首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王晓冬  王成  马智宏  侯瑞锋  高权  陈泉 《生态学报》2011,31(10):2822-2830
为研究盐胁迫下小麦幼苗生长及Na+、K+的吸收和积累规律,以中国春、洲元9369和长武134等3种耐盐性不同小麦品种为材料,采用非损伤微测技术检测盐胁迫2 d后的根系K+离子流变化,并对植株体内的Na+、K+含量进行测定。结果表明:短期(2d)盐胁迫对小麦生长有抑制作用,且对根系的抑制大于地上部,耐盐品种下降幅度小于盐敏感品种。盐胁迫下,小麦根际的 K+大量外流,盐敏感品种中国春K+流速显著高于耐盐品种长武134,最高可达15倍。小麦幼苗地上部分和根系均表现为Na+积累增加,K+积累减少,Na+/K+比随盐浓度增加而上升。中国春限Na+能力显著低于长武134,Na+/K+则显著高于长武134。综上所述,盐胁迫下造成小麦组织器官中Na+/K+比上升的主要原因是根系K+大量外流和Na+的过量积累,耐盐性不同的小麦品种间差异显著,并认为根系对K+的保有能力可能是作物耐盐性评价的一个重要指标。  相似文献   

2.
以烟台海岸生态断带滨麦(Leymus mollis)和肾叶打碗花(Calystegia soldanella)为材料,在远离高潮线不同位置上取土样和植物材料,通过测定土壤Na+和两植物根叶Na+含量、丙二醛(MDA)含量、抗氧化酶(SOD、POD、CAT)活性和渗透调节物含量,以揭示滨麦和肾叶打碗花根叶中Na+在其适应海岸盐环境中的生理调控机制。结果表明,在高潮线土壤Na+含量最高,滨麦根叶Na+含量较高,两植物根叶中MDA和水分含量、抗氧化酶活力均较低,但渗透调节物含量均较高。随远离高潮线土壤Na+含量下降,滨麦根叶Na+含量下降,而肾叶打碗花根中Na+含量上升,其根叶Na+含量较滨麦分别高637%和319%。同时两植物根叶MDA含量、叶片含水量增加;两植物根中POD和SOD活力增加;两植物根叶可溶性糖和脯氨酸含量下降。但不同生态断带滨麦叶片平均含水量相对较低,MDA含量、POD和CAT和SOD活力、脯氨酸和可溶性糖含量相对较高。在盐土环境中滨麦通过降低Na+的吸收和提高抗氧化酶活力和有机渗透调节物含量维持氧自由基代谢平衡和水分平衡。而肾叶打碗花是泌盐植物,在不同生态断带其叶片Na+含量、平均含水量相对较高,叶MDA含量、POD和CAT活力、脯氨酸和可溶性糖含量均相对较低。泌盐植物的肾叶打碗花依赖根叶中积累的Na+作为无机渗透调节剂维护其离子平衡和水分平衡及正常生长。因此,积累在根叶中的Na+离子既作为无机渗透调节剂维护细胞离子平衡和水分平衡,又引发细胞生理干旱促进有机渗透调节物合成;另外还作为氧自由基诱发剂促使活性氧自由基(ROS)积累,通过积累的ROS激活抗氧化保护酶系统抑制膜脂过氧化、维护氧自由基代谢平衡。海岸沙地土壤中高浓度Na+是海滨滨麦和肾叶打碗花能长期在盐土环境中生存的依靠元素,其对植物的生理调控作用可能是滨麦和肾叶打碗花适应盐土生存的重要生理适应机理。  相似文献   

3.
Kinetic studies of a dithiothreitol treated membrane ATPase fraction from sugar beet roots led to the following conclusions: 1) In the presence of MgATP, Na+ and K+ stimulate the ATPase activity in different ways following simple Michaelis-Menten kinetics. Thus separate sites for Na+ and K+ are suggested. 2) In the absence of K+, Na+ acts as an uncompetitive modifier raising the apparent Km and Vmax for MgATP. 3) In the absence of Na+, K+ activates non-competitively with respect to MgATP. Thus K+ increases Vmax but does not affect the apparent affinity constant. 4) K+ and Na+ double the rate constants. 5) In the presence of Na+ or K+, Mg2+ in excess acts as a weak inhibitor to Na+ and/or K+ activity. 6) The temperature-activity dependence in the 5–40°C interval shows biphasic Arrhenius plots with the transition point between 15–18°C. The activation energy is lowered at temperatures > 18°C.  相似文献   

4.
The dynamics of Na+, K+, and proline accumulation in various organs of non nodulated Vigna sinensis and Phaseolus aureus was followed during their acclimation to two levels of salinities for a period of 35 days and was correlated to the vegetative growth of the two species. The rate of Na+ and K+ absorption is at a maximum during the first 15 to 20 days of culture. K+ absorption is not completely inhibited even at 100 mM NaCl although the endogenous Na+ largely surpasses that of K+ in certain organs. Low salinity rather accelerates K+ absorption in both species. The relative growth rates (RGR) correlate with the rate of Na+ and K+ accumulation. At low salinity (10 mM NaCl), the RGR of V. sinensis is greater than that of P. aureus. However, at high salinity (100 mM NaCl) the RGR is the same for both species. The growth of the younger parts of the two species is not arrested by salt treatment. Very high accumulation of Na+ is avoided in organs with less vacuolated tissues. At no time does the endogenous K : Na ratio in these organs fall below 1.0. Certain organs, especially the roots, hypocotyls, and the lower parts of the stems are capable of storing large quantities of Na+. In V. sinensis, the accumulated Na+ and K+ are evenly distributed among the various organs while in P. aureus they are rather concentrated in the roots. External salinity creates water deficiency in the younger plant parts and as a consequence, proline accumulates especially in the youngest aerial organs - more in P. aureus than in V. sinensis. The accumulation of this amino acid in both the species is dependent on time and correlates directly, not only with the water deficit, but also with the K+ contents. In contrast, it does not seem to depend directly on the endogenous Na+ content. The relative salt tolerance of the two species and the possible role of K+, Na+ and proline in the osmotic adjustments of the two species under saline conditions are discussed.  相似文献   

5.
Right-side-out plasma membrane vesicles were isolated from wheat roots using an aqueous polymer two-phase system. The purity and orientation of the vesicles were confirmed by marker enzyme analysis. Membrane potential (Ψ)-dependent 22Na+ influx and sodium/proton (Na+/ H+) antiport-mediated efflux across the plasma membrane were studied using these vesicles. Membrane potentials were imposed on the vesicles using either K+ gradients in the presence of valinomycin or H+ gradients. The ΔΨ was quantified by the uptake of the lipophilic cation tetraphenylphosphonium. Uptake of Na+ into the vesicles was stimulated by a negative ΔΨ and had a Km for extrav-esicular Na+ of 34.8 ± 5.9 mol m3. The ΔΨ-dependent uptake of Na+ was similar in vesicles from roots of hexaploid (cv. Troy) and tetraploid (cv. Langdon) wheat differing in a K+/Na+ discrimination trait, and was also unaffected by growth in 50 mol m?3 NaCl. Inhibition of ΔΨ-dependent Na+ uptake by Ca2+ was greater in the hexaploid than in the tetraploid. Sodium/proton antiport was measured as Na+-dependent, amiloride-inhibited pH gradient formation in the vesicles. Acidification of the vesicle interior was measured by the uptake of 14C-methylamine. The Na+/H+ antiport had a Km, for intravesicular Na+ of between 13 and 19 mol m?3. In the hexaploid, Na+/H+ antiport activity was greater when roots were grown in the presence of 50 mol m?3NaCl, and was also greater than the activity in salt-grown tetraploid wheat roots. Antiport activity was not increased in a Langdon 4D chromosome substitution line which carries a trait for K+/Na+ discrimination. It is concluded that neither of the transport processes measured is responsible for the Na+/K+ discrimination trait located on the 4D chromosome of wheat.  相似文献   

6.
Na+ accumulation was investigated in the roots of 11-d-old cowpea [Vigna unguiculata (L.) Walp.] plants. The relative contribution of different membrane transporters on Na+ uptake was estimated by applying Ca2+, K+, NH4 +, and pharmacological inhibitors. Na+ accumulation into the root symplast was decreased by half in the presence of 1 mM Ca2+ and it was almost abolished by 100 mM K+. The inhibitory effect of external NH4+ on Na+ accumulation was more pronounced in the roots of NH4 +-free growing plants. Na+ accumulation was reduced about 73 % by 0.1 mM flufenamate and it was almost blocked by 2 mM quinine. In addition, 20 mM tetraethylammonium and 1.0 mM Cs+ decreased Na+ accumulation by 28 and 30 %, respectively. These results evidenced that low-affinity Na+ uptake by cowpea roots depends on Ca2+-sensitive and Ca2+-insensitive pathways. The Ca2+-sensitive pathway is probably mediated by nonselective cation channels and the Ca2+-insensitive one may involve K+ channels and to a lesser extent NH4 +-sensitive K+ transporters.  相似文献   

7.
In order to identify physiological components that contribute to salinity tolerance, we compared the effects of Na+, Mg2+ and K+ salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl and K2SO4), Ca2+ (CaSO4), mannitol and melibiose on the wild type and the single-gene NaCl-tolerant mutants stl1 and stl2 of Ceratopteris richardii. Compared with gametophytic growth of the wild type, stl2 showed a low level of tolerance that was restricted to Na+ salts and osmotic stress. stl2 exhibited high tolerance to both Na+ and Mg2+ salts, as well as to osmotic stress. In response to short-term exposure (3 d) to NaCl, accumulation of K+ and Na+ was similar in the wild type and stl1. In contrast, stl2 accumulated higher levels of K+ and lower levels of Na+. Ca2+ supplementation (1.0 mol m?3) ameliorated growth inhibition by Na+ and Mg2+ stress in wild type and stll, but not in stl2. In addition, under Na+ stress (175 mol m?3) wild-type, stll and stl2 gametopbytes maintained higher tissue levels of K+ and lower levels of Na+ when supplemented with Ca2+ (1.0 mol m?3). stl2 gametophytes were extremely sensitive to K+ supplementation. Growth of stl2 was greater than or equal to that of the wild type at trace concentrations of K+ but decreased substantially with increasing K+ concentration. Supplementation with K+ from 0 to 1.85 mol m?3 alleviated some of the inhibition by 75 mol m?3 NaCl in the wild type and in stl1. In stl2, growth at 75 mol m?3 NaCl was similar at 0 and 1.85 mol m?3 K+ supplementation. Although K+ supplementation above 1.85 mol m?3 did not alleviate inhibition of growth by Na+ in any genotype, stl2 maintained greater relative tolerance to NaCl at all K+ concentrations tested.  相似文献   

8.
A microsomal (Na++ K++ Mg2+)ATPase preparation from sugar beet roots was used. The activation by simultaneous addition of Na+ and K+ at different levels was examined in terms of steady state kinetics. The observed data can be summarized in the following way: 1. The apparent affinity between the enzyme and the substrate MgATP depends on the ratio between Na+ and K+. At low Na+ concentration (below 5 mM), the apparent Km decreases with increasing concentrations of K+ (1–20 mM). At 5 mM Na+, the K+ level does not change the apparent Km, while at Na+ levels above 10 mM, the apparent Km between enzyme and substrate increases with increasing concentration of K+. 2. When the MgATP concentration is kept constant, homotropic cooperativity (concerning one type of ligand) and heterotropic cooperativity (concerning different types of ligands) exist in the activation by Na+ and K+. The Na+ binding is cooperative with different Km values and Hill coefficients (n) in the presence of low and high concentration of K+. At low Na+ level (< 5 mM). a negative cooperativity exists for Na+ (nNa < 1) which is more pronounced in the presence of high [K+]. When the concentration of Na+ is raised the negative cooperativity disappears and turns into a positive one (nNa > 1). Only K+ binding in the presence of low [Na+] shows cooperativity with a Hill coefficient that reflects changes from negative to positive homotropic cooperativity with increasing concentrations of K+ (nK < 1 → nK > 1). In the presence of [Na+] > 10 mM, the changes in nk are insignificant. 3. A model is proposed in which one or two different K sites and one or two Na sites control the catalytic activity, with multiple interactions between Na+, K+ and MgATP. 4. In the presence of Na+ (< 10 mM), K+ is probably bound to two K sites, one of which translocates K+ through the membrane by an antiport Na+/K+ mechanism. This could be connected with an elevated K+ uptake in the presence of Na+ and could therefore explain some field properties of sugar beets.  相似文献   

9.
赵宏亮  倪细炉  侯晖  谢沁宓  程昊 《广西植物》2022,42(7):1150-1159
为揭示长苞香蒲(Typha domingensis)对盐生湿地生态系统中Na+和K+的吸收与转运特征,探讨长苞香蒲对盐生湿地的生态修复效果,该研究采用人工模拟盐生湿地的方法,设置CK(对照)、T1(浇灌100 mmol·L-1盐水)、T2(浇灌200 mmol·L-1盐水)及T3(浇灌300 mmol·L-1盐水)4种不同盐浓度的人工湿地生态系统,并分别于5月5日(开始盐胁迫处理,S0)、5月30日(S1)、6月30日(S2)和7月30日(S3)测量其株高和干重、植株地上与地下部分Na+和K+的含量以及底泥和水体中Na+和K+的含量以分析长苞香蒲对盐碱湿地的脱盐作用。结果表明:(1)各处理的长苞香蒲的株高和干重随着处理时间的延长呈增加趋势,但与CK相比,各处理生长量随盐浓度升高出现下降趋势。(2)高浓度盐处理(T3)使长苞香蒲的地上部分和地下部分的Na+分别增加了2.5...  相似文献   

10.
Spergularia marina (L.) Griseb. is. a rapidly growing, annual, coastal halophyte. Because of its small size, it is suitable for isotope studies of ion transport well beyond the seedling stage. The purpose of this report is to establish the similarities and differences between 22Na+ and 42K+ uptake in S. marina and in more commonly used mesophytic crop species. Vegetative plants were used 18 days after transfer to solution culture. Plants were grown either on Na+-free medium or on 0.2 × sea water. 22Na+ uptake was linear with time for several hours. The rate was relatively insensitive to external concentration between 1 and 180 mol Na+ m?3, particularly in Na+-free plants. Transport to the shoot accounted for 40 to 70% of the total uptake, dependent on salinity but largely independent of time. 42K+ uptake decreased with increasing salinity in Na+-free plants and increased in 0.2 × sea water plants. Both uptake and transport to the shoot were non-linear with time, upward concavity suggesting recovery from a manipulative and/or osmotic injury. Steady state root contents were compared with predicted contents based on cortical cell electrical potentials using the Nernst equation. Reasonable agreement was found in all cases except Na+ content of 0.2 × sea water plants, in which active efflux was indicated. Uptake studies conducted in the presence of chemical modifiers (dicyclohexylcarbodiimide, dinitrophenol and fusicoccin) showed responses of 42K+ uptake as expected from studies on agronomic species, and implied the presence of a similar active uptake here despite the appearance of equilibrium. Active Na+ uptake was suggested at low Na+ levels. We conclude that S. marina is a promising experimental system combining the rapid nutrient acquisition strategy of agionomically important annuals with a high degree of salt tolerance.  相似文献   

11.
Electrophoretic measurements on membrane coated particles were performed with a Zytopherometer. Tris-HCl buffer 0.2 M pH 7.0 at 37°C with addition of different combinations of Na+, K+, Mg2+ and ATP was used as test medium. The membranes were of two types, an untreated preparation with low NaK ATPase activity and a deoxycholate treated preparation with high NaK ATPase activity. There was no marked difference in reaction between the two types of membranes. To both types of membranes Mg2+ gave a strong positive and ATP a slight negative addition to the membrane charge. In the presence of ATP Na+ gave a higher charge contribution than did K+ or a combination of Na+ and K+. This implies that K+ gives a higher affinity for ATP than Na+ does and or that ATP mediates a higher affinity for Na+ than for K+.  相似文献   

12.
Liposomes containing either purified or microsomal (Na+,K+)-ATPase preparations from lamb kidney medulla catalyzed ATP-dependent transport of Na+ and K+ with a ratio of approximately 3Na+ to 2K+, which was inhibited by ouabain. Similar results were obtained with liposomes containing a partially purified (Na+,K+-ATPase from cardiac muscle. This contrasts with an earlier report by Goldin and Tong (J. Biol. Chem. 249, 5907–5915, 1974), in which liposomes containing purified dog kidney (Na+,K+)-ATPase did not transport K+ but catalyzed ATP-dependent symport of Na+ and Cl?. When purified by our procedure, dog kidney (Na+,K+)-ATPase showed some ability to transport K+ but the ratio of Na+ : K+ was 5 : 1.  相似文献   

13.
Ca2+ inhibited the Mg2+-dependent and K+-stimulated p-nitrophenylphosphatase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase. In the absence of K+, however, a Mg2+-dependent and Ca2+-stimulated phosphatase was observed, the maximal velocity of which, at pH 7.2, was about 20% of that of the K+-stimulated phosphatase. The Ca2+-stimulated phosphatase, like the K+-stimulated activity, was inhibited by either ouabain or Na+ or ATP. Ouabain sensitivity was decreased with increase in Ca2+, but the K0.5 values of the inhibitory effects of Na+ and ATP were independent of Ca2+ concentration. Optimal pH was 7.0 for Ca2+-stimulated activity, and 7.8–8.2 for the K+-stimulated activity. The ratio of the two activities was the same in several enzyme preparations in different states of purity. The data indicate that (a) Ca2+-stimulated phosphatase is catalyzed by (Na+ + K+)-ATPase; (b) there is a site of Ca2+ action different from the site at which Ca2+ inhibits in competition with Mg2+; and (c) Ca2+ stimulation can not be explained easily by the action of Ca2+ at either the Na+ site or the K+ site.  相似文献   

14.
Effects of interrupted K+ supply on different parameters of growth and mineral cation nutrition were evaluated for spring wheat (Triticum aestivum L. cv. Svenno). K+ (2.0 mM) was supplied to the plants during different periods in an otherwise complete nutrient solution. Shoot growth was reduced before root growth after interruption in K+ supply. Root structure was greatly affected by the length of the period in K+ -free nutrient solution. Root length was minimal, and root branching was maximal within a narrow range of K+ status of the roots. This range corresponded to cultivation for the last 1 to 3 days, of 11 in total, in K+ -free nutrient solution, or to continuous cultivation in solution containing 0.5 to 2 mM K+. In comparison, both higher and lower internal/external K+ concentrations had inhibitory effects on root branching. However, the differing root morphology probably had no significant influence on the magnitude of Ca2+, Mg2+ and Na+ uptake. Uptake of Ca2+ and especially Mg2+ significantly increased after K+ interruption, while Na+ uptake was constant in the roots and slowly increased in the shoots. The two divalent cations could replace K+ in the cells and maintain electroneutrality down to a certain minimal range of K+ concentrations. This range was significantly higher in the shoot [110 to 140 μmol (g fresh weight)?1] than in the root [20 to 30 μmol (g fresh weight)?1]. It is suggested that the critical K+ values are a measure of the minimal amount of K+ that must be present for physiological activity in the cells. At the critical levels, K+ (86Rb) influx and Ca2+ and Mg2+ concentrations were maximal. Below the critical K+ values, growth was reduced, and Ca2+ and Mg2+ could no longer substitute for K+ for electrostatic balance. In a short-term experiment, the ability of Ca2+ to compete with K+ in maintaining electroneutrality in the cells was studied in wheat seedlings with different K+ status. The results indicate that K+, which was taken up actively and fastest at the external K+ concentration used (2.0 mM), partly determines the size of Ca2+ influx.  相似文献   

15.
Na+ transport across the tonoplast and its accumulation in the vacuoles is of crucial importance for plant adaptation to salinity. Mild and severe salt stress increased both ATP- and PPi-dependent H+ transport in tonoplast vesicles from sunflower seedling roots, suggesting the possibility that a Na+/H+ antiport system could be operating in such vesicles under salt conditions (E. Ballesteros et al. 1996. Physiol. Plant. 97: 259–268). During a mild salt stress, Na+ was mainly accumulated in the roots. Under a more severe salt treatment, Na+ was equally distributed in shoots and roots. In contrast to what was observed with Na+, all the salt treatments reduced the shoot K+ content. Dissipation by Na+ of the H+ gradient generated by the tonoplast H+-ATPase, monitored as fluorescence quenching of acridine orange, was used to measure Na+/H+ exchange across tonoplast-enriched vesicles isolated by sucrose gradient centrifugation from sunflower (Helianthus annuus L.) roots treated for 3 days with different NaCl regimes. Salt treatments induced a Na+/H+ exchange activity, which displayed saturation kinetics for Na+ added to the assay medium. This activity was partially inhibited by 125 μM amiloride, a competitive inhibitor of Na+/H+ antiports. No Na+/H+ exchange was detected in vesicles from control roots. The activity was specific for Na+. since K+ added to the assay medium slightly dissipated H+ gradients and displayed non-saturating kinetics for all salt treatments. Apparent Km for Na+/H+ exchange in tonoplast vesicles from 150 mM NaCl-treated roots was lower than that of 75 mM NaCl-treated roots, Vmax remaining unchanged. The results suggest that the existence of a specific Na+/H+ exchange activity in tonoplast-enriched vesicle fractions, induced by salt stress, could represent an adaptative response in sunflower plants, moderately tolerant to salinity.  相似文献   

16.
(Na+,K+)-ATPase is able to catalyze a continuous ATP?Pi exchange in the presence of Na+ and in the absence of a transmembrane ionic gradient. At pH 7.6 the Na+ concentration required for half-maximal activity is 85 mM and at pH 5.1 it is 340 mM. In the presence of optimal Na+ concentration, the rate of exchange is maximal at pH 6.0 and varies with ADP and Pi concentration in the assay medium. ATP?Pi exchange is inhibited by K+ and by ouabain.  相似文献   

17.
Sugar beet leaf homogenate contains Mg2+-stimulated ATPase activity with the highest specific activity in the 25,000–30,000 ×g-fraction. This fraction also has (Na++ K+)-activated ATPase activity. Both activities have two pH optima, one stable at pH 7.9 and one variable at lower pH. When optimal conditions of Na+ and K+ were tested with 64 combinations of these ions, at least two mountains of activity were revealed. The (Na++ K+)-ATPase had a high specificity for ATP. It had lost about 50% of its original activity after 56 days of storage at ?85°C. The activity drop was most pronounced at high ionic concentrations in the test medium. The (Na++ K+)-ATPase shows four peaks of activity when tested at constant ionic strength. The idea is put forward that the four peaks reflect two ATPases, one in the tonoplast and one in the plasmalemma, which undergo conformational changes in relation to the ionic milieu.  相似文献   

18.
The classical E2-P intermediate of (Na+ + K+)-ATPase dephosphorylates readily in the presence of K+ and is not affected by the addition of ADP. To determine the significane in the reaction cycle of (Na+ + K+)-ATPase of kinetically atypical phosphorylations of rat brain (Na+ + K+)-ATPase we compared these phosphorylated components with the classical E2-P intermediate of this enzyme by gel electrophoresis. When rat brain (Na+ + K+)-ATPase was phosphorylated in the presence of high concentrations of Na+ a proportion of the phosphorylated material formed was sensitive to ADP but resistant to K+. Similarly, if phosphorylation was carried out in the presence of Na+ and Ca2+ up to 300 pmol/mg protein of a K+-resistant, ADP-sensitive material were formed. If phosphorylation was from [γ-32P]CTP up to 800 pmol 32P/mg protein of an ADP-resistant, K+-sensitive phosphorylated matterial were formed. On gel electrophoresis these phosphorylated materials co-migrated with authentic Na+-stimulated, K+-sensitive, E2-P-phosphorylated intermediate of (Na+ + K+)-ATPase, supporting suggestions that they represent phosphorylated intermediates in the reaction sequence of this enzyme.  相似文献   

19.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 μM ATP and 50 μM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 μM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+-ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 μM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

20.
The mechanisms of activation of renal (Na+ + K+)-ATPase by administration of the synthetic glucocorticoid hormone, dexamethasone, have been investigated in adrenalectomized rats. Chronic treatment with dexamethasone (1–5 mg/100 g body wt. daily for 5 days) stimulated (Na+ + K+)-ATPase specific activity in crude homogenated and microsomal fractions of renal cortex (by approx. 100–150%) and renal medulla (by approx. 100%). Acute treatment with dexamethasone (0.5–10 mg/100 g body wt.) also stimulated enzyme activity in crude homogenates and microsomal fractions of renal cortex and medulla (by approx. 40–50%). Stimulation was dose dependent and occurred within 2h after hormone treatment. In vitro addition of dexamethasone (10?4–10?8 M) to microsomal fractions did not modify the specific activity of (Na+ + K+)-ATPase. Stimulation of (Na+ + K+)-ATPase activity by acute and chronic administration of the hormone was demonstrated whether specific activities were expressed as a function of cellular protein or cellular DNA. Dexamethasone treatment increased the ratios protein:DNA and, to a lesser extent, the ratios RNA:DNA. However, these effects were mainly due to a reduction in the renal contents of DNA, which suggests that the observed enzyme activation is not due to an action of the hormone on renal hypertrophy. Dexamethasone also reduced cellular DNA contents in the liver. The characteristics of the activation process were essentially similar after treatment with single or multiple doses of the hormone. There were increases in the value for Na+ (approx. 100%), K+ (approx. 40%) and ATP (approx. 160%). The Km values for Na+ (approx. 17 mM) and K+ (approx. 1.8 mM) were unchanged and there was a small increase in the Km value for ATP (0.7 mM as against 1.7 mM). There was no difference in the Hill coefficients for the three substrates. The levels of the high-energy Pi intermediate of the (Na+ + K+)-ATPase reaction were augmented by dexamethasone treatment and the increased levels were quantitatively correlated with the observed stimulation of (Na+ + K+)-ATPase specific activity. The apparent turnover numbers of the reaction remained unchanged. The specific activity of the ouabain-sensitive p-nitrophenylphosphatase increased proportionally to the increase in (Na+ + K+)-ATPase specific activity. Enzyme activation by acute dexamethasone treatment occurred in the absence of changes in glomerular filtration rate and tubular Na+ excretion.These results indicate that (Na+ + K+)-ATPase activation by acute and chronic dexamethasone treatment represents an increase in the number of enzyme units with little or no change in the kinetic properties (affinity, cooperativity) of the enzyme. In addition, the information presented suggests a direct regulatory effect of glucocorticoid hormones on the activity of renal (Na+ + K+)-ATPase and is inconsistent with the concept that changes in Na+ loads mediate the effects of these hormones on enzyme activity. Instead, the results suggests a primary role for glucocorticoid hormones in the renal regulation of Na+ homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号