物占比较少;不同植被类型中土壤种子库物种多样性和相似性总体较低,同时与地上群落物种组成的相似性也较低。(3)研究区域的土壤元素存在高氮低磷的现象,其中磷元素为金...  相似文献   

16.
Riparian areas and their plant communities are threatened due to human exploitation and habitat loss. Conservation of riparian vegetation requires knowledge on limiting factors in the biology of species preventing its spread along suitable areas. It needs to be assessed if an endangered species is trapped in an extinction vortex or whether it can recover from its current bottleneck situation by management measurements. We investigate the recovery potential of an endangered riparian shrub species of European rivers, the German tamarisk, Myricaria germanica, by combining field and lab experiments on seed production, germination and wind dispersal with a modelling approach on species distribution. While the seed potential is high, wind-mediated dispersal is average, with a majority of seeds falling next to the mother shrub. The modelled dispersal kernel shows highest goodness-of-fit with a polynomic function. Including this kernel in a model on the future distribution of the species based on identification of suitable habitat, limited spread to new areas in Switzerland after 20 and 50 dispersal events is predicted. Given the current limited distribution of the German tamarisk in Switzerland, conservation efforts are required to allow for the formation of new riparian habitat. Additionally, connectivity along river networks has to be enhanced to help the species to escape the extinction vortex it is trapped in.  相似文献   

17.
Questions: How does disturbance and successional age influence richness, size and composition of the soil seed bank? What is the potential contribution of the soil seed bank to the plant community composition on sites differing in their successional age or disturbance intensity? Location: Experimental Botanical Garden of Göttingen University, central Germany. Methods: Above‐ground vegetation and soil seed bank were studied on formerly arable fields in a 36‐year‐old permanent plot study with five disturbance intensities, ranging from yearly ploughing via mowing to long‐term uninterrupted succession. We compared species compositions, seed densities and functional features of the seed bank and above‐ground vegetation by using several methods in parallel. Results: The seed bank was mainly composed of early successional species typical of strongly disturbed habitats. The difference between seed bank composition and above‐ground vegetation decreased with increasing disturbance intensity. The species of greatest quantitative importance in the seed bank was the non‐native forb Solidago canadensis. Conclusions: The ability of a plant community to regenerate from the soil seed bank dramatically decreases with increasing time since abandonment (successional age) and with decreasing disturbance intensity. The present study underlines that plant species typical of grasslands and woodlands are limited by dispersal capacity, owing to low capacity for accumulation of seeds in the soil and the fact that most species do not build up persistent seed banks. Rare and target species were almost absent from the seed bank and will, after local elimination, depend on reintroduction for continuation of their presence.  相似文献   

18.
Stohlgren  Thomas J.  Bull  Kelly A.  Otsuki  Yuka  Villa  Cynthia A.  Lee  Michelle 《Plant Ecology》1998,138(1):113-125
In the Central Grasslands of the United States, we hypothesized that riparian zones high in soil fertility would contain more exotic plant species than upland areas of low soil fertility. Our alternate hypothesis was that riparian zones high in native plant species richness and cover would monopolize available resources and resist invasion by exotic species. We gathered nested-scale vegetation data from 40 1 m2subplots (nested in four 1000 m2 plots) in both riparian and upland sites at four study areas in Colorado, Wyoming, and South Dakota (a total of 320 1 m2 subplots and 32 1000 m2 plots). At the 1 m2 scale, mean foliar cover of native species was significantly greater (P<0.001) in riparian zones (36.3% ± 1.7%) compared to upland sites (28.7% ± 1.5%), but at this small scale there were no consistent patterns of native and exotic species richness among the four management areas. Mean exotic species cover was slightly higher in upland sites compared to riparian sites (9.0% ± 3.8% versus 8.2% ± 3.0% cover). However, mean exotic species richness and cover were greater in the riparian zones than upland sites in three of four management areas. At the 1000 m2 scale, mean exotic species richness was also significantly greater (P<0.05) in riparian zones (7.8 ± 1.0 species) compared to upland sites (4.8 ± 1.0 species) despite the heavy invasion of one upland site. For all 32 plots combined, 21% of the variance in exotic species richness was explained by positive relationships with soil % silt (t =1.7, P=0.09) and total foliar cover (t = 2.4, P=0.02). Likewise, 26% of the variance in exotic species cover (log10 cover) was explained by positive relationships with soil % silt (t =2.3, P=0.03) and total plant species richness (t = 2.5, P=0.02). At landscape scales (four 1000 m2 plots per type combined), total foliar cover was significantly and positively correlated with exotic species richness (r=0.73, P<0.05) and cover (r=0.74, P<0.05). Exotic species cover (log10 cover) was positively correlated with log10% N in the soil (r=0.61, P=0.11) at landscape scales. On average, we found that 85% (±5%) of the total number of exotic species in the sampling plots of a given management area could be found in riparian zones, while only 50% (±8%) were found in upland plots. We conclude that: (1) species-rich and productive riparian zones are particularly invasible in grassland ecosystems; and (2) riparian zones may act as havens, corridors, and sources of exotic plant invasions for upland sites and pose a significant challenge to land managers and conservation biologists.  相似文献   

19.
Riparian ecosystems have unique biodiversity, are highly sensitive to disturbance and anthropogenic influence. As world water resources become scarcer, scientists predict greater competition among species for water resources. Indeed, increased encroachment of upland plants into the riparian zone is already occurring, irreversibly changing riparian plant communities. Since semi-arid regions such as Mediterranean-type ecosystems are likely to follow this same trajectory, assessing the contributions of riparian versus upland (sclerophyllous) plants to community composition is important. A survey of seventy 2 km-long riparian transects on the Sado and Guadiana watersheds in southern Portugal assessed (1) the woody riparian plant community composition, (2) how much richness is due to strictly riparian plants versus sclerophyllous upland plants, and (3) which combinations of biotic and abiotic factors allow higher species richness in the strictly riparian, sclerophyllous, and overall plant communities. The survey detected 53 different woody plant species (28 endemic) across all communities. Riparian community richness was on average 16 species, seven of which were strictly riparian and the remainder being sclerophyllous, exotic species or fruit trees. Sclerophyllous plant species occurred consistently across sampling units (90% of transects). On average, 46% of the total woody plant community richness was due to strictly riparian plants and 28% was due to sclerophyllous plants. Community richness was positively affected by the area of shrubs in the riparian zone and by the absence of human activities and goats. Surrounding landscape pattern only affected the strictly riparian plant richness. These results suggest that natural and human-mediated disturbances in riparian ecosystems create gaps and clearings for which riparian and sclerophyllous plants compete. Establishment success seems to be related to the propagule pressure of the neighbouring landscape, its diversity and density, as well as the presence of herbivores. Preserving strictly riparian plants, removing exotic species, preventing grazing, and promoting riparian values (recreation, aesthetics and the provision of ecosystem services) will aid the future conservation of the unique biodiversity of riparian ecosystems.  相似文献   

20.
Abstract. This is the first quantitative study of seed bank characteristics in North American alvar habitats. We assessed seed bank density, species richness, and species composition in 75 plots distributed among five alvar sites in Bruce Peninsula National Park, Ontario, Canada, each of which displayed areas of high and low vegetation cover within the alvar and a fully forested perimeter area. Forested habitats immediately adjacent to alvar patches contained minimal seed banks for species restricted to the alvar patches. Open alvars contained less than 1% seeds from woody forest species. This suggests that forest is not invading adjacent alvar habitat via seeds and that adjacent forest does not contain a reservoir of alvar seeds. When compared to areas on the alvar with high vascular plant cover, areas with low cover contained a slightly smaller viable seed bank, but seed banks from high and low vegetation cover plots had similar species composition and species richness. High vegetation cover plots had slightly higher mean and maximum soil depths compared with low cover plots, but no differences in other physical and chemical parameters. Thus, spatial heterogeneity in plant cover is associated only weakly with heterogeneity in below‐ground factors. Despite the availability of seed and soil resources, vegetation dynamics are constrained in areas with low plant cover, and thus alvar community development seems to respond non‐linearly to resource availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号