首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using persulfate/ascorbic acid redox pair, poly(methylacrylate) was grafted on to guar gum and the conditions for the grafting were optimized. The copolymer sample having maximum %G was evaluated for the removal of Cr(VI) and the sorption conditions were optimized. The sorption was found pH dependent, pH 1.0 being the optimum value. Sorption data at pH 1.0 were modeled using both the Langmuir and Freundlich isotherms where the data fitted better to Freundlich isotherm. The equilibrium sorption capacity of 29.67 mg/g was determined from the Langmuir isotherm. The sorption followed a pseudo-second-order kinetics with a rate constant 2.5 × 10?4 g mg?1 min?1. The grafted product was also evaluated for Cr(VI) removal from local electroplating industrial waste water. The regeneration experiments revealed that the guar-graft-poly(methylacrylate) could be successfully reused for five cycles. In the present study conductivity measurements were used instead of conventional photometric method for determining Cr(VI) concentration in the equilibrium solutions and the results obtained have been compared with photometric method. Optimum Cr(VI) binding under highly acidic conditions indicated significant contribution of non electrostatic forces in the adsorption process.  相似文献   

2.
The bioaccumulation of chromium(VI), nickel(II), copper(II), and reactive dye by the yeast Rhodotorula mucilaginosa has been investigated in media containing molasses as a carbon and energy source. Optimal pH values for the yeast cells to remove the pollutants were pH 4 for copper(II) and dye, pH 6 for chromium(VI) and dye, and pH 5 for nickel(II) and dye in media containing 50 mg l?1 heavy metal and 50 mg l?1 Remazol Blue. The maximum dye bioaccumulation was observed within 4–6 days and uptake yields varied from 93% to 97%. The highest copper(II) removal yields measured were 30.6% for 45.4 mg l?1 and 32.4% for 95.9 mg l?1 initial copper(II) concentrations. The nickel(II) removal yield was 45.5% for 22.3 mg l?1, 38.0% for 34.7 mg l?1, and 30.3% for 62.2 mg l?1. Higher chromium(VI) removal yields were obtained, such as 94.5% for 49.2 mg l?1 and 87.7% for 129.2 mg l?1 initial chromium(VI) concentration. The maximum dye and heavy metal bioaccumulation yield was investigated in media with a constant dye (approximately 50 mg l?1) and increasing heavy metal concentration. In the medium with 48.9–98.8 mg l?1 copper(II) and constant dye concentration, the maximum copper(II) bioaccumulation was 27.7% and 27.9% whereas the maximum dye bioaccumulation was 96.1% and 95.3%. The maximum chromium(VI) bioaccumulation in the medium with dye was 95.2% and 80.3% at 48.2 and 102.2 mg l?1 chromium(VI) concentrations. In these media dye bioaccumulation was 76.1% and 35.1%, respectively. The highest nickel(II) removal was 6.1%, 20.3% and 16.0% in the medium with 23.8 mg l?1 nickel(II) + 37.8 mg l?1 dye, 38.1 mg l?1 nickel(II) + 33.4 mg l?1 dye and 59.0 mg l?1 nickel(II) + 39.2 mg l?1 dye, respectively. The maximum dye bioaccumulation yield in the media with nickel(II) was 94.1%, 78.0% and 58.7%, respectively.  相似文献   

3.
Fermentation kinetics of growth and β-carotene production by Rhodotorula glutinis DM28 in batch and continuous cultures using fermented radish brine, a waste generated from fermented vegetable industry, as a cultivation medium were investigated. The suitable brine concentration for β-carotene production by R. glutinis DM28 was 30 g l?1. Its growth and β-carotene production obtained by batch culture in shake flasks were 2.2 g l?1 and 87 μg l?1, respectively, while, in a bioreactor were 2.6 g l?1 and 186 μg l?1, respectively. Furthermore, its maximum growth rate and β-carotene productivity in continuous culture obtained at the dilution rate of 0.24 h?1 were 0.3 g l?1 h?1 and 19 μg l?1 h?1, respectively, which were significantly higher than those in the batch. Therefore, improved growth rate and β-carotene productivity of R. glutinis in fermented radish brine could be accomplished by continuous cultivation.  相似文献   

4.
Denitrification beds are a cost-effective technology for removing nitrate from point source discharge. To date, field trials and operational beds have primarily used wood media as the carbon source; however, the use of alternative more labile carbon media could provide for increased removal rate, lower installation costs and reduced bed size. While previous laboratory experiments have investigated the potential of alternative carbon sources, these studies were typically of short duration and small scale and did not necessarily provide reliable information for denitrification bed design purposes. To address this issue, we compared nitrate removal, hydraulic and nutrient leaching characteristics of nine different carbon substrates in 0.2 m3 barrels, at 14 and 23.5 °C over a 23-month period. Mean nitrate removal rates for the period 10–23 months were 19.8 and 15 g N m?3 d?1 (maize cobs), 7.8 and 10.5 g N m?3 d?1 (green waste), 5.8 and 7.8 g N m?3 d?1 (wheat straw), 3.0 and 4.9 g N m?3 d?1 (softwood), and 3.3 and 4.4 g N m?3 d?1 (hardwood) for the 14 and 23.5 °C treatments, respectively. Maize cobs provided a 3–6.5-fold increase in nitrate removal over wood media, without prohibitive decrease in hydraulic conductivity, but had higher rates of nutrient leaching at start-up. Significant difference in removal rate occurred between the 14 and 23.5 °C treatments, with the mean Q10 temperature coefficient = 1.6 for all media types in the period 10–23 months.  相似文献   

5.
The combined effects of initial sucrose and initial Remazol Turquoise Blue-G (RTBG) reactive dye concentrations on the specific growth rate and dye bioaccumulation efficiency of Candida utilis was investigated and optimized using response surface methodology (RSM) in this study. A 22 full factorial central composite design was successfully used for experimental design and analyses of the results. Two numerical correlations fitted to a second-order quadratic equation were obtained to estimate the responses of specific growth rate and dye uptake yield. The statistical analysis indicated that both the microbial growth and removal yield of dye enhanced with raising sucrose concentration up to 15 g l?1 and diminished with the increase in initial RTBG dye concentration up to approximately 500 mg l?1 due to inhibition caused by high concentrations of RTBG dye. The optimum combination predicted via RSM confirmed that C. utilis was capable of bioaccumulating RTBG with the maximum uptake yield of 82.0% in 15 g l?1 sucrose and 50 mg l?1 dye containing growth medium.  相似文献   

6.
The ability of vertical flow (VF) constructed wetland systems to treat high-strength (ca. 300 mg L?1 of COD and ca. 300 mg L?1 total-nitrogen) wastewater under tropical climatic conditions was studied during a 5-month period. Nine 0.8-m diameter experimental VF units (depth 0.6 m) were used: three units were planted with Typha angustifolia L., another three units were planted with Cyperus involucratus Rottb and three units were unplanted. Each set of units were operated at hydraulic loading rates (HLRs) of 20, 50 and 80 mm d?1. Cyperus produced more shoots and biomass than the Typha, which was probably stressed because of lack of water. The high evapotranspirative water loss from the Cyperus systems resulted in higher effluent concentrations of COD and total-P, but the mass removal of COD did not differ significantly between planted and unplanted systems. Average mass removal rates of COD, TKN and total-P at a HLR of 80 mm d?1 were 17.8, 15.4 and 0.69 g m?2 d?1. The first-order removal rate constants at a HLR of 80 mm d?1 for COD, TKN and total-P were 49.8, 30.1 and 13.5 m year?1, respectively, which is in the higher range of k-values reported in the literature. The oxygen transfer rates were ca. 80 g m?2 d?1 in the planted systems as opposed to ca. 60 g m?2 d?1 in the unplanted systems. The number of Nitrosomonas was two to three orders of magnitude higher in the planted systems compared to the unplanted systems. Planted systems thus had significantly higher removal rates of nitrogen and phosphorus, higher oxygen transfer rates, and higher quantities of ammonia-oxidizing bacteria. None of the systems did, however, fully nitrify the wastewater, even at low loading rates. The vertical filters did not provide sufficient contact time between the wastewater and the biofilm on the gravel medium of the filters probably because of the shallow bed depth (0.6 m) and the coarse texture of the gravel. It is concluded that vertical flow constructed wetland systems have a high capacity to treat high-strength wastewater in tropical climates. The gravel and sand matrix of the vertical filter must, however, be designed in a way so that the pulse-loaded wastewater can pass through the filter medium at a speed that will allow the water to drain before the next dose arrives whilst at the same time holding the water back long enough to allow sufficient contact with the biofilm on the filter medium.  相似文献   

7.
A metabolically engineered Escherichia coli has been constructed for the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from unrelated carbon sources. Genes involved in succinate degradation in Clostridium kluyveri and P(3HB) accumulation pathway of Ralstonia eutropha were co-expressed for the synthesis of the above copolyester. E. coli native succinate semialdehyde dehydrogenase genes sad and gabD were both deleted for eliminating succinate formation from succinate semialdehyde, which functioned to enhance the carbon flux to 4HB biosynthesis. The metabolically engineered E. coli produced 9.4 g l?1 cell dry weight containing 65.5% P(3HB-co-11.1 mol% 4HB) using glucose as carbon source in a 48 h shake flask growth. The presence of 1.5–2 g l?1 α-ketoglutarate or 1.0 g l?1 citrate enhanced the 4HB monomer content from 11.1% to more than 20%. In a 6 l fermentor study, a 23.5 g l?1 cell dry weight containing 62.7% P(3HB-co-12.5 mol% 4HB) was obtained after 29 h of cultivation. To the best of our knowledge, this study reports the highest 4HB monomer content in P(3HB-co-4HB) produced from unrelated carbon sources.  相似文献   

8.
d-Lactic acid and pyruvic acid are two important building block intermediates. Production of d-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l?1 of Pseudomonas stutzeri SDM could catalyze 45.00 g l?1 dl-lactic acid into 25.23 g l?1 d-lactic acid and 19.70 g l?1 pyruvic acid in 10 h. Using a simple ion exchange process, d-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.  相似文献   

9.
Maximal activity of the immobilized d-psicose 3-epimerase from Agrobacterium tumefaciens on Duolite A568 beads was achieved at pH 9.0 and 55 °C with borate, and at pH 8.5 and 50 °C without borate. The half-lives of the immobilized enzyme at 50 °C with and without borate were increased 4.2- and 128-fold compared to that of the free enzyme without borate, respectively. The immobilized enzyme with borate produced 441 g l?1 psicose from 700 g l?1 fructose at pH 9.0 and 55 °C, whereas 193 g l?1 psicose was produced without borate at pH 8.5 and 50 °C after 120 min in a batch reaction. The immobilized enzyme in a packed-bed bioreactor without borate was produced continuously 325 g l?1 psicose from 500 g l?1 fructose at a dilution rate of 1.62 h?1 over a 236 h period with productivity of 527 g l?1 h?1 while that without borate produced 146 g l?1 psicose at 4.15 h?1 over a 384-h period with productivity of 606 g l?1 h?1. The operational half-lives of the enzyme with and without borate in the bioreactor were 601 and 645 h, respectively. In the present study, psicose was produced stably with high productivity using the immobilized d-psicose 3-epimerase in the presence of borate.  相似文献   

10.
《Process Biochemistry》2007,42(6):1028-1032
Chromate reduction was carried out by resting cells of Achromobacter sp. Ch-1 with lactate as electron donor under aerobic conditions. The reduction activity of the samples supplemented with lactate was two times as those without lactate. The reduction rate was influenced by initial pH and lactate concentration. Under the optimal conditions, pH 9.0 and 4000 mg l−1 lactate supplement, reduction rate was 5.45 mg l−1 min−1. The reduction rate decreased with increasing of Cr(VI) concentrations and increased with cell densities proportionally. The maximum reduction limit of Ch-1 cells was obtained at 2107 mg l−1 of Cr(VI).  相似文献   

11.
The effect of long-term (30 days) exposure to PCZ (0.2, 50, and 500 μg l?1) on intestine-related biochemical markers in rainbow trout was investigated. Multiple biomarkers were measured, including digestive enzymes (proteolytic enzymes and amylase), antioxidant responses (TBARS, CP, SOD, CAT, GR and GPx) and energy metabolic parameters (RNA/DNA ratio, Na+-K+-ATPase). Exposure to 500 μg l?1 PCZ led to significantly inhibited (p < 0.01) proteolytic enzyme and amylase activity. Activities of the antioxidant enzymes SOD, CAT, and GPx gradually increased at lower PCZ concentrations (0.2 and 50 μg l?1). At the highest concentration (500 μg l?1), oxidative stress was apparent as significant higher (p < 0.05) lipid peroxidation and protein carbonyls, associated with an inhibition of antioxidant enzymes activity. Moreover, energy metabolic parameters (RNA/DNA ratio, Na+-K+-ATPase) were significantly inhibited (p < 0.01) in the intestines of fish exposed to 500 μg l?1 PCZ, compared with controls. We suggest that long-term exposure to PCZ could result in several responses in intestine-related biochemical markers, which potentially could be used as indicators for monitoring residual PCZ present in the aquatic environment.  相似文献   

12.
The present paper presents results of the study in removal of iron, arsenic and total coliform from drinking water using single-pass constructed soil filter (CSF). Results indicated that arsenic levels ranged from 0.5 to less than 10 μg l?1 levels; iron from 5 to less than 0.3 mg l?1 and coliform from 10?5 to less than 5 CFU/100 ml. The results revealed very high removal efficiency, i.e., over 99% and water quality as per WHO standard.  相似文献   

13.
In this work, straw hydrolysates were used to produce succinic acid by Actinobacillus succinogenes CGMCC1593 for the first time. Results indicated that both glucose and xylose in the straw hydrolysates were utilized in succinic acid production, and the hydrolysates of corn straw was better than that of rice or wheat straw in anaerobic fermentation of succinic acid. However, cell growth and succinic acid production were inhibited when the initial concentration of sugar, which was from corn straw hydrolysate (CSH), was higher than 60 g l?1. In batch fermentation, 45.5 g l?1 succinic acid concentration and 80.7% yield were attained after 48 h incubation with 58 g l?1 of initial sugar from corn straw hydrolysate in a 5-l stirred bioreactor. While in fed-batch fermentation, concentration of succinic acid achieved 53.2 g l?1 at a rate of 1.21 g l?1 h?1 after 44 h of fermentation. Our work suggested that corn straw could be utilized for the economical production of succinic acid by A. succinogenes.  相似文献   

14.
The studies on adsorption of hexavalent chromium were conducted by varying various parameters such as contact time, pH, amount of adsorbent, concentration of adsorbate and temperature. The kinetics of adsorption of Cr(VI) ion followed pseudo second order. Langmuir adsorption isotherm was employed in order to evaluate the optimum adsorption capacity of the adsorbent. The adsorption capacity was found to be pH dependant. Sawdust was found to be very effective and reached equilibrium in 3 h (adsorbate concentration 30 mg l−1). The rate constant has been calculated at 303, 308, 313 and 318 K and the activation energy (Ea) was calculated using the Arrhenius equation. Thermodynamic parameters such as standard Gibbs energy (ΔG°) and heat of adsorption (ΔHr) were calculated. The ΔG° and ΔHr values for Cr(VI) adsorption on the sawdust showed the process to be exothermic in nature. The percentage of adsorption increased with decrease in pH and showed maximum removal of Cr(VI) in the pH range 4.5–6.5 for an initial concentration of 5 mg l−1.  相似文献   

15.
High activity levels and balanced anaerobic microbial communities are necessary to attain proper anaerobic digestion performance. Therefore, this work was focused on the kinetic performance and the microbial community structure of six full-scale anaerobic digesters and one lab-scale co-digester. Hydrolytic (0.6–3.5 g COD g?1 VSS d?1) and methanogenic (0.01–0.84 g COD g?1 VSS d?1) activities depended on the type of biomass, whereas no significant differences were observed among the acidogenic activities (1.5–2.2 g COD g?1 VSS d?1). In most cases, the higher the hydrolytic and the methanogenic activity, the higher the Bacteroidetes and Archaea percentages, respectively, in the biomasses. Hydrogenotrophic methanogenic activity was always higher than acetoclastic methanogenic activity, and the highest values were achieved in those biomasses with lower percentages of Methanosaeta. In sum, the combination of molecular tools with activity tests seems to be essential for a better characterization of anaerobic biomasses.  相似文献   

16.
The toxic effects of Aroclor 1254 (0.05, 0.5, 5 and 50 μg l?1) on scallop (Chlamys farreri) immune system in vivo were studied. The results showed that Aroclor 1254 had significant toxic effect on the parameters tested in this paper (P < 0.05). The total number of haemocytes, the proportion of granulocytes, phagocytosis in all groups as well as the lysosomal membrane stability (LMS) in 5, 50 μg l?1 and bacteriolytic activity 0.5, 5, 50 μg l?1 treatments decreased significantly, while the proportion of hyalinocytes and the production of O2- in all treatments remarkably increased during the sampling time and tended to be stable gradually after 6–15 d. The bacteriolytic activity in 0.05 μg l?1 treatments, LMS in 0.05, 0.5 μg l?1 groups and the DNA damage (comet ratios and arbitrary values) in all treatments increased at the beginning of exposure and reached their peaks on day 1, day 1, day 6 and day 3, following that they all decreased gradually and became stable after 9–15 d. When the indices reached stability, except for DNA damage was higher than controls, the others were all significantly lower than those of controls (P < 0.05). Thus, Aroclor 1254 has evident toxic effects on scallop immune system, which supports the view that a relationship exists between pollution and immunomodulation in aquatic organisms. Also it supports the speculation that the PCBs pollution is one of the important reasons of the mass mortality of the C. farreri.  相似文献   

17.
The removal of Remazol Blue and Reactive Black B by the immobilized thermophilic cyanobacterial strain Phormidium sp. was investigated under thermophilic conditions in a batch system, in order to determine the optimal conditions required for the highest dye removal. In the experiments, performed at pH 8.5, with different initial dye concentrations between 9.1 mg l−1 and 82.1 mg l−1 and at 45 °C, calcium alginate immobilized Phormidium sp. showed high dye decolorization, with maximum uptake yields ranging from 50% to 88% at all dye concentrations tested. When the effects of high dye concentrations on dye removal were investigated, the highest uptake yield in the beads was 50.3% for 82.1 mg l−1 Remazol Blue and 60.0% for 79.5 mg l−1 Reactive Black B. The highest color removal was detected at 45 °C and 50 °C incubation temperatures for all dye concentrations. As the temperature decreased, the removal yield of immobilized Phormidium sp. also decreased. At about 75 mg l−1 initial dye concentrations, the highest specific dye uptake measured was 41.29–41.17 mg g−1 for Remazol Blue and 47.69–43.82 mg g−1 for Reactive Black B at 45 °C and 50 °C incubation temperatures, respectively, after 8 days incubation.  相似文献   

18.
Constructed wetlands have a good potential for wastewater treatment in developing countries due to the simple operation and low implementation costs. Ornamental plants like Canna and Heliconia are used in the wetlands to increase their aesthetic value and these two species were compared in this study. Six pilot scale horizontal subsurface flow constructed wetland units were constructed at the Asian Institute of Technology (AIT) campus in Bangkok, Thailand, of which three were planted with Heliconia psittacorum L.f. × H. Spathocircinata (Aristeguieta) and three with Canna × generalis L. Bailey. The beds were loaded with domestic wastewater in four trials with hydraulic loading rates ranging from 55 to 440 mm d?1 corresponding to nominal detention times between 12 h and 4 days. Both plant species grew well in the systems and especially Canna had high growth rates (3100 ± 470 g DW m?2 yr?1) compared to Heliconia (550 ± 90 g DW m?2 yr?1). TSS mass removal rates were very high with efficiencies >88% even at hydraulic loading rates of 440 mm d?1. COD mass removal rates varied between 42 and 83% depending on the loading rates. The removal rate constants for COD as fitted by the first-order kC* model were estimated to be 0.283 and 0.271 m d?1 for Canna and Heliconia beds, respectively (C* = 28.1 and 26.7 mg l?1). Removals of nitrogen (N) and phosphorus (P) were low compared to the loading rates, but removal of total-N was higher in the beds planted with Canna than in beds with Heliconia because of the higher growth rate of Canna. It is concluded that ornamental species like Canna and Heliconia can be used to enhance the aesthetic appearance and hence the public acceptance of wastewater treatment systems in tropical climates. Canna is the preferred species from a treatment perspective because of its more vigorous growth, but since Heliconia has an economic potential as cut flowers may be preferred in many cases.  相似文献   

19.
A free-water surface wetland covering an area of 2800 m2 was operated from March 2002 to June 2004 for agricultural runoff treatment in the Dianchi Valley in China. In the wetland were grown Zizania Caduciflora Turez Hand-mazt and Phragmites australis (Cav.) Trin.ex Steud. The instantaneous inflow rate was measured and the integrated flux was recorded by an ultrasonic flow instrument all year round. The average inflow rate, hydraulic loading rate (HLR) and hydraulic retention time (HRT) were kept at 242 m3 d?1, 12.7 cm d?1 and 2.0 d, respectively. The annual average total phosphorus (TP) in the inflow was 0.87 mg L?1, and the corresponding removal efficiency was calculated to be 59.0%. Biannual plant uptake and removal by harvesting and seed transport was the main pathway for TP removal, while the influent TP load was 12.9 g m?2 year?1. Hydraulic retention time had a significant positive correlation with the removal of P (r2 = 0.88). Water temperature, inflow phosphorus load, inflow and hydraulic load rates were positively correlated with the removal of P. Inflow phosphorus concentrations were negatively correlated with the removal of P. It is shown that the free-water surface wetland was an effective and economical system for agricultural runoff treatment in lake regions.  相似文献   

20.
This study aimed to improve rosmarinic acid (RA) production in the whole plant culture of Solenostemon scutellarioides through elicitation with phytopathogenic fungi. Amongst selected fungi, Aternaria alternata caused significant elevation (p < 0.05–0.01) in RA accumulation (∼1.3–1.6-fold) between 25 and 100 μg l−1. However, elicitation at the dose of 50 μg l−1 has been found to be most effective and intracellular RA content reached almost ∼1.6-fold (p < 0.01) higher in day 7. Therefore, A. alternata (50 μg l−1) was selected for mechanism evaluation. A significant elevation of intercellular jasmonic acid was observed up to day 6 after elicitation with A. alternata (50 μg l−1). A significant increase in tissue H2O2 and lipid peroxidation coupled with depletion of antioxidant enzymes superoxide dismutase and catalase indicated augmented oxidative stress associated with biotic interaction. Preceding the elicitor-induced RA accumulation, a notable alteration in the specific activities of biosynthetic enzymes namely PAL and TAT was recorded, while, no significant change in the activities of RAS was observed. HPPR activity was slightly improved in elicited plant. Therefore, it could be concluded that A. alternata elicited the biosynthesis of rosmarinic acid via signal transduction through jasmonic acid coupled with elicitor induced oxidative stress and associated mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号