首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 308 毫秒
1.
Somatostatin (SST) inhibits the secretion of many peptide hormones including growth hormone (GH). The various functions of SST are mediated through at least five different receptor subtypes (SSTR1-5), their precise physiological roles have not been solved yet. Here we report on studies concerning the functional role of SSTR1 in the modulation of GH release from somatotrophs. Primary cell cultures from pituitaries of wild-type SSTR1 mice exposed to the SSTR1 selective somatostatin analog CH-275 show reduction of basal levels of GH secretion whereas somatotrophs isolated from SSTR1 null mutant mice did not respond to the agonist-mediated effect. This suggests that SSTR1 is involved in modulating basal GH levels in primary pituitary cell cultures and, together with SSTR2, may control the secretion of GH in the body.  相似文献   

2.
Somatostatins are a diverse family of peptide hormones that regulate various aspects of growth, development, and metabolism through interactions with numerous somatostatin receptor subtypes (SSTRs) on target tissues. In this study, we used rainbow trout to evaluate the effects of growth hormone (GH), insulin (INS), and insulin-like growth factor-I (IGF-I) on the expression of SSTR 1A, 1B and 2 mRNAs. GH regulated the expression of SSTRs in a subtype- and tissue-specific manner. GH reduced SSTR 1A, 1B, and 2 expression in optic tectum, reduced SSTR 1A and 1B expression in pancreas, reduced SSTR 1A expression in liver, and increased hepatic SSTR 1B expression. INS also regulated SSTR expression in a subtype- and tissue-specific manner. INS reduced SSTR 1B expression in optic tectum, increased SSTR 2 expression in pancreas, and increased SSTR 1B and 2 expression in liver. IGF-I generally decreased the expression of all SSTRs. These data indicate that GH, INS, and IGF-I modulate the expression of SSTRs and suggest that independent mechanisms may serve to regulate the various receptor subtypes.  相似文献   

3.
Human somatostatin receptor subtypes (SSTR1-5) bind their natural ligands SRIF-14 and SRIF-28 with high affinity. By contrast, short synthetic SRIF analogues such as SMS 201-995, a peptide agonist used for the treatment of various endocrine and malignant disorders, display sub-nanomolar affinity only for the receptor subtype SSTR2. To understand the molecular nature of selective peptide agonist binding to somatostatin receptors we have now, by site-directed mutagenesis, identified amino acids mediating SMS 201-995 specificity for SSTR2. Sequentially, amino acids in SSTR1, a receptor subtype exhibiting low affinity for SMS 201-995, were exchanged for the corresponding SSTR2 residues. After three consecutive steps, in which eight amino acids were exchanged, a SSTR1 mutant receptor with high affinity for SMS 201-995 was obtained. Receptor mutants with different combinations of these eight amino acids were then constructed. A single Ser305 to Phe mutation in TM VII increased the affinity of SSTR1 for SMS 201-995 nearly 100-fold. When this mutation was combined with an exchange of Gln291 to Asn in TM VI, almost full susceptibility to SMS 201-995 was obtained. Thus, it is concluded that the specificity of SMS 201-995 for SSTR2 is mainly defined by these two amino acids in transmembrane domains VI and VII. Using the conjugate gradient method we have, by analogy to the well established structure of bacteriorhodopsin, built a model for SRIF receptor-ligand interactions that explains the importance of Gln291 and Ser305 for the selectivity of agonists.  相似文献   

4.
Somatostatin is well known as an inhibitor of growth hormone release from the anterior pituitary. Its effects are exerted via 5 subtypes of receptors, which are named SSTR1 through 5. We recently reported that intracerebroventricular (ICV) injection of somatostatin stimulates feeding behavior in chicks. However, the specific receptors which mediate this orexigenic effect have not been identified in chicks. Thus, the purpose of the present study was to identify the receptor subtypes involved in somatostatin-induced feeding using 5 somatostatin analogs. Chicks that received vapreotide and octreotide (less than 3 nmol), which are agonist of SSTR2 and SSTR5, increased their food intake. Additionally, chicks ICV injected with BIM23056 or L-817,818 (SSTR3 and SSTR5 agonists, respectively) also had increased food intake. However, ICV injection of the SSTR4 agonist L-803,087 did not cause an orexigenic effect, suggesting that SSTR4 might not be important in somatostatin-induced feeding behavior. In summary, results from this study may be interpreted as SSTR2, SSTR3 and SSTR5 are related to somatostatin-associated feeding behavior in chicks.  相似文献   

5.
6.
The secretion of growth hormone (GH) is inhibited by hypothalamic somatostatin (SRIF) in somatotropes through five subtypes of the somatostatin receptor (SSTR1-SSTR5). We aimed to characterize the subtype(s) of SSTRs involved in the Ca2+ current reduction in GH3 somatotrope cells using specific SSTR subtype agonists. We used nystatin-perforated patch clamp to record voltage-gated Ca2+ currents, using a holding potential of -80 mV in the presence of K+ and Na+ channel blockers. We first established the presence of T-, L-, N-, and P/Q-type Ca2+ currents in GH3 cells using a variety of channel blockers (Ni+, nifedipine, omega-conotoxin GVIA, and omega-agatoxin IVA). SRIF (200 nM) reduced L- and N-type but not T- or P/Q-type currents in GH3 cells. A range of concentrations of each specific SSTR agonist was tested on Ca2+ currents to find the maximal effective concentration. Activation of SSTR2 with 10(-7) and 10(-8) M L-797,976 decreased the voltage-gated Ca2+ current and abolished any further decrease by SRIF. SSTR1, SSTR3, SSTR4, and SSTR5 agonists at 10(-7) M did not modify the voltage-gated Ca2+ current and did not affect the Ca2+ current response to SRIF. These results indicate that SSTR2 is involved mainly in regulating voltage-gated Ca2+ currents by SRIF, which contributes to the decrease in intracellular Ca2+ concentration and GH secretion by SRIF.  相似文献   

7.
At the present time only two long-acting somatostatin (SS) analogs, octreotide and lanreotide, are commonly used in the routine therapy. Both analogs have a high affinity mainly to a somatostatin receptor subtype 2 (SSTR2). The established indications for SS analogs treatment include acromegaly, neuroendocrine tumors of the pancreas and gastrointestinal tract, and some gastro-enterologic diseases (pancreatitis, gastrointestinal bleedings, refractory diarrheas, pancreatic and intestinal fistulas). The recent investigations allow to predict the enlargement of therapeutic applications of SS analogs. It concerns pituitary tumors other than somatotropinoma, tumors of other endocrine glands like thyroid and adrenal gland, as well as some non-endocrine tumors. The progress depends on the introduction of new SS analogs with high affinity for SS receptor subtypes other than SSTR2, because some tumors present the high expression of SSTR1 (e.g. prostatic cancers) or SSTR5 (e.g. colonic cancers). Great hopes are connected with the coupling of SS analogs with the radioactive isotopes or non-radioactive cytotoxic agents to destruct the neoplastic cells highly expressing the specific subtypes of SS receptors. The pre- or postoperative in vivo imaging of SS receptors by means of the receptor scintigraphy, as well as the post-operative identification of SS receptor subtypes in the excised tumor tissues using immunohistochemistry, should play an important role in the prediction of the effects of SS analog treatment. Beside oncology, new therapeutic applications of SS analogs could be presumed among others in ophthalmology; it concerns the treatment of progressive Graves-Basedow ophtalmopathy, diabetic retinopathy, glaucoma and corneal diseases connected with corneal vascularization.  相似文献   

8.
The effects of somatostatin (SRIF) are mediated through the seven transmembrane receptor family that signals via Gi/Go. To date, five distinct SRIF receptors have been characterized and designated SSTR1-5. We have characterized the SRIF receptor that mediates the increase in [Ca(2+)](i) and insulin secretion in HIT-T15 cells (Simian virus 40-transformed Syrian hamster islets) using high affinity, subtype selective agonists for SSTR1 (L-797,591), SSTR2 (L-779,976), SSTR3 (L-796,778), SSTR4 (L-803,087), SSTR5 (L-817,818) and PRL-2903, a specific SSTR2 antagonist. In the presence of arginine vasopressin (AVP), SRIF increased [Ca(2+)](i) and insulin secretion. Treatment with the SSTR2 agonist L-779,976 resulted in similar responses to SRIF. In addition, L-779,976 increased both [Ca(2+)](i) and insulin secretion in a dose-dependent manner. Treatment with L-779,976 alone did not alter [Ca(2+)](i) or basal insulin secretion. In the presence of AVP, all other SRIF receptor agonists failed to increase [Ca(2+)](i) and insulin secretion. The effects of SRIF and L-779,976 were abolished by the SSTR2 antagonist PRL-2903. Our results suggest that the mechanism underlying SRIF-induced insulin secretion in HIT-T15 cells be mediated through the SSTR2.  相似文献   

9.
N-Substituted nipecotic and iso-nipecotic amides of beta-methylTrpLys tert-butyl ester were found to be novel, selective and potent agonists of the somatostatin subtype-2 receptor in vitro. For example iso-nipecotic amide 8a showed high hsst2 binding affinity (Ki = 0.5 nM) and good selectivity (h5/h2 = 832).  相似文献   

10.
We previously reported the cloning of two distinct somatostatin receptor (SSTR) subtypes, SSTR1 and SSTR2. Although both SSTR1 and SSTR2 bound somatostatin specifically and with high affinity, neither was coupled to adenylyl cyclase, a major cellular effector of somatostatin's actions. Here we report the cloning and functional characterization of a third member of the SSTR family. Human SSTR3 is a protein of 418 amino acids and has 45% and 46% identity with human SSTR1 and SSTR2, respectively. RNA blotting studies showed that SSTR3 mRNA could be readily detected in brain and pancreatic islets. The pharmacological properties of human SSTR3 were characterized by transiently expressing the human SSTR3 gene in COS-1 cells. Membranes from cells expressing human SSTR3 bound the somatostatin agonist [125I]CGP 23996 specifically and with high affinity, with a rank order of potency of somatostatin-28 = CGP 23996 > somatostatin-14 > SMS-201-995. Studies using cells transiently coexpressing the human dopamine D1 receptor and human SSTR3 showed that somatostatin was able to inhibit dopamine-stimulated cAMP formation in a dose-dependent manner, indicating that SSTR3 was functionally coupled to adenylyl cyclase. These results indicate that the diverse biological effects of somatostatin are mediated by a family of receptor with distinct, but overlapping, tissue distributions, unique pharmacological properties, and potentially different functions.  相似文献   

11.
With an in vitro model using enclosedintrahepatic bile duct units (IBDUs) isolated from wild-type andsomatostatin receptor (SSTR) subtype 2 knockout mice, we tested theeffects of somatostatin, secretin, and a selective SSTR2 agonist(L-779976) on fluid movement across the bile duct epithelial celllayer. By RT-PCR, four of five known subtypes of SSTRs (SSTR1,SSTR2A/2B, SSTR3, and SSTR4, but not SSTR5) were detected incholangiocytes in wild-type mice. In contrast, SSTR2A/2B werecompletely depleted in the SSTR2 knockout mice whereas SSTR1, SSTR3 andSSTR4 were expressed in these cholangiocytes. Somatostatin induced adecrease of luminal area of IBDUs isolated from wild-type mice,reflecting net fluid absorption; L-779976 also induced a comparabledecrease of luminal area. No significant decrease of luminal area byeither somatostatin or L-779976 was observed in IBDUs from SSTR2knockout mice. Secretin, a choleretic hormone, induced a significantincrease of luminal area of IBDUs of wild-type mice, reflecting netfluid secretion; somatostatin and L-779976 inhibited (P < 0.01) secretin-induced fluid secretion. The inhibitory effect ofboth somatostatin and L-779976 on secretin-induced IBDUsecretion was absent in IBDUs of SSTR2 knockout mice. Somatostatin induced an increase of intracellular cGMP and inhibitedsecretin-stimulated cAMP synthesis in cholangiocytes; depletion ofSSTR2 blocked these effects of somatostatin. These data suggest thatsomatostatin regulates ductal bile formation in mice not only byinhibition of ductal fluid secretion but also by stimulation of ductalfluid absorption via interacting with SSTR2 on cholangiocytes, aprocess involving the intracellular cAMP/cGMP second messengers.

  相似文献   

12.
Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst1−5) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-corticotropin-releasing factor (CRF) related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress.  相似文献   

13.
14.
The existence of receptor dimers has been proposed for several G protein-coupled receptors. However, the question of whether G protein-coupled receptor dimers are necessary for activating or modulating normal receptor function is unclear. We address this question with somatostatin receptors (SSTRs) of which there are five distinct subtypes. By using transfected mutant and wild type receptors, as well as endogenous receptors, we provide pharmacological, biochemical, and physical evidence, based on fluorescence resonance energy transfer analysis, that activation by ligand induces SSTR dimerization, both homo- and heterodimerization with other members of the SSTR family, and that dimerization alters the functional properties of the receptor such as ligand binding affinity and agonist-induced receptor internalization and up-regulation. Double label confocal fluorescence microscopy showed that when SSTR1 and SSTR5 subtypes were coexpressed in Chinese hamster ovary-K1 cells and treated with agonist they underwent internalization and were colocalized in cytoplasmic vesicles. SSTR5 formed heterodimers with SSTR1 but not with SSTR4 suggesting that heterodimerization is a specific process that is restricted to some but not all receptor subtype combinations. Direct protein interaction between different members of the SSTR subfamily defines a new level of molecular cross-talk between subtypes of the SSTR and possibly related receptor families.  相似文献   

15.
Somatostatin (SST) inhibits pancreatic endocrine secretion. It is generally accepted that SSTR2 and SSTR5 mediate the inhibition of glucagon and insulin release, respectively. The present study was performed to test the hypothesis that SSTR2, but not SSTR5, mediates SST-induced inhibition of insulin release in hamster beta-cells. Both hamster clonal beta-cells HIT-T15 and pancreatic islets were used to test this hypothesis. Both SST and a nonpeptide SSTR2 agonist L-779,976 (1-100 nM) inhibited insulin release from HIT-T15 and islets in a concentration-dependent manner. In contrast, nonpeptide agonists for SSTR1, 3, 4 and 5 at the highest concentration studied (1 microM) failed to inhibit insulin release. PRL-2903, a peptide SSTR2 antagonist (0.1-1 muicroM), antagonized SST-induced inhibition of insulin release in a concentration-dependent manner. Taken together, we conclude that, in hamster beta-cells, SST inhibits insulin release via SSTR2 but not SSTR5.  相似文献   

16.
The aim of the study was to examine the effect of somatostatin (SST) and its analogs on the release of chromogranin A (CgA) and alpha-subunit (alpha-SU) from clinically non-functioning pituitary adenomas incubated in vitro. Seven pituitary macroadenomas surgically removed were investigated. All of the tumors were diagnosed before surgery as non-functioning, but they expressed either gonadotropins or their subunits as detected by immunohistochemistry. Two tumors additionally expressed prolactin and growth hormone. All adenomas also expressed chromogranin A (CgA) and at least 3 of 5 subtypes of somatostatin receptors. The cells isolated from the examined tumors were exposed in vitro to either native SST-14 or the following receptor-specific SST analogs: BIM-23926 (agonist of sst1 receptor), BIM-23120 (agonist of sst2 receptor), BIM-23206 (agonist of sst5 receptor) and BIM23A387 (somatostatin/dopamine chimera). The concentration of CgA was measured by means of ELISA method and of alpha-SU was measured by an immunoradiometric method. It was found that the exposure on SST-14 resulted in the decrease of CgA and alpha-SU release from tumor cells in majority of samples, and the effect on CgA was positively correlated with the expression of sst3 and also with the sst2A/sst2B expressions ratio. The inhibitory effect of SST-14 on CgA and alpha-SU seems also to correlate negatively with the expression of sst2B. CgA inhibition also correlates positively with sst5 expression. Among the other compounds studied, only the sst2 agonist decreased the release in all the investigated samples. The remaining substances (agonists of sst1 and sst5 and SST/DA chimera) produced the divergent changes (increased or decreased release, depending on the sample). The data suggest that the inhibition of CgA (and possibly of alpha-SU) release by SST is mediated via subtypes sst2A, sst3 and sst5, whereas sst2B subtype may induce the opposite effect.  相似文献   

17.
An examination of the binding characteristics of a large number of somatostatin analogues with respect to the five known somatostatin receptor subtypes has recently resulted in the discovery of several peptides with some selectivity for types 2, 3, and 4 and little affinity for type 1 or 5 receptor. A panel of these peptides has thus far implicated type 2 receptors in the inhibition of release of pituitary growth hormone and type 4 receptors in inhibiting pancreatic insulin release. In the present article, we have examined the inhibitory effects of the same group of peptides on in vivo rat gastric acid and pancreatic amylase release and binding to rat pancreatic acinar cells. The type 2-selective ligand NC-8–12 was a potent inhibitor of gastric acid release (EC50s in the 1.5 nM region) whereas the type 4-selective ligand, DC-23–99, elicited little response. However, some involvement of type 3 receptors could not be ruled out because the type 3-selective analoueg, DC-25–20, exhibited inhibitory effects at higher dose levels (EC50 > 10 nM). Conversely, the type 4 analogue was a potent inhibitor of amylase release (EC50 1.1 nM) whereas the type 3 analogue had no significant effects at doses tested. DC-23–99 also bound with high affinity to rat acinar cells (EC50 3.8 nM), whereas DC-25-20 exhibited more than 10-fold less affinity. Thus, these two major biological functions of somatostatin appear to be controlled by different receptors and, furthermore, effects on both endocrine and exocrine pancreas appear to be type 4 receptor mediated.  相似文献   

18.
The availability of subtype-specific agonists and antagonists for somatostatin (SS) receptors (SSTRs) will be important for elucidation of the function of each receptor isoform in vivo. A SS analog, des-AA1,2,5-[D-Trp8, IAmp9]SS (CH275), has been shown previously to bind preferentially to SSTR1. In this report, we identify structural determinants in the ligand and receptor responsible for the selective binding of CH275 to SSTR1 by modifying both the ligand and the receptor. We propose that IAmp9 in CH275, like Lys9 in SS, interacts with Asp137 in the middle of the third transmembrane domain of SSTR1 to form an ion pair, while other residues unique to SSTR1 conbribute to binding selectivity of CH275 for SSTR1. Replacement of Asp137 with Asn resulted in loss of binding of radiolabeled SS and decreased potencies of both SS and CH275 to induce a change in the extracellular acidification rate measured by microphysiometry. The structural determinants for specific binding to SSTR1 were mapped in chimeric SSTR1/SSTR2 receptors. One chimera, 2beta, with the N-terminus to second transmembrane domain (TM2) from SSTR2 and the remainder of the receptor from SSTR1, had low affinity for CH275. Furthermore, when a single residue, Leu107, in TM2 of SSTR1 was replaced with Phe, the corresponding residue in SSTR2, a 20-fold decrease in affinity for CH275 with no significant change in affinity for SS was observed. A reciprocal change from Phe to Leu in the chimeric receptor 2beta resulted in a 10-fold increase in affinity for CH275. Thus, Leu107 is an important determinant for CH275 binding to SSTR1. To identify the moiety in CH275 which could interact with Leu107, a new analog des-AA1,2,5-[D-Trp8, Amp9]SS was prepared. This analog bound to both SSTR1 and SSTR2 with similar affinities; thus, subtype selectivity was lost. Collectively, these data support a binding model for CH275 in which the positively charged IAmp interacts with the negatively charged Asp137 in TM3 of SSTR1 and the isopropyl group of IAmp forms a hydrophobic interaction with Leu107 in TM2.  相似文献   

19.
Somatostatin (SST) inhibition of hormone hypersecretion from tumors is mediated by somatostatin receptors (SSTRs). SSTRs also play an important role in controlling tumor growth through specific antiproliferative actions. These receptors are well expressed in numerous normal and tumor tissues and are susceptible to regulation by a variety of factors. Estradiol, a potent trophic and mitogenic hormone in its target tissues, is known to modulate the expression of SST and its receptors. Accordingly, in the present study, we determined the effects of tamoxifen, a selective estrogen receptor (ER) modulator (SERM), and estradiol on SSTR1 and SSTR2 expression at the mRNA and protein levels in ER-positive and -negative breast cancer cells. We found that SSTR1 was upregulated by tamoxifen in a dose-dependent manner but no effect was seen with estradiol. In contrast, SSTR2 was upregulated by both tamoxifen and estradiol. Combined treatment caused suppression of SSTR1 below control levels but had no significant effect on SSTR2. Treatment with SSTR1-specific agonist was significantly more effective in suppressing cell proliferation of cells pre-treated with tamoxifen. Taking these data into consideration, we suggest that tamoxifen and estradiol exert variable effects on SSTR1 and SSTR2 mRNA and protein expression and distributional pattern of the receptors. These changes are cell subtype-specific and affect the ability of SSTR agonists to inhibit cell proliferation.  相似文献   

20.
The aim of the study was to determine the inhibitory effects of somatostatin analogues with relative specificity to somatostatin receptor subtype 2 (SSTR2) (BIM-23197), subtype 5 (SSTR5) (BIM-23268), and their combination on GH and PRL secretion in acromegalic adenomas in vitro. Three types of answer were observed: 1. In one resistant adenoma no inhibition was achieved. 2. The GH secretion in six adenomas was suppressed significantly more (p < 0.01 or p < 0.001 using Mann-Whitney U-test in concentration range of 10(-12) to 10(-8) mol/l) with SSTR2 specific analogue BIM-23197 with no additive effect of compounds combination. 3. In three adenomas the potency of BIM-23197 and BIM-23268 was almost equal and the combination of these SSTR2 and SSTR5 specific compounds had statistically significant additive effect (p < 0.05 or p < 0.01 in concentration range of 10(-12) to 10(-8) mol/l). PRL secretion of five adenomas was more suppressed with SSTR5 specific BIM-23268 (statistically significant in concentrations 10(-10) to 10(-8) mol/l). In conclusion the somatostatin analogue BIM-23268 had an additive effect on suppression of GH secretion in a subset of adenomas, where both SSTR2 and SSTR5 were involved. This effect was not observed in the majority of tumours, where the inhibitory effect seems to be mediated via SSTR2 only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号