首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we demonstrated that exonuclease I-deficient strains of Escherichia coli accumulate high-molecular-weight linear plasmid concatemers when transformed with plasmids carrying the chi sequence (5'- GCTGGTGG-3') (M. M. Zaman and T. C. Boles, J. Bacteriol. 176:5093-5100, 1994). Since high-molecular weight linear DNA is believed to be the natural substrate for RecBCD-mediated recombination during conjugation (A. J. Clark and K. B. Low, p. 155-215, in K. B. Low, ed., The Recombination of Genetic Material, 1988), we analyzed the recombination frequencies of chi+ and chi0 plasmids in sbcB strains. Here, we report that chi sites stimulate plasmid recombination frequency by 16-fold in sbcB strains. Chi-stimulated plasmid recombination is dependent on RecBCD but is independent of RecF pathway genes. The distribution of recombination products suggests that high-molecular-weight linear plasmid DNA is a substrate for RecBCD-mediated recombination. Surprisingly, our data also suggest that chi+ plasmids also recombine by the RecBCD pathway in rec+ sbcB+ cells.  相似文献   

2.
We inserted foreign DNA segments into plasmids which replicate by a rolling-circle mechanism in Escherichia coli and observed the appearance of high-molecular-weight plasmid multimers (HMW). This phenomenon, which occurs more frequently with GC-rich segments, depends on the mode of replication of the plasmid and on host homologous recombination functions. We found that (i) HMW are formed upon insertion of a foreign DNA segment into a single-stranded DNA plasmid, whereas the same DNA insert has no such effect on a theta replicon, and (ii) HMW are not present in a recA mutant strain but are found in a lexA (Ind-) mutant. Enzymatic studies allowed us to define the HMW structure as linear double-stranded tandem head-to-tail plasmid repeats. Use of heteroplasmid strains showed that HMW production by one plasmid does not affect another resident plasmid, indicating that no host functions are phenotypically inactivated. This distinguishes our system from the HMW observed with various replicons in the absence of RecBCD enzyme activity. We propose that the role of the foreign insert is to protect the DNA from RecBCD exonuclease attack.  相似文献   

3.
RecBCD has two conflicting roles in Escherichia coli. (i) As ExoV, it is a potent double-stranded (ds)DNA exonuclease that destroys linear DNA produced by restriction of foreign DNA. (ii) As a recombinase, it promotes repair of dsDNA breaks and genetic recombination in the vicinity of chi recombination hot-spots. These paradoxical roles are accommodated by chi-dependent attenuation of RecBCD exonuclease activity and concomitant conversion of the enzyme to a recombinase. To challenge the proposal that chi converts RecBCD from a destructive exonuclease to a recombinogenic helicase, we mutated the nuclease catalytic centre of RecB and tested the resulting mutants for genetic recombination and DNA repair in vivo. We predicted that, if nuclease activity inhibits recombination and helicase activity is sufficient for recombination, the mutants would be constitutive recombinases, as has been seen in recD null mutants. Conversely, if nuclease activity is required, the mutants would be recombination deficient. Our results indicate that 5' --> 3' exonuclease activity is essential for recombination by RecBCD at chi recombination hot-spots and at dsDNA ends in recD mutants. In the absence of RecB-dependent nuclease function, recombination becomes entirely dependent on the 5' --> 3' single-stranded (ss)DNA exonuclease activity of RecJ and the helicase activity of RecBC(D).  相似文献   

4.
DNA from chicken embryo nucleosome tetramers (about 760 base pairs in size) was enriched for tRNA genes by RPC-5 chromatography. The enriched DNA was hybridized with chicken embryo total tRNA and the hybridized DNA isolated utilizing a) avidinbiotin interaction, b) diazobenzyloxymethyl paper, and c) high temperature RPC-5 chromatography. The obtained single stranded DNA highly enriched for tRNA complementary sequences was hybridized with total DNA from nucleosome monomers (140--190 base pairs in size) and the excess of non hybridized monomer nucleosome DNA removed by Sepharose 4B chromatography. The hybrid molecules obtained were made fully double stranded by incubation with E. coli DNA polymerase I, DNA ligase, and exonuclease III. DNA was inserted into plasmid pBR322 by G-C joining procedure and the recombinant DNA used to transform the E. coli strain chi 1776. More than 70% of the transformants obtained hybridize to chicken embryo total tRNA.  相似文献   

5.
E D Hyman 《BioTechniques》1992,13(4):550-554
A new method for the preparation of plasmid DNA from Escherichia coli, sequential enzymatic digestion, is described. The method is based on sequential and selective enzymatic digestion of all components of E. coli except for the supercoiled plasmid DNA. The key enzymes are exonuclease I and exonuclease III that specifically hydrolyze linear chromosomal DNA and are unable to attack supercoiled plasmid DNA under controlled conditions. Isolated plasmid DNA can be sequenced and digested with restriction enzymes.  相似文献   

6.
Preparations of circular plasmid DNA in either supercoiled or nicked circular form often are contaminated with undesired linear DNA fragments arising from shearing/degradation of chromosomal DNA or linearization of plasmid DNA itself. We report a simple enzymatic method, using a combination of λ exonuclease and RecJf, for the selective removal of linear DNA from such mixtures. λ exonuclease digests one strand of linear duplex DNA in the 5′ to 3′ direction, whereas RecJf, a single-strand-specific exonuclease, digests the remaining complementary single strand into mononucleotides. This combination of exonucleases can remove linear DNA from a mixture of linear and supercoiled DNA, leaving the supercoiled form intact. Furthermore, the inability of λ exonuclease to initiate digestion at nicks or gaps enables the removal of undesired linear DNA when nicked circular DNA has been enzymatically prepared from supercoiled DNA. This method can be useful in the preparation of homogeneous circular plasmid DNA required for therapeutic applications and biophysical studies.  相似文献   

7.
R N Rao  S G Rogers 《Gene》1978,3(3):247-263
Two segments of lambda have been cloned into the multicopy plasmid pBR322. One extends from N through cII (NcII segment, from 71.3 to 81.0% on the physical map) and the other from N through P (NOP segment, from 71.3 to 86.5% on the physical map). Cells carrying these recombinant plasmids express lambda immunity (cIts) and Rex function. In addition, they decrease the efficiency of plating at 32 degrees C of lambdavir and lambdaimm434, but not that of lambdaimm21. Recombinant plasmids with lambdaNOP segments (pKC14, pKC16) differ from recombinant plasmid with labmdaNcII segment (pKC10) in two respects: (i) strains carrying pKC14 or pKC16 are killed at 42 degrees C, and (ii) these strains are thermally inducible for plasmid DNA synthesis, resulting in increase of plasmid copy number from an uninduced level of 50 to more than 130 per chromosome. It was suggested that both these differences are related to functions contained in the lambda DNA segment extending from 81.0 to 86.5%. The usefulness of plasmid pKC16 for overproduction of gene products from cloned DNA segments was demonstrated by cloning the E. coli exonuclease III gene (xth) in pKC16. Thermal induction of this xth plasmid (pSGr) results in a 125-fold increase in exonuclease III activity over that of a control strain lacking the xth gene insert. The extent of exonuclease III overproduction obtained by cloning xth gene in a lambda vector was similar to that obtained with pSGR3.  相似文献   

8.
Lactococcus lactis ME2 can transfer a 46-kb plasmid, pTR2030, which encodes abortive phage infection (Hsp) and restriction/modification (R/M) activities. pTR2030 can be detected as a monomeric plasmid in transconjugants at low copy number, but not in ME2. pTR2030-specific probes were cloned and used to determine the location of the element in ME2. No homology was observed between these pTR2030-specific probes and the CsCl-purified plasmid content of ME2. However, probes specific for pTR2030 hybridized strongly to a high-molecular-weight moiety, and not to chromosomal DNA, in total DNA isolated by a gentle lysis procedure. The absence of junction fragments indicates that pTR2030 forms high-molecular-weight multimers in lactococci. A phage-sensitive derivative of ME2, L. lactis N1, is cured of pTR2030 and no longer possesses the high-molecular-weight species. When pTR2030 was reintroduced to N1 via conjugation, an ME2-like phage-insensitive phenotype was restored. pTR2030 could remain as a detectable monomeric plasmid in the N1 transconjugants or could revert to the high-molecular-weight structure.  相似文献   

9.
When one of two infecting lambda phage types in a replication-blocked cross is chi + and DNA packaging is divorced from the RecBCD-chi interaction, complementary chi-stimulated recombinants are recovered equally in mass lysates only if the chi + parent is in excess in the infecting parental mixture. Otherwise, the chi 0 recombinant is recovered in excess. This observation implies that, along with the chi 0 chromosome, two chi + parent chromosomes are involved in the formation of each chi + recombinant. The trimolecular nature of chi +-stimulated recombination is manifest in recombination between lambda and a plasmid. When lambda recombines with a plasmid via the RecBCD pathway, the resulting chromosome has an enhanced probability of undergoing lambda x lambda recombination in the interval into which the plasmid was incorporated. These two observations support a model in which DNA is degraded by Exo V from cos, the sequence that determines the end of packaged lambda DNA and acts as point of entry for RecBCD enzyme, to chi, the DNA sequence that stimulates the RecBCD enzyme to effect recombination. The model supposes that chi acts by ejecting the RecD subunit from the RecBCD enzyme with two consequences. (1) ExoV activity is blocked leaving a highly recombinagenic, frayed duplex end near chi, and (2) as the enzyme stripped of the RecD subunit travels beyond chi it is competent to catalyze reciprocal recombination.  相似文献   

10.
W S Liao  G A Ricca  J M Taylor 《Biochemistry》1981,20(6):1646-1652
Double-stranded complementary deoxyribonucleic acid (cDNA) was synthesized from rat yolk sac alpha-fetoprotein (AFP) mRNA, inserted into the PstI site of plasmid pBR322 by an oligo(deoxyguanylic acid).oligo(deoxycytidylic acid) joining technique, and cloned in Escherichia coli chi 1776. A plasmid containing an inserted AFP double-stranded cDNA with a contiguous poly(adenylic acid) [poly(A)] segment was identified and subsequently employed in a new method for preparing AFP-specific hybridization probe. Following an initial digestion of the AFP plasmid with HindIII to create an open, recessed 3' end, lambda exonuclease III was employed to remove the DNA strand opposite the coding strand of the cDNA insert. Oligo(thymidylic acid) was then annealed to the poly(A) segment and employed as primer for E. coli DNA polymerase I to synthesize a 32P-labeled cDNA copy of the AFP coding strand. The single-stranded cDNA product was easily isolated by sedimentation through isokinetic alkaline sucrose gradients. Hybridization with this AFP-specific cDNA probe showed that the yolk sac contained a 6-fold greater concentration of AFP mRNA than that of the fetal liver. AFP mRNA was also found in the normal adult liver, but at a much lower level than in the fetal liver. The concentrations of AFP mRNA in Morris hepatomas 7777 and 8994, however, were significantly elevated to a 2- to 3-fold higher concentration that in the fetal liver.  相似文献   

11.
A V Bellini  F de Ferra  G Grandi 《Gene》1988,69(2):325-330
This paper describes a new method for site-directed mutagenesis which allows mutations by deletion, insertion or substitution of large fragments of DNA with more than 50% efficiency and does not require subcloning in a single-stranded (ss) DNA vehicle. The site of mutagenesis is removed from a linearized plasmid DNA by BAL 31 digestion, ss DNA regions are generated by limited exonuclease treatment and the mutated target site is reconstituted by annealing of the plasmid DNA to a 35-70 nucleotide long mutated ss oligodeoxynucleotide containing the desired mutation. The circularized plasmid is finally used to transform directly Escherichia coli competent cells.  相似文献   

12.
I investigated double-strand-break repair in Saccharomyces cerevisiae cells by measuring the frequencies and types of integration events at the PET56-HIS3-DED1 chromosomal region associated with the introduction of linearized plasmid DNAs containing homologous sequences. In general, the integration frequencies observed in strains containing a wild-type region, a 1-kilobase (kb) deletion, or a 5-kb insertion were similar, provided that the cleavage site in the plasmid DNA was present in the host genome. Cleavage at a plasmid DNA site corresponding to a region deleted in the chromosome caused a 10-fold reduction in the integration frequency even when the site was close to regions of homology. However, although the integration frequency was normal even when cleavage occurred only 25 base pairs (bp) outside the deletion breakpoint, 98% of the events were associated not with the usual heterogenote structure, but instead with a homogenote structure containing two copies of the deletion allele separated by vector sequences. Similarly, when cleavage occurred 80 bp outside the 5-kb substitution breakpoint, 40% of the integration events were associated with homogenote structures. From these observations, I suggest that exonuclease and polymerase activities are not rate-limiting steps in double-strand-break repair, exonuclease activity is coupled to the initiation step, the integration frequency is strongly influenced by the amount of homology near the recombinogenic ends, both ends of a linear DNA molecule might interact with the host chromosome before significant exonuclease or polymerase action, and the average repair tract is about 600 bp.  相似文献   

13.
The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp(1067) and Lys(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi-specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered.  相似文献   

14.
M V Norgard  K Keem  J J Monahan 《Gene》1978,3(4):279-292
The susceptibility of E. coli strain chi1776 to transformation by pBR322 plasmid DNA was examined and optimized. Maximum transformation to tetracycline (Tc) resistance was achieved when cells were harvested from L broth at 5.0--6.0 . 10(7) cfu/ml, followed by washing twice in cold 0.1 M NaCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6. Cells grown in the presence of D-cycloserine (Cyc) rather than nalidixic acid (Nx) transformed markedly better. The presence of 5 mM Mg2+ ions in washing and CaCl2 solutions stimulated transformation about 2-fold. Optimal conditions for transformation included a pH range of 7.25-7.75 and a cell-to-DNA ratio of about 1.6 . 10(8) cfu/ng plasmid DNA. The frequency of transformation was highest when cells were exposed to 100 mM CaCl2 in 250 mM KCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6, before mixing with DNA. A 60 min incubation period for cell + DNA mixtures held on ice produced the maximum number of Tcr transformants. In our hands, heat shocks at 37 degrees C or 42 degrees C for various times all decreased transformation to about one-half of optimal levels. Furthermore, the recovery of transformants was best when cell + DNA mixtures were plated on precooled (4 degrees C) Tc agar plates. The efficiency of plating was optimum when only 5 microliter of cell + DNA mixture was spread per plate, suggesting that non-viable background chi1776 cells on selective medium inhibited the recovery of transformants. It was also found that the presence of linear DNA molecules in cell + DNA mixtures markedly inhibited the transformation of chi1776 by pBR322 plasmid DNA. On the basis of these findings, a new procedure for the plasmid-specific transformation of E. coli chi1776 by pBR322 plasmid DNA is proposed. The use of this technique has allowed us to attain transformation frequencies in excess of 10(7) transformants/microgram pBR322 plasmid DNA.  相似文献   

15.
The Bacillus subtilis AddAB enzyme possesses ATP-dependent helicase and nuclease activities, which result in the unwinding and degradation of double-stranded DNA (dsDNA) upon translocation. Similar to its functional counterpart, the Escherichia coli RecBCD enzyme, it also recognizes and responds to a specific DNA sequence, referred to as Chi (chi). Recognition of chi triggers attenuation of the 3'- to 5'-nuclease, which permits the generation of recombinogenic 3'-overhanging, single-stranded DNA (ssDNA), terminating at chi. Although the RecBCD enzyme briefly pauses at chi, no specific binding of RecBCD to chi during translocation has been documented. Here, we show that the AddAB enzyme transiently binds to its cognate chi sequence (chi(Bs): 5'-AGCGG-3') during translocation. The binding of AddAB enzyme to the 3'-end of the chi(Bs)-specific ssDNA results in protection from degradation by exonuclease I. This protection is gradually reduced with time and lost upon phenol extraction, showing that the binding is non-covalent. Addition of AddAB enzyme to processed, chi(Bs)-specific ssDNA that had been stripped of all protein does not restore nuclease protection, indicating that AddAB enzyme binds to chi(Bs) with high affinity only during translocation. Finally, protection of chi(Bs)-specific ssDNA is still observed when translocation occurs in the presence of competitor chi(Bs)-carrying ssDNA, showing that binding occurs in cis. We suggest that this transient binding of AddAB to chi(Bs) is an integral part of the AddAB-chi(Bs) interaction and propose that this molecular event underlies a general mechanism for regulating the biochemical activities and biological functions of RecBCD-like enzymes.  相似文献   

16.
Use of electroporation for high-molecular-weight DNA-mediated gene transfer   总被引:1,自引:0,他引:1  
Electroporation was used to introduce high-molecular-weight DNA into murine hematopoietic cells and NIH3T3 cells. CCRF-CEM cells were stably transfected with SV2NEO plasmid and the genomic DNA from G-418-resistant clones (greater than 65 kb) was introduced into mouse bone marrow and NIH3T3 cells by electroporation. NEO sequences and expression were detected in the hematopoietic tissues of lethally irradiated mice, with 24% of individual spleen colonies expressing NEO. The frequency of genomic DNA transfer into NIH3T3 cells was 0.25 X 10(-3). Electroporation thus offers a powerful mode of gene transfer not only of cloned genes but also of high-molecular-weight DNA into cells.  相似文献   

17.
18.
Double-stranded, 1.9-kilobase-pair (kbp) DNA molecules were found in 18 strains representing three pathogenic races of Fusarium oxysporum f. sp. conglutinans. The DNA element (pFOXC1) from a race 1 strain and the DNA element (pFOXC2) from a race 2 strain were shown by restriction endonuclease mapping to be linear. pFOXC2 was found in mitochondrial preparations and appears to have blocked 5' termini, as it was sensitive to 3'----5' exonuclease III but insensitive to 5'----3' lambda exonuclease. The major 1.8-kbp BglII restriction endonuclease fragment of pFOXC2 was cloned in plasmid pUC12. The recombinant plasmid (pCK1) was not homologous to the mitochondrial or nuclear genomes from F. oxysporum f. sp. conglutinans. This suggests that pFOXC2 is self-replicating. pCK1 was homologous to all 1.9-kbp DNA elements of race 2 but was not homologous to those of race 1 or race 5. All race 1 and 5 elements were also shown to share common DNA sequences.  相似文献   

19.
Captan (N-[(trichloromethyl)thio]-4-cyclohexene-1,2-dicarboximide) was shown to bind to DNA polymerase I from Escherichia coli. The ratio of [14C] captan bound to DNA pol I was 1:1 as measured by filter binding studies and sucrose gradient analysis. Preincubation of enzyme with polynucleotide prevented the binding of captan, but preincubation of enzyme with dGTP did not. Conversely, when the enzyme was preincubated with captan, neither polynucleotide nor dGTP binding was blocked. The modification of the enzyme by captan was described by an irreversible second-order rate process with a rate of 68 +/- 0.7 M-1 s-1. The interaction of captan with DNA pol I altered each of the three catalytic functions. The 3'----5' exonuclease and polymerase activities were inhibited, and the 5'----3' exonuclease activity was enhanced. In order to study the 5'----3' exonuclease activity more closely, [3H]hpBR322 (DNA-[3H]RNA hybrid) was prepared from pBR322 plasmid DNA and used as a specific substrate for 5'----3' exonuclease activity. When either DNA pol I or polynucleotide was preincubated with 100 microM captan, 5'----3' exonuclease activity exhibited a doubling of reaction rate as compared to the untreated sample. When 100 microM captan was added to the reaction in progress, 5'----3' exonuclease activity was enhanced to 150% of the control value. Collectively, these data support the hypothesis that captan acts on DNA pol I by irreversibly binding in the template-primer binding site associated with polymerase and 3'----5' exonuclease activities. It is also shown that the chemical reaction between DNA pol I and a single captan molecule proceeds through a Michaelis complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A procedure for extracting RNA-free plasmid DNA from bacterial cells is described. The method is simple and rapid enough to obtain pure plasmid DNA in 8 to 10 h after plasmid amplification. The protocol uses the alkaline extraction procedure described by Birnboim and Doly (1979, Nucl. Acid Res. 7, 1513-1523). Plasmid DNA is then separated from high-molecular-weight RNA by ammonium acetate precipitation and from low-molecular-weight RNA contaminants by Ultrogel A2 column chromatography. The plasmid DNA obtained by this inexpensive technique is sufficiently pure to be used for restriction endonuclease analysis, 5'-end labeling, S1 mapping, DNA sequencing, and colony hydridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号