首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied by SEM the external morphology of the ooecium in eight bryozoans of the genus Cauloramphus (Cheilostomata, Calloporidae): C. spinifer, C. variegatus, C. magnus, C. multiavicularia, C. tortilis, C. cryptoarmatus, C. niger, and C. multispinosus, and by sectioning and light microscopy the anatomy of the brooding apparatus of C. spinifer, C. cryptoarmatus, and C. niger. These species all have a brood sac, formed by invagination of the non-calcified distal body wall of the maternal zooid, located in the distal half of the maternal (egg-producing) autozooid, and a vestigial, maternally budded kenozooidal ooecium. The brood sac comprises a main chamber and a long passage (neck) opening externally independently of the introvert. The non-calcified portion of the maternal distal wall between the neck and tip of the zooidal operculum is involved in closing and opening the brood sac, and contains both musculature and a reduced sclerite that suggest homology with the ooecial vesicle of a hyperstomial ovicell. We interpret the brooding apparatus in Cauloramphus as a highly modified form of cheilostome hyperstomial ovicell, as both types share 1) a brood chamber bounded by 2) the ooecium and 3) a component of the distal wall of the maternal zooid. We discuss Cauloramphus as a hypothetical penultimate stage in ovicell reduction in calloporid bryozoans. We suggest that the internal-brooding genus Gontarella, of uncertain taxonomic affinities, is actually a calloporid and represents the ultimate stage in which no trace of the ooecium remains. Internal brooding apparently evolved several times independently within the Calloporidae.  相似文献   

2.
The nature of the wall layers observed in suberized tyloses was studied in Populus basalmifera L., Ulmus americana L. and Quercus rubra L. As the suberin layers were present only in tyloses that had completed their expansion, most of the results concern mature tyloses. The cyto- and immunocytochemical tests were conducted, respectively, with an exoglucanase having a binding affinity for β(1→4)-D-glucans, the subunits of cellulose, and with two monoclonal antibodies specific for un-esterified and esterified pectic molecules. In the three species, labelling for pectic compounds was intense over the external layer of tyloses but usually more dispersed or nearly absent over the layer corresponding to a primary wall that was, however, intensely labelled for β(1→4)-D-glucans. The outer wall layer, comparable to a middle lamella in mature tyloses, was continuous with similar material that appeared to be secreted by the tylosis. This material was particularly abundant in pit chambers, in void spaces between the tylosis and the vessel wall, particularly at the junction of the vessel and two adjacent cells, and close to the rim of vessel perforation plates. In P. balsamifera, a single suberized layer or occasionally a succession of suberized and cellulose-containing layers was observed internal to the tylosis primary wall. In U. americana, the wall of tylosis was similar to that of P. balsamifera except that, at times, a secondary-wall-like layer was formed and only a single suberized layer was observed. In Q. rubra, the suberized layer was always observed internal to the tylosis secondary wall. Simple pits were also constantly noted in Q. rubra tyloses. The occasional occurrence of a cellulosic layer internally to the suberized layer was observed in the three species. Histochemical tests revealed that lignin was also an important component of the tylosis wall. The tyloses frequently contained phenolic compounds in close association with the suberized layers. The significance of the formation of suberized tyloses in trees is discussed.  相似文献   

3.
The ascophoran Pentapora foliacea was studied from epoxy sections of skeletal and soft (hard-soft) tissues. The basal wall is double, indicating the colony grew as two independent layers, back to back. The structure of the vertical walls and interzooidal communication organs indicates that zooids were budded in the usual way as in most encrusting cheilostomes. Secondary layers of the frontal wall are of acicular aragonite. The ovicell develops as a flattened cuticular bladder in early ontogeny; the aragonitic layer of the frontal wall later engulfs it. A median vesicle, an evagination of the vestibular wall, is present but the eggs may be supplied with sufficient yolk to nurture the embryo. The overall ovicell structure is similar to that of hyperstomial ovicells in other cheilostomes.  相似文献   

4.
Deciphering the expression pattern of K+ channel encoding genes during development can help in the understanding of the establishment of cellular excitability and unravel the molecular mechanisms of neuromuscular diseases. We focused our attention on genes belonging to the erg family, which is deeply involved in the control of neuromuscular excitability in Drosophila flies and possibly other organisms. Both in situ hybridisation and RNase Protection Assay experiments were used to study the expression pattern of mouse (m)erg1, m-erg2 and m-erg3 genes during mouse embryo development, to allow the pattern to be compared with their expression in the adult. M-erg1 is first expressed in the heart and in the central nervous system (CNS) of embryonic day 9.5 (E9.5) embryos; the gene appears in ganglia of the peripheral nervous system (PNS) (dorsal root (DRG) and sympathetic (SCG) ganglia, mioenteric plexus), in the neural layer of retina, skeletal muscles, gonads and gut at E13.5. In the adult m-erg1 is expressed in the heart, various structures of the CNS, DRG and retina. M-erg2 is first expressed at E9.5 in the CNS, thereafter (E13.5) in the neural layer of retina, DRG, SCG, and in the atrium. In the adult the gene is present in some restricted areas of the CNS, retina and DRG. M-erg3 displayed an expression pattern partially overlapping that of m-erg1, with a transitory expression in the developing heart as well. A detailed study of the mouse adult brain showed a peculiar expression pattern of the three genes, sometimes overlapping in different encephalic areas.  相似文献   

5.
6.
采用光镜、透射电镜和细胞化学技术,对紫萁孢子囊发育过程中孢壁的超微结构和孢子囊内多糖和脂滴的分布及其动态变化进行研究,以探讨紫萁孢子囊发育过程中多糖和脂滴的代谢特征,为蕨类孢子发生的研究提供基础资料。结果表明:(1)紫萁孢子囊由1层囊壁细胞、2层绒毡层和产孢组织构成。(2)紫萁孢子壁由发达而分2层的外壁(外壁内层和外壁外层)和薄的不连续的周壁构成,由外壁形成棒状纹饰的轮廓;孢子外壁内层由多糖类物质构成,外壁外层和周壁均含有脂类物质。(3)在紫萁孢原细胞中观察到少量脂滴;随着紫萁孢壁的形成,囊壁细胞中淀粉粒的大小逐渐变小、数目先增加后减少,它们转运到内层绒毡层原生质团并转化为孢粉素前体物质,再穿过原生质团内膜表面进入囊腔,成为孢粉素团块或以小球形式填加到孢子表面形成孢壁。(4)紫萁孢子囊将多糖类营养物质转化为脂类,以脂滴的形式储藏在孢子中。  相似文献   

7.
冯伟民 《古生物学报》1994,33(5):635-645
腹足类个体发育中壳质结构的重要特点是壳质层的微观变化,包括原有壳质层的增厚、增生与上覆超微结构相同的壳质层、增生新的超微结构层、壳质层的相互消长与显微结构的演变。壳质层的微观变化决定了壳饰形成的4种类型:增厚型、刺顶型、刺穿型、叠覆型。叠覆的交错片体具加强贝壳抗破裂功能;交错片体排列方式的变化或新的显微结构层的出现均具分类意义。交错针状结构源于纤柱结构,纤柱结构又由简单柱状结构演变而来。  相似文献   

8.
Regional expression patterns of shell matrix protein genes of Pinctada fucata were investigated using real-time quantitative polymerase chain reaction (PCR) and in situ hybridization. Six shell matrix proteins examined in this study indicated a distinct biphasic pattern of expression, falling into one of the following three groups: (1) expressed only in the more dorsal region of the mantle (MSI60 and N16); (2) expressed only in the more ventral region (MSI31, Prismalin-14, and Aspein); and (3) expressed in both regions (nacrein). The ubiquity of the last protein probably reflects its general role as a carbonate-producing enzyme, while the other groups are interpreted as corresponding to the distinction between the two varieties of shell layers, the aragonitic nacreous layer and the calcitic prismatic layer. In addition, the constituent genes of each of these two groups indicated similar levels of relative expression among different sites even among different individuals, suggesting that the genes of each group share a single upstream regulatory factor, respectively, and that these genes are expressed in a dually coordinated fashion.  相似文献   

9.
Most cheilostome bryozoans brood their larvae in skeletal structures called ovicells which, in evolutionary terms, were derived from spines. Ovicells in the great majority of fossil and Recent cheilostomes, however, have lost all or most traces of their spinose origin. Here we review the occurrence of spinose (including costate) brood chambers in cheilostomes, investigating in detail 32 species belonging to ten genera among five families (Calloporidae, Monoporellidae, Macroporidae, Cribrilinidae and Tendridae). Spinose ovicells are moderately common in the Upper Cretaceous, where they are recorded in 28 species, and also occur in one Palaeocene, seven Eocene‐Miocene and 11 Recent species. The most primitive cheilostome ovicells occur in mid‐Cretaceous calloporids in which a group of mural spines belonging to the distal zooid were apparently bent towards the maternal zooid to form a cage‐like structure for reception of the embryo. The bases of these spines were initially aligned in a distally concave row that later became straight, distally convex and finally horseshoe‐shaped, affording progressively better protection for the developing embryo. We suggest that primitive monoporellids inherited from calloporid ancestors a distally concave arrangement of ovicell spine bases, while cribrilinids inherited a horseshoe‐shaped arrangement. Important trends that can be recognized in early ovicell evolution include: (1) loss of basal spine articulation; (2) spine flattening; (3) closure of the gaps between spines; (4) reduction in spine number (through loss or fusion), and (5) development of a concave ovicell floor. The conventional ‘unipartite’ ovicells found in the majority of cheilostomes may have originated either by spine fusion, as seems likely in some cribrilinids, or through a progressive loss of spines via an intermediate stage, seen in some calloporids and in two monoporellids, where the ovicell comprises a large pair of flattened spines. The spinose ovicells of some monoporellids and macroporids subsequently evolved investments of hypostegal coelom that allowed secretion of a surface layer of cryptocystal calcification. Acanthostegous brood chambers characteristic of Tendridae apparently provide an example of independent evolution of spinose brooding structures. © 2005 The Natural History Museum, London, Zoological Journal of the Linnean Society, 2005, 144 , 317?361.  相似文献   

10.
11.
Summary. Abaxial epidermal cells of developing faba bean (Vicia faba) cotyledons are modified to a transfer cell morphology and function. In contrast, the adaxial epidermal cells do not form transfer cells but can be induced to do so when excised cotyledons are cultured on an agar medium. The first fenestrated layer of wall ingrowths is apparent within 24 h of cotyledon exposure to culture medium. The time course of wall ingrowth formation was examined further. By 2 h following cotyledon excision, a 350 nm thick wall was deposited evenly over the outer periclinal walls of adaxial epidermal cells and densities of cytoplasmic vesicles increased. After 3 h in culture, 10% of epidermal cells contained small projections of wall material on their outer periclinal walls. Thereafter, this percentage rose sharply and reached a maximum of 90% by 15 h. Continuous culture of cotyledons on a medium containing 6-methyl purine (an inhibitor of RNA synthesis) completely blocked wall ingrowth formation. In contrast, if exposure to 6-methyl purine was delayed for 1 h at the start of the culture period, the adaxial epidermal cells were found to contain small wall ingrowths. Treating cotyledons for 1 h with 6-methyl purine at 15 h following cotyledon excision halted further wall ingrowth development. We conclude that transfer cell induction is rapid and that signalling and early events leading to wall ingrowth formation depend upon gene expression. In addition, these gene products have a high turnover rate. Correspondence and reprints: School of Environmental and Life Sciences, Biology Building, University of Newcastle, Callaghan, NSW 2308, Australia.  相似文献   

12.
利用扫描电镜(SEM)对油茶叶肿病变态叶叶片表面和横切面进行观察,利用透射电镜(TEM)对其细胞超微结构进行观察,以期探明油茶叶肿病变态叶的形态特征和细胞学特征。结果表明:(1)变态叶是受感染油茶幼叶组织增生形成的,肿大的叶片厚度比正常叶片厚度增加3~5倍,细胞体积增大3~8倍,细胞数增加1~2倍,叶片细胞形态和结构发生了变化。(2)叶片受细丽外担菌侵染后,菌丝存在于下表皮向内的4~7层细胞间隙中,感染后期叶片下表面脱落露出子实层。(3)变态叶细胞出现叶绿体膜破裂、类囊体片层膜数目减少及细胞器成分被破坏等异常现象。  相似文献   

13.
The ovipositor of striped bitterling Acheilognathus yamatsutae was subjected to ultrastructure and histochemical analysis during spawning season using light and electron microscopy. Although the ovipositor of A. yamatsutae is a long cylindrical tube with smooth external surface, it was possible to confirm the presence of well-developed fingerprint structure using scanning electron microscopy. Internal aspect analysis of ovipositor revealed formation of 5–8 longitudinal folds. Cross section analysis revealed that the ovipositor is composed of an outer epithelial layer, a mid connective tissue layer, and an inner epithelial layer. The outer epithelial layer contains 7–9 cell layers composed mainly of epithelial and mucous cells. Result of AB–PAS (pH 2.5) and AF–AB reaction showed that mucous cells contained mainly acidic carboxylated mucosubstances. The connective tissue layer was loose and made mainly of collagen fibers and some muscle fibers, along with blood vessels and a small number of chromatophores. The inner epithelial layer, which is a single layer, is composed of columnar epithelia. Observation under transmission electron microscope enabled distinction of the outer epithelial layer into superficial, intermediate and basal layers. Although the types of cells in the superficial tissue layer were diverse, they all shared the development of glycocalyx covered microridges. The majority of epithelial cells in the intermediate layer were cuboidal shaped, while those in the basal layer were columnar. Two types (A and B) of secretory cells were observed in the outer epithelial layer. The connective tissue layer had two types of chromatophores including xantophore and melanophore, in addition to a well-developed nerve fiber bundles. Columnar epithelial cells, mitochondria-rich cells and rodlet cells were observed in the inner epithelial layer. Microvilli were well developed on the free surface of columnar epithelial cells.  相似文献   

14.
采用常规石蜡切片技术,对石蒜科葱兰的花药壁发育、大小孢子的发生和雌雄配子体的发生过程进行了研究,并对葱兰属、石蒜科、百合科以及葱科的胚胎学特征进行比较讨论。结果表明:(1)葱兰花药四室,药壁由表皮、药室内壁、中层和绒毡层组成;药壁发育类型为单子叶型,绒毡层的类型为分泌型;花粉成熟时药室内壁径向加长并纤维状加厚,表皮宿存;小孢子母细胞在减数分裂过程中胞质分裂为连续型,小孢子四分体排列方式主要为四面体型,还有少数一些为左右对称型,成熟花粉为2-细胞型。(2)葱兰的雌蕊3心皮合生,子房下位,中轴胎座,3室,每室具2列倒生胚珠;胚珠双珠被,厚珠心,具蓼型胚囊。(3)葱兰属的胚胎学特征与石蒜科的其他种类存在较大的差异,如葱兰属花药壁发育为单子叶型,而石蒜科花药壁发育主要为双子叶型,但葱兰属的这些胚胎学特征却和百合科较为相似。  相似文献   

15.
The histology and ultrastructure of the body wall in Phoronopsis harmeriwere studied using light microscopy and TEM. The ectoderm epithelium of tentacles, anterior body region, and ampulla consists of monociliary cells. Gram-negative bacteria were found between microvilli, in the protocuticle of the anterior region, and in the ampulla. The epithelium of the posterior body region lacks both monociliary cells and bacteria. The bundles of nerve fibers run between the layer of epithelial cells and basal membrane. The musculature of the body wall comprises circular and longitudinal muscles. The circular muscle fibers are applied to the basal membrane and constitute a solid layer extending almost throughout the length of the body. This pattern is broken in the posterior body region, where there is no solid layer of circular musculature, and the latter is arranged in isolated muscle bands. In the ampullar (terminal) body region, the inversion of circular and longitudinal muscle layers takes place, so that the latter appears to be pressed against the basal membrane. The apical surfaces of longitudinal muscle cells bear cytoplasmic processes; some of the cells have a flagellum. The basal portion of the longitudinal muscle cells forms a cytoplasmic process containing bundles of tonofilaments. The processes of all cells making up the muscle bands are interwoven and anchored to the basal membrane.  相似文献   

16.
Invasion behaviour of Varroa jacobsoni into honey bee brood cells was studied using an observation hive. The mites were carried close to a suitable brood cell by the bees. Subsequently, the mites moved from the bees to the rim of the cell, walked quickly inside, crawled between the larva and the cell wall, and moved onto the bottom of the cell. Varroa mites were never seen walking across the comb, and entering and leaving brood cells as has been described for Tropilaelaps clareae. Differences in invasion strategies between V. jacobsoni and T. clareae are discussed.  相似文献   

17.

Background

Matrotrophy or extraembryonic nutrition ?C transfer of nutrients from mother to embryo during gestation ?C is well known and thoroughly studied among vertebrates, but still poorly understood in invertebrates. The current paper focuses on the anatomy and ultrastructure of the oogenesis and placentotrophy as well as formation of the brood chamber (ovicell) in the cheilostome bryozoan Bicellariella ciliata (Linnaeus, 1758). Our research aimed to combine these aspects of the sexual reproduction into an integral picture, highlighting the role of the primitive placenta-like system in the evolution of bryozoan reproductive patterns.

Results

Follicular and nutrimentary provisioning of the oocyte occur during oogenesis. Small macrolecithal oocytes are produced, and embryos are nourished in the ovicell via a simple placental analogue (embryophore). Every brooding episode is accompanied by the hypertrophy of the embryophore, which collapses after larval release. Nutrients are released and uptaken by exocytosis (embryophore) and endocytosis (embryo). Embryos lack specialized area for nutrient uptake, which occurs through the whole epidermal surface. The volume increase between the ripe oocyte and the larva is ca. 10-fold.

Conclusions

The ovicell is a complex organ (not a special polymorph as often thought) consisting of an ooecium (protective capsule) and an ooecial vesicle (plugging the entrance to the brooding cavity) that develop from the distal and the fertile zooid correspondingly. Combination of macrolecithal oogenesis and extraembryonic nutrition allows attributing B. ciliata to species with reproductive pattern IV. However, since its oocytes are small, this species represents a previously undescribed variant of this pattern, which appears to represent a transitional state from the insipient matrotrophy (with large macrolecithal eggs) to substantial one (with small microlecithal ones). Altogether, our results substantially added and corrected the data obtained by the previous authors, providing a new insight in our understanding of the evolution of matrotrophy in invertebrates.  相似文献   

18.
H. J. Pluymaekers 《Protoplasma》1982,112(1-2):107-116
Summary The cell wall of root hairs ofLimnobium stoloniferum is composed of two fibrillar layers: an outer layer with a dispersed texture and an inner layer with a helicoidal texture. In stained oblique sections the helicoidal layer appears as a series of bow-shaped structures. In sections which were shadow-casted after the embedding medium was removed, the following properties of the helicoidal layer can be directly observed. (1) It is build up of superimposed lamellae. (2) Each lamella consists of parallel oriented microfibrils. (3) Going into the helicoidal layer, there is a counter-clockwise discontinuous rotation of the microfibril orientation in successive lamellae. (4) Between adjacent lamellae the average angular displacement of the microfibril orientation is about 23 degrees. The dispersed outer layer is also polylamellated, but with randomly arranged microfibrils in each lamella. Both layers are present in the lateral wall as well as in the apical wall of the root hairs. Observations indicate that in the cell wall of the tip the parallel oriented microfibrils of the outermost helicoidal lamellae become distorted towards a dispersed arrangement. The suggestion is made that the dispersed outer layer is derived from the helicoidal layer.  相似文献   

19.
Summary The cell wall in laticifers of theConvolvulaceae, Calystegia silvatica, C. soldanella, C. tuguriorum, Convolvulus cneorum, C. verecundus, C. sabaticus subsp.mauritanicus, andIpomoea indica, contains an impregnated layer that surrounds the cells. The impregnated layer lies inside the primary wall of the laticifer, separated from the protoplast by a third (tertiary) layer of variable thickness. Histochemical and cytochemical staining give a positive reaction for suberin. The layer is often differentiated into dark and translucent regions, the latter frequently being composed of lamellae. The ultrastructure of this layer and its position within the cell wall of the laticifer is comparable to the condition found in oil cells where the walls contain a suberized layer. A suberized layer within the wall is unique for a laticifer system.  相似文献   

20.
通过梭梭林下黄花补血草种群调查,研究土壤结皮发育过程中的无结皮沙地(前期NSC1、后期NSC2)、物理结皮沙地(前期PSC1、后期PSC2)和生物结皮沙地(前期BSC1、后期BSC2)的黄花补血草种群发育格局特征,以揭示梭梭林下土壤结皮发育对黄花补血草种群发育的影响以及植被恢复技术。结果表明:(1)梭梭林下土壤结皮的发育对黄花补血草的种群密度具有显著的促进作用,在BSC1样地达到最大,而对个体冠幅具有前期促进后期抑制的作用,在NSC2样地达到最大,故导致种群总盖度变化不稳定。(2)种群个体发育值呈先增加后减小的趋势,在NSC2样地达到最大;在NSC1-NSC2过程中,土壤结皮发育对种群个体发育具有促进作用,其值逐渐增大,而在NSC2-BSC2发育过程中,土壤结皮发育对种群个体发育的抑制作用逐渐增强,其值逐渐减小。(3)黄花补血草种群优势级层位于较低级层,随着土壤结皮的发育,呈先增加后减小的趋势,其峰值在BSC1样地,而种群级层越高,该级层的峰值则逐渐向土壤结皮发育前期移动,其峰值在NSC2或PSC1样地。研究认为,梭梭林下土壤结皮发育对黄花补血草种群密度具有促进作用,但对种群内植株个体发育具有前期促进后期抑制的作用,该结论对梭梭林下黄花补血草植被恢复具有积极的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号