首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
Commercial lipase preparations and mycelium bound lipase from Aspergillus niger NCIM 1207 were used for esterification of acetic acid with isoamyl alcohol to obtain isoamyl acetate. The esterification reaction was carried out at 30°C in n-hexane with shaking at 120 rpm. Initial reaction rates, conversion efficiency and isoamyl acetate concentration obtained using Novozyme 435 were the highest. Mycelium bound lipase of A. niger NCIM 1207 produced maximal isoamyl acetate formation at an alcohol/acid ratio of 1.6. Acetic acid at higher concentrations than required for the critical alcohol/acid ratio lower than 1.3 and higher than 1.6 resulted in decreased yields of isoamyl acetate probably owing to lowering of micro-aqueous environmental pH around the enzyme leading to inhibition of enzyme activity. Mycelium bound A. niger lipase produced 80 g/l of isoamyl acetate within 96 h even though extremely less amount of enzyme activity was used for esterification. The presence of sodium sulphate during esterification reaction at higher substrate concentration resulted in increased conversion efficiency when we used mycelium bound enzyme preparations of A. niger NCIM 1207. This could be due to removal of excess water released during esterification reaction by sodium sulphate. High ester concentration (286.5 g/l) and conversion (73.5%) were obtained within 24 h using Novozyme 435 under these conditions.  相似文献   

2.
Watercress (Nasturtium officinale) is a member of the Brassicaceae family and a rich source of glucosinolate, which has been shown to possess anticancer properties. To extract these compounds from N. officinale for study, a method was developed in which Agrobacterium rhizogenes was used to transfer DNA segments into plant genomes in order to produce hairy root cultures, which are a reliable source of plant compounds. The A. rhizogenes strain R1000 had the highest infection frequency and induces the most hairy roots per explant. Polymerase chain reaction and cytohistochemical staining methods were used to validate transgenic hairy roots from N. officinale. Glucosinolate from watercress hairy roots was separated and analyzed using high-performance liquid chromatography coupled to electrospray ionization mass spectrometry. Indolic glucosinolates, including glucobrassicin (0.01–0.02 μmol/g of DW) and 4-methoxyglucobrassicin (0.06–0.18 μmol/g of DW), as well as aromatic glucosinolate (gluconasturtiin) (0.06–0.21 μmol/g of DW), were identified virtually identical or more in transformed than wild type roots of N. officinale. Hairy root culture of watercress is a valuable approach for future efforts in the metabolic engineering of glucosinolate biofortification in plants, particularly, because indolic glucosinolates are the precursors of a potent cancer chemopreventive agent (indole-3-carbinol).  相似文献   

3.
Biosorption is an eco-friendly and cost-effective method for treating the dye house effluents. Aspergillus niger and Trichoderma sp. were cultivated in bulk and biomasses used as biosorbents for the biosorption of an azo dye Orange G. Batch biosorption studies were performed for the removal of Orange G from aqueous solutions by varying the parameters like initial aqueous phase pH, biomass dosage, and initial dye concentration. It was found that the maximum biosorption was occurred at pH 2. Experimental data were analyzed by model equations such as Langmuir and Freundlich isotherms, and it was found that both the isotherm models best fitted the adsorption data. The monolayer saturation capacity was 0.48 mg/g for Aspergillus niger and 0.45 mg/g for Trichoderma sp. biomasses. The biosorption kinetic data were tested with pseudo first-order and pseudo second-order rate equations, and it was found that the pseudo second-order model fitted the data well for both the biomasses. The rate constant for the pseudo second-order model was found to be 10–0.8 (g/mg min−1) for Aspergillus niger and 8–0.4 (g/mg min−1) for Trichoderma sp. by varying the initial dye concentrations from 5 to 25 mg/l. It was found that the biomass obtained from Aspergillus niger was a better biosorbent for the biosorption of Orange G dye when compared to Trichoderma sp.  相似文献   

4.
Summary Biosorption of manganese from its aqueous solution using yeast biomass Saccharomyces cerevisiae and fungal biomass Aspergillus niger was carried out. Manganese biosorption equilibration time for A. niger and S. cerevisiae were found to be 60 and 20 min, with uptakes of 19.34 and 18.95 mg/g, respectively. Biosorption increased with rise in pH, biomass, and manganese concentration. The biosorption equilibrium data fitted with the Freundlich isotherm model revealed that A. niger was a better biosorbent of manganese than S. cerevisiae.  相似文献   

5.
A 777-bp cDNA fragment encoding a mature alkaline lipase (LipI) from Penicillium cyclopium PG37 was amplified by RT–PCR, and inserted into the expression plasmid pPIC9 K. The recombinant plasmid, designated as pPIC9 K-lipI, was linearized with SalI and transformed into Pichia pastoris GS115 (his4, Mut+) by electroporation. MD plate and YPD plates containing G418 were used for screening of the multi-copy P. pastoris transformants (His+, Mut+). One transformant resistant to 4.0 mg/ml of G418, numbered as P. pastoris GSL4-7, expressing the highest recombinant LipI (rLipI) activity was chosen for optimizing expression conditions. The integration of the gene LipI into the P. pastoris GS115 genome was confirmed by PCR analysis using 5′- and 3′-AOX1 primers. SDS–PAGE and lipase activity assays demonstrated that the rLipI, a glycosylated protein with an apparent molecular weight of about 31.5 kDa, was extracellularly expressed in P. pastoris. When the P. pastoris GSL4-7 was cultured under the optimized conditions, the expressed rLipI activity was up to 407 U/ml, much higher than that (10.5 U/ml) expressed with standard protocol. The rLipI showed the highest activity at pH 10.5 and 25°C, and was stable at a broad pH range of 7.0–10.5 and at a temperature of 30°C or below.  相似文献   

6.
7.
We isolated and characterized a d-lactic acid-producing lactic acid bacterium (d-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 T and L. delbrueckii subsp. lactis JCM 1248 T, which are also known as d-LAB, the QU 41 strain exhibited a high thermotolerance and produced d-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on d-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l d-lactic acid was acquired with high optical purity (>99.9% of d-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve d-lactic acid productivity. At a dilution rate of 0.87 h−1, the high cell density continuous culture exhibited the highest d-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.  相似文献   

8.
Rhizopus lipases have been successfully expressed in Pichia pastors and different fermentation strategies have been investigated. However, there is no sufficient study on the effects of methanol concentration on the production of Rhizopus lipases in P. pastors. In this study, the lipase from Rhizopus chinensis CCTCC M20102 was expressed under different fed-batch fermentation conditions at methanol concentrations ranging from 0.5 to 3.5 g/L. The lipase activity, stability, and productivities were analyzed. The optimum methanol concentration was 1 g/L, with the highest lipase activity of 2,130 U/mL, without degradation. Additional information was obtained from the analysis of methanol consumption and production rates. The results also suggested that the cell concentration at the end of the glycerol fed-batch phase was very important for cell viability and protease activity.  相似文献   

9.
The tetrasporophyte of Asparagopsis armata has been previously established as a novel seaweed biofilter for integrated land-based mariculture. The species growth and biofiltration rates were much higher than the values described in the literature for Ulva spp., the most common seaweed biofilter. However, a validation of the advantage of one species over the other requires a study of the performances of these two species in the same system at the same time. In this work, we compared the biofiltration performance and biomass yield of A. armata and Ulva rigida cultivated in the effluents of a fish farm in southern Portugal. Comparisons were performed at different water renewal rates and in two seasons of the year. The maximum total ammonia nitrogen (TAN) removal rates were similar for both species in December (2.7 and 2.8 g TAN m–2 day–1 for U. rigida and A. armata, respectively) and higher for A. armata (6.5 g TAN m–2 day–1) than for U. rigida (5.1 g TAN m–2 day–1) in May. Higher differences were observed when estimating the nitrogen biofiltration through the organic nitrogen yield (N yield) of the biomass produced, particularly in May. This estimate is directly related with the biomass yield and the N content in the tissue which were always higher for A. armata than for U. rigida. In December, the maximum biomass yields were 71 g dry weight (DW) m–2 day–1 for A. armata and 44 g DW m–2 day–1 for U. rigida, while in May, the yield of A. armata was 125 g DW m–2 day–1 and of U. rigida was 73 g DW m–2 day–1. This study confirmed that A. armata is indeed a more efficient biofilter than U. rigida. To the best of our knowledge, the production rates reported here are the highest ever reported for macroalgae cultivated in tanks.  相似文献   

10.
In the development of an oral vaccine against Helicobacter pylori, H. pylori urease subunit B (UreB) was expressed in a food-grade delivery vehicle, Lactococcus lactis NZ3900. The ureB gene (Genbank accession no. FJ436980) was amplified by polymerase chain reaction (PCR) from MEL-Hp27. The PCR-amplified ureB gene was cloned in the E. coli–L. lactis shuttle vector pNZ8110 and transformed into E. coli MC1061. After the transformant had been identified, the recombinant plasmid was purified and electrotransformed into L. lactis NZ3900. The conditions of UreB expression in the L. lactis transformant were optimized by orthogonal experiment. The maltose binding protein (MBP)-UreB fusion protein expressed by TB1/pMAL-c2X-ureB was used to cultivate mice polyclonal anti-UreB serum after purification by the amylose prepacked column. The Western blot method was adopted to confirm whether the UreB expressed by L. lactis transformant had immunoreactivity. The optimized conditions for UreB expression were as follows. Nisin 40 ng/ml was added to the medium when the recombinant grew to OD600≈0.30–0.40 and the induction time lasted 5 h. As a result, the maximum yield of UreB was 27.26 μg/mL of medium, and the maximum percentage of UreB in cell extracts of the L. lactis transformant reached its peak at 20.19%. Western blot analysis showed that the UreB protein expressed by L. lactis transformant had favorable immunoreactivity. All these results make an appealing case for construction of the food-grade vaccine for H. pylori.  相似文献   

11.
The acuB gene of Aspergillus niger is an ortholog of facB in Aspergillus nidulans. Under carbon-repression conditions, facB is repressed, thereby preventing acetate metabolism when the repressing carbon source is present. Even though facB is reported to be repressed directly by CreA, it is believed that a basal level of FacB activity exists under glucose-repressive conditions. In the present study, the effect of deletion of acuB on the physiology of A. niger was assessed. Differences in organic acid and acetate production, enzyme activities and extracellular amino and non-amino organic acid production were determined under glucose-repressing and -derepressing conditions. Furthermore, consumption of alternative carbon sources (e.g. xylose, citrate, lactate and succinate) was investigated. It was shown that AcuB has pleiotropic effects on the physiology of A. niger. The results indicate that metabolic pathways that are not directly involved in acetate metabolism are influenced by acuB deletion. Clear differences in organic acid consumption and production were detected between the ∆acuB and reference strain. However, the hypothesis that AcuB is responsible for basal AcuA activity necessary for activation of acetate metabolic pathways, even during growth on glucose, could not be confirmed. The experiments demonstrated that also when acuB was deleted, no acetate was formed. Therefore, AcuB cannot be the only activator of AcuA, and another control mechanism has to be available for activating AcuA.  相似文献   

12.
Two xylose-fermenting glucose-derepressed Saccharomyces cerevisiae strains were constructed in order to investigate the influence of carbon catabolite repression on xylose metabolism. S. cerevisiae CPB.CR2 (mig1, XYL1, XYL2, XKS1) and CPB.MBH2 (mig1, mig2, XYL1, XYL2, XKS1) were analysed for changes in xylose consumption rate and ethanol production rate during anaerobic batch and chemostat cultivations on a mixture of 20 g l–1 glucose and 50 g l–1 xylose, and their characteristics were compared to the parental strain S. cerevisiae TMB3001 (XYL1, XYL2, XKS1). Improvement of xylose utilisation was limited during batch cultivations for the constructed strains compared to the parental strain. However, a 25% and 12% increased xylose consumption rate during chemostat cultivation was achieved for CPB.CR2 and CPB.MBH2, respectively. Furthermore, during chemostat cultivations of CPB.CR2, where the cells are assumed to grow under non-repressive conditions as they sense almost no glucose, invertase activity was lower during growth on xylose and glucose than on glucose only. The 3-fold reduction in invertase activity could only be attributed to the presence of xylose, suggesting that xylose is a repressive sugar for S. cerevisiae.  相似文献   

13.
A gratuitous strain was developed by disrupting the GAL1 gene (galactokinase) of recombinant Saccharomyces cerevisiae harboring the antithrombotic hirudin gene in the chromosome under the control of the GAL10 promoter. A series of glucose-limited fed-batch cultures were carried out to examine the effects of glucose supply on hirudin expression in the gratuitous strain. Controlled feeding of glucose successfully supported both cell growth and hirudin expression in the gratuitous strain. The optimum fed-batch culture done by feeding glucose at a rate of 0.3 g h–1 produced a maximum hirudin concentration of 62.1 mg l–1, which corresponded to a 4.5-fold increase when compared with a simple batch culture done with the same strain.  相似文献   

14.
A single-stage continuous fermentation process for the production of 2-keto-l-gulonic acid (2KGA) from l-sorbose using Ketogulonigenium vulgare DSM 4025 was developed. The chemostat culture with the dilution rate that was calculated based on the relationship between the 2KGA production rate and the 2KGA concentration was feasible for production with high concentration of 2KGA. In this system, 112.2 g/L of 2KGA on the average was continuously produced from 114 g/L of l-sorbose. A steady state of the fermentation was maintained for the duration of more than 110 h. The dilution rate was kept in the range of 0.035 and 0.043 h−1, and the 2KGA productivity was 3.90 to 4.80 g/L/h. The average molar conversion yield of 2KGA from l-sorbose was 91.3%. Under the optimal conditions, l-sorbose concentration was kept at 0 g/L. Meanwhile, the dissolved oxygen level was changing in response to the dilution rate and 2KGA concentration. In the dissolved oxygen (DO) range of 16% to 58%, it was revealed that the relationship between DO and D possessed high degree of positive correlation under the l-sorbose limiting condition (complete consumption of l-sorbose). Increasing D closer to the critical value for washing out point of the continuous fermentation, DO value tended to be gradually increased up to 58%. In conclusion, an efficient and reproducible continuous fermentation process for 2KGA production by K. vulgare DSM 4025 could be developed using a medium containing baker’s yeast without using a second helper microorganism.  相似文献   

15.
Two new effective microbial producers of inulinases were isolated from Jerusalem artichoke tubers grown in Thailand and identified as Aspergillus niger TISTR 3570 and Candida guilliermondii TISTR 5844. The inulinases produced by both these microorganisms were appropriate for hydrolysing inulin to fructose as the principal product. An initial inulin concentration of ∼100 g l−1 and the enzyme concentration of 0.2 U g−1 of substrate, yielded 37.5 g l−1 of fructose in 20 h at 40°C when A. niger TISTR 3570 inulinase was the biocatalyst. The yield of fructose on inulin was 0.39 g g−1. Under identical conditions, the yeast inulinase afforded 35.3 g l−1 of fructose in 25 h. The fructose yield was 0.35 g g−1 of substrate. The fructose productivities were 1.9 g l−1 h−1 and 1.4 g l−1 h−1 for the mold and yeast enzymes, respectively. After 20 h of reaction, the mold enzyme hydrolysate contained 53% fructose and more than 41% of initial inulin had been hydrolysed. Using the yeast enzymes, the hydrolysate contained nearly 38% fructose at 25 h and nearly 36% of initial inulin had been hydrolysed. The A. niger TISTR 3570 inulinases exhibited both endo-inulinase and exo-inulinase activities. In contrast, the yeast inulinases displayed mainly exo-inulinase activity. The mold and yeast crude inulinases mixed in the activity ratio of 5:1 proved superior to individual crude inulinases in hydrolysing inulin to fructose. The enzyme mixture provided a better combination of endo- and exo-inulinase activities than did the crude extracts of either the mold or the yeast individually.  相似文献   

16.
Zhao H  Zheng L  Wang X  Liu Y  Xu L  Yan Y 《Biotechnology letters》2011,33(12):2445-2452
Bioinformatic analysis of the Yarrowia lipolytica CLIB122 genome has revealed 18 putative lipase genes all of which were expressed in Escherichia coli and screened for hydrolyzing activities against p-nitrophenyl-palmitate. One positive transformant containing an ORF of 1,098 bp encoding a protein of 365 amino acids was obtained. To characterize its enzymatic properties, the lipase gene was functionally expressed in Pichia pastoris. The resulting lipase exhibited the highest activity towards p-NP-decanoate at pH 7 and 35°C. In addition, the new lipase had a lower optimal temperature and pH compared to other Y. lipolytica lipases. It was noticeably enhanced by Ca2+, but was inhibited by PMSF, Hg2+ and Ni2+. The new lipase displayed the 1,3-specificity for triolein.  相似文献   

17.
Efficient fermentation of xylose, which is abundant in hydrolysates of lignocellulosic biomass, is essential for producing cellulosic biofuels economically. While heterologous expression of xylose isomerase in Saccharomyces cerevisiae has been proposed as a strategy to engineer this yeast for xylose fermentation, only a few xylose isomerase genes from fungi and bacteria have been functionally expressed in S. cerevisiae. We cloned two bacterial xylose isomerase genes from anaerobic bacteria (Bacteroides stercoris HJ-15 and Bifidobacterium longum MG1) and introduced them into S. cerevisiae. While the transformant with xylA from B. longum could not assimilate xylose, the transformant with xylA from B. stercoris was able to grow on xylose. This result suggests that the xylose isomerase (BsXI) from B. stercoris is functionally expressed in S. cerevisiae. The engineered S. cerevisiae strain with BsXI consumed xylose and produced ethanol with a good yield (0.31 g/g) under anaerobic conditions. Interestingly, significant amounts of xylitol (0.23 g xylitol/g xylose) were still accumulated during xylose fermentation even though the introduced BsXI might not cause redox imbalance. We investigated the potential inhibitory effects of the accumulated xylitol on xylose fermentation. Although xylitol inhibited in vitro BsXI activity significantly (K I = 5.1 ± 1.15 mM), only small decreases (less than 10%) in xylose consumption and ethanol production rates were observed when xylitol was added into the fermentation medium. These results suggest that xylitol accumulation does not inhibit xylose fermentation by engineered S. cerevisiae expressing xylA as severely as it inhibits the xylose isomerase reaction in vitro.  相似文献   

18.
The metabolites of endophytic fungus Penicillium sp. from the leaf of Hopea hainanensis were reported for the first time. By bioassay-guided fractionation, the EtOAc extract of a solid-matrix steady culture of this fungus afforded six compounds, which were identified through a combination of spectral and chemical methods (IR, MS, 1H- and 13C-NMR) to be monomethylsulochrin (1), rhizoctonic acid (2), asperfumoid (3), physcion (4), 7,8-dimethyl-iso-alloxazine (5) and 3,5-dichloro-p-anisic acid (6). Compounds 2, 3 and 6 were obtained from Penicillium sp. for the first time. All of the six isolates were subjected to in vitro bioactive assays including antifungal action against three human pathogenic fungi Candida albicans, Trichophyton rubrum and Aspergillus niger and cytotoxic activity against the human nasopharyngeal epidermoid tumor KB cell line and human liver cancer HepG2 cell line. As a result, compounds 24 and 6 inhibited the growth of C. albicans with MICs of 40.0, 20.0, 50.0 and 15.0 μg/ml, respectively and the compound 6 showed growth inhibition against A. niger with MICs of 40.0 μg/ml. In addition, compounds 13 and 6 exhibited cytotoxic activity against KB cell line with IC50 value of 30.0, 20.0, 20.0, 5.0 μg/ml, respectively and against HepG2 cell line with IC50 value of 30.0, 25.0, 15.0, 10.0 μg/ml, respectively.  相似文献   

19.
Considering the extraordinary microbial diversity and importance of fungi as enzyme producers, the search for new biocatalysts with special characteristics and possible applications in biocatalysis is of great interest. Here, we report the performance in the resolution of racemic ibuprofen of a native enantioselective lipase from Aspergillus niger, free and immobilized in five types of support (Accurel EP-100, Amberlite MB-1, Celite, Montmorillonite K10 and Silica gel). Amberlite MB-1 was found to be the best support, with a conversion of 38.2%, enantiomeric excess of 50.7% and enantiomeric ratio (E value) of 19 in 72 h of reaction. After a thorough optimization of several parameters, the E value of the immobilized Aspergillus niger lipase was increased (E = 23) in a shorter reaction period (48 h) at 35°C. Moreover, the immobilized Aspergillus niger lipase maintained an esterification activity of at least 80% after 8 months of storage at 4°C and could be reused at least six times.  相似文献   

20.
West TP 《Biotechnology letters》2011,33(12):2463-2467
The ability of Aspergillus strains to utilize thin stillage to produce malic acid was compared. The highest malic acid was produced by Aspergillus niger ATCC 9142 at 17 g l−1. Biomass production from thin stillage was similar with all strains but ATCC 10577 was the highest at 19 g l−1. The highest malic acid yield (0.8 g g−1) was with A. niger ATCC 9142 and ATCC 10577 on the stillage. Thus, thin stillage has the potential to act as a substrate for the commercial production of food-grade malic acid by the A. niger strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号