首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 250 毫秒
1.
为了更清楚地了解MAPK信号通路中的细胞壁完整性信号通路(cell wall integrity,CWI)和高渗透压甘油(high-osmolarity glycerol pathway,HOG)信号通路对斑玉蕈菌丝成熟、原基形成和子实体发育过程的影响及调节作用,对MAPK信号通路中的CWI和HOG信号通路基因在斑玉蕈不同菌丝培养时间(40、60、80和100d)和不同生长发育关键时期(24h、菌丝恢复期、菌丝转色期、原基期和子实体期)的表达模式进行分析,以期揭示这两条信号通路基因参与调节斑玉蕈菌丝的生长、子实体的形成和发育的作用。在斑玉蕈的CWI和HOG信号通路中经分析鉴定一共获得了15个关键基因。CWI信号通路基因表达分析表明:在菌丝培养的40-100d的过程中,大部分CWI信号通路基因在第60天时表达量最高,其中rho1ssk1ssk2ste20的基因表达量上调了2-5倍,在第80-100天时出现持续下降。在HOG信号通路中的大部分基因也在菌丝培养的第60天表达量达到最高。其中sho1ste20ssk1ssk2基因的表达量上调最为显著,而hog1基因的表达量在菌丝培养的第40-100天呈持续下降。子实体形成过程中两条通路的大部分基因在原基形成时期表达量最高,而在子实体时期表达量下调。其中HOG信号通路中的ssk2基因表达量上调最为显著。以上结果说明在菌丝生长过程中第60天时菌丝细胞生长增殖最为旺盛,而在第80天开始菌丝细胞基本开始停止生长,菌丝也逐渐达到成熟。同时在菌丝增殖生长过程中,斑玉蕈持续地上调CWI信号通路基因的表达来调控菌丝细胞壁的完整性,从而控制菌丝细胞壁的形成。其中bck1mkk1slt2基因可能对斑玉蕈菌丝细胞的分裂增殖和细胞壁的形成以及诱导子实体形成起到关键作用。  相似文献   

2.
为了探明漆酶在斑玉蕈生长发育过程中的功能,对斑玉蕈转录测序预测的13个漆酶基因序列进行分析、鉴定和构建分子系统发育树;检测了不同生长发育时期漆酶的活性和漆酶基因表达水平。研究结果显示:13个基因片段中有10个是漆酶基因。不同的漆酶同工酶之间进化关系存在明显差异,大多数漆酶与木腐菌(金针菇Flammulina filiformis和侧耳属Pleurotus)进化关系较近。对斑玉蕈不同生长发育时期的酶活检测结果显示,从斑玉蕈的菌丝恢复期到钉头期,漆酶活性逐渐升高,而在子实体形成后期酶活逐渐降低。对培养40d、60d和80d的菌丝样品以及不同生长发育时期的样品进RT-qPCR检测,结果显示在菌丝营养生长时期,大多数漆酶基因在第40-60天表达量持续增加1-3倍,而在第60-80天时表达量出现降低的情况。而在生殖生长时期,大多数漆酶基因在转色期或者原基期相对表达量达到最大值,并在子实体期出现降低,这与漆酶活性的检测具有一致性。lcc3lcc7lcc8lcc9在斑玉蕈生殖生长过程中相对表达量出现了10-100倍的上调。这说明从菌丝培养到菌丝扭结形成子实体和子实体发育的过程中,不同的漆酶可能发挥着不同的作用,表达量较高的漆酶基因可能对基质降解和子实体形成起主要作用。  相似文献   

3.
芳香族化合物适当时间适当浓度添加到培养基中,可提高真菌漆酶活性,有助于增强其对木质纤维素的利用效率。为了增强斑玉蕈漆酶活性,本文研究了8种芳香族化合物对其酶活的影响及其与菌丝生物量的相关性。研究发现在无诱导物条件下,斑玉蕈漆酶活性和菌丝生物量相关系数r为0.9956,说明它们呈正相关,但是整个培养过程漆酶活性相对较低;供试的芳香族化合物对漆酶活性都有不同程度的诱导作用,其中添加0.1mmol/L的愈创木酚对斑玉蕈漆酶活性诱导作用最大,达到3倍以上,同时提高了斑玉蕈菌丝生长速度和菌丝生物量;而随着添加时间的延长,部分化合物对漆酶活性和菌丝生物量都产生不同程度的抑制作用,这可能因为化合物对菌丝毒性的延长导致菌丝生长变慢或死亡;进一步研究发现,斑玉蕈3个漆酶同工酶基因lcc2lcc3lcc4在诱导剂愈创木酚的影响下转录水平都不同程度地上调。研究结果表明诱导漆酶活性可以提高斑玉蕈菌丝生长速度和生物量,暗示可能通过提高漆酶活性的方法,提高斑玉蕈的培养基利用效率。  相似文献   

4.
糙皮侧耳生长发育过程中漆酶基因家族的表达研究   总被引:1,自引:0,他引:1  
卓睿  马富英  周帅  张晓昱 《菌物学报》2015,34(4):712-716
漆酶参与木质素的降解和食用菌的生长发育。为了明晰漆酶基因在糙皮侧耳生长发育过程中的作用,本文采用real-time PCR检测了11条漆酶基因及Lacc2的小亚基sspoxa3在糙皮侧耳生长发育不同阶段的表达。其中lacc6sspoxa3在整个生长发育阶段表达量均较高;lacc12随着原基的分化和子实体的形成大量表达,与成菇过程有关。lacc4,lacc7lacc11在原基分化期高表达,与原基的分化有关。lacc2,lacc3lacc8在成熟子实体阶段表达量显著上升,与子实体的分化和成熟有关。  相似文献   

5.
戚元成  马琳  张瑞霞  文晴  申进文 《菌物学报》2021,40(5):1170-1179
原基期是糙皮侧耳Pleurotus ostreatus发育进程的关键时期。本研究以糙皮侧耳菌株New 831为试验材料,通过对糙皮侧耳菌丝机械损伤,探讨机械损伤对糙皮侧耳原基诱发的影响。菌丝满板后,经过机械损伤处理,到原基期每隔4d取样一次,测定了这些样品处理组与对照组的活性氧及脂质过氧化水平,并且通过荧光定量分析了Po.WC-1Po.WC-2fst3fst4基因的表达量。结果表明:机械损伤组和对照组的活性氧水平随时间的增加均呈现“先升后降”的趋势,机械损伤总体提高了活性氧的水平,并且机械损伤导致原基提前形成,表明活性氧水平的提高,可能促进了糙皮侧耳原基形成;荧光定量分析发现糙皮侧耳菌丝机械损伤处理后,Po.WC-1Po.WC-2fst3fst4基因的表达量均发生变化,这些基因的变化表明它们可能参与调控糙皮侧耳原基形成;Po.WC-2fst3基因在第8天时的显著上调表达可能促进了糙皮侧耳原基形成。研究结果表明机械损伤能够促进糙皮侧耳原基提前形成,这将为进一步研究原基形成过程中机械损伤的作用机制奠定基础。  相似文献   

6.
在大型真菌原基形成和子实体发育的过程中,温度是一个极其关键的因素,高温显著影响多种食用菌原基的形成和子实体的品质。广东虫草是中国华南地区特有的虫草类新食品原料,其子实体富含多种活性成分和营养成分,且能够进行较大规模人工栽培。然而,温度对广东虫草原基形成的影响及调控机制尚不清楚。本研究通过不同温度处理不同时间段,发现29℃处理3d抑制了广东虫草原基的形成;对29℃处理3d处理前后的菌丝阶段(CK)和原基阶段(CK-P和HT-P)样品进行转录组测序分析,高温处理后原基阶段的两个组中发现1 682个差异表达基因,其中1 015个上调表达和667个下调表达。在碳水化合物代谢途径中,多个糖酵解和三羧酸循环及葡聚糖和海藻糖合成相关基因在高温处理后呈现下调表达;在原基样品中,多个热激蛋白基因(Hsp10Hsp23DnaJHsp70Hsp90Hsp98)和转录因子C2H2转录水平显著上调表达。本研究结果基于分子水平揭示了高温影响原基形成过程中能量代谢和相关基因的差异表达,为后续利用广东虫草抗逆相关基因资源培育新品种奠定了重要的基础。  相似文献   

7.
采用平板培养和基因表达等方法,研究了精氨酸对斑玉蕈菌丝生长的影响及其机理。结果表明添加1–2 mmol/L精氨酸能明显提高菌丝的生长速度。添加精氨酸促进精氨酸代谢,提高GCN2介导的翻译通路活力以及空泡氨基酸转运载体基因AVT3的表达。营养补充实验证实在营养匮乏的情况下,单一添加精氨酸能促进斑玉蕈菌丝良好生长。研究结果证实外源添加精氨酸能作为主要营养物质促进斑玉蕈菌丝生长。  相似文献   

8.
为了探究曲酸增加子实体产量的机制,首先考察了搔菌后外源添加曲酸对不同菌丝培养时间出菇的影响。研究发现当菌丝培养时间过短或者过长添加曲酸都得不到很好的增产效果,菌丝培养时间在60-80d之间增产效率最高,并且后熟期60d的增产效率大于80d的增产效率。进一步研究发现添加曲酸可以提高菌丝利用基质中木质纤维素的利用率。更深入地研究发现,基质中的漆酶和纤维素酶活性在斑玉蕈的不同发育时期受到曲酸调控。漆酶活性在最初的菌丝恢复期和转色期酶活性低于对照组,但是在原基期、钉头期和子实体期酶活性显著地高于对照组;纤维素酶活性在整个发育周期中曲酸组都高于对照组,在子实体发育后期酶活性被提高3.16倍。最后,从分子水平上分析了漆酶基因和纤维素酶基因的表达量,研究显示添加曲酸后漆酶基因和纤维素酶基因在不同程度上被上调,这个结果与酶活的结果相一致。这些结果说明外源添加曲酸通过提高生殖生长阶段的菌丝利用培养基质中的漆酶和纤维素酶活性,进而提高菌丝利用木质纤维素,为斑玉蕈子实体生长发育提供更多的能源,实现增加子实体产量的目的。  相似文献   

9.
草菇味道鲜美,食用价值高,是我国主要栽培的商业食用菌之一。MADS-box转录因子对真核生物的生长发育和信号传导具有关键性的调控作用。本研究通过农杆菌介导的方法获得5个草菇MADS-box转录因子Vvrin1基因的RNA干扰转化子,并进一步对转化子的表型进行分析,发现5个转化子菌丝在PDA固体培养基和栽培料中的生长速度均显著小于(P<0.05)转化野生型菌株H1521,且转化子菌丝颜色呈黄白色,较粗,较稀疏。出菇实验发现,RNA干扰转化子生长停滞在菌丝阶段未能形成原基出菇。转化子菌丝阶段的转录组测序数据发现,上调基因主要富集在核糖体、氨基酸生物合成和次生代谢物的生物合成等途径;下调基因主要富集在MAPK信号通路、脂肪酸氧化、磷脂酰肌醇信号系统等途径。进一步推测MADS-box转录因子Vvrin1基因表达水平降低会影响MAPK信号通路和磷脂酰肌醇信号通路的表达,进而降低菌丝生长速度,影响原基形成。  相似文献   

10.
【背景】子实体是食用菌的主要商品部位,也是真菌生殖生长的重要结构,其发育受到多种信号途径的调控。【目的】以金针菇(Flammulina filiformis)为材料,对转录组和基因组数据的信息素信号通路基因进行分析获得差异表达的基因,并对其在菌丝生长和子实体发育过程中的表达情况进行分析,以期为研究食用菌子实体发育提供参考。【方法】基于已有的金针菇基因组数据,注释了金针菇信息素信号通路。进一步通过转录组测序鉴定了该通路中参与金针菇子实体发育的关键基因,并对关键基因进行荧光定量PCR验证。【结果】cdc24和ste12基因在子实体发育不同时期的5个样品(原基、伸长期菌柄、伸长期菌盖、成熟期菌柄和成熟期菌盖)中的表达具有显著差异,使用荧光定量PCR技术进行验证与上述结果一致。【结论】cdc24和ste12这2个关键基因可能参与了金针菇子实体发育过程中的组织分化调控机制。  相似文献   

11.
香菇是世界产量第二大食用菌,栽培历史悠久。在木屑袋料栽培模式下,香菇发育可以分为菌丝生长期(G)、菌丝褐化期(B)、原基形成期(P)以及出菇期(FB)4个阶段。褐化期和原基形成期是香菇从营养生长期到生殖生长两个关键发育阶段,对香菇子实体产量和质量至关重要。本研究以3种不同栽培材料为重复,对香菇发育的前3个阶段进行了转录组分析。主成分分析和相似性分析表明,基因随着发育进程的推进,不同栽培基质样本的基因表达特征相似。以菌丝生长阶段的转录本为参照,通过基因差异表达分析,获得与菌丝褐化成熟和原基形成相关的基因,并对这些基因进行GO和KEGG功能富集分析;其次,对9个转录本数据进行加权基因共表达网络分析(WGCNA),分别获得了与菌丝生长、褐化阶段及原基形成各阶段高度相关的黑色、蓝色及黄色基因模块,并利用网络节点分析获得了与菌丝褐化成熟和原基形成得到7个关键基因;最后,结合差异基因和基因模块分析,得到了菌丝生长阶段的17个重要基因、褐化阶段的167个重要基因以及原基形成阶段的67个重要基因。通过多分析手段结合为筛选候选基因提供了更为高效的方法。  相似文献   

12.
斑玉蕈Hypsizygus marmoreus是我国重要的工厂化栽培食用菌之一,在栽培过程中发生污染将为生产企业带来经济损失。为对实际生产中的斑玉蕈病害进行溯源和防控,本研究采集了一家大型生产企业在3个不同省市产地发生污染的菌种或子实体样品,结合分子测序和形态特征观察对分离到的微生物进行鉴定,并通过平板对峙实验分析了菌株对斑玉蕈菌丝生长的影响。从样品中共分离得到了11株可疑致病微生物,包含10株细菌和1株真菌,分布于3个科7个属,优势科为肠杆菌科Enterobacteriaceae,优势属为芽胞菌属Bacillus,其中2株细菌可能分别为芽孢杆菌属和肠杆菌属Enterobacter新种。对峙实验显示7株细菌和1株真菌对相应宿主斑玉蕈菌株的菌丝生长有明显的抑制作用。结合生产过程,提出培养料的配制、灭菌和出菇管理阶段是斑玉蕈栽培中预防病害的3个关键控制点。在秋冬季气温较低时适当延长培养料的灭菌升温时间,在夏季菇房需要设备降温时加强对出菇过程中栽培环境尤其是水体的严格管理,有助于降低斑玉蕈工厂化栽培的病害发生率。  相似文献   

13.
本研究收集了19株不同来源的斑玉蕈品种,通过ITS测序构建其系统发育树,随后根据菌株在木屑培养基与葡萄糖培养基的生长速度对菌株进行分类,选取生长速度差异明显的快、中和慢8株斑玉蕈菌株进行出菇实验及胞内外碳代谢指标的测定,探讨斑玉蕈生产性能与胞内外碳代谢的相关性。研究发现收集到的19株菌株均为斑玉蕈,亲缘关系近,遗传分化程度低;选取出的8株斑玉蕈菌株鲜菇产量与菌丝生长速度呈极显著正相关,菌丝生长越快,出菇产量越高。同时,斑玉蕈菌株鲜菇产量与菌丝湿重、还原糖、可溶性蛋白、滤纸酶(FPase)、CMC-Na酶(CMCase)、木聚糖酶和淀粉酶7个胞外碳代谢指标(ECMI)及胞内葡萄糖、己糖激酶(HK)、丙酮酸激酶(Pyk)、柠檬酸合酶(CS)、α-酮戊二酸脱氢酶(KGDH)和葡萄糖-6-磷酸脱氢酶(G6PD) 6个胞内碳代谢指标(ICMI)呈显著正相关。说明菌丝生长速度快的斑玉蕈品种,胞外基质分解速度更快,提高可吸收碳源的供应,胞内加强对碳的吸收与同化,为菌丝的增殖提供更多原料与能量。本研究分析了斑玉蕈生产性能与胞内外碳代谢的相关性,为斑玉蕈优良品种的鉴别与选育奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号