首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
BACKGROUND/AIMS: Multiple myeloma is an incurable disease and patients eventually die of disease progression due to drug resistance. VLA-4 (very late antigen 4), VCAM (vascular adhesion molecule), LFA-1 (leukocyte function-associated antigen 1), and ICAM-1 (intercellular adhesion molecule 1)-mediated adhesion of myeloma cells to bone marrow stromal cells induces primary multidrug resistance in vitro. Based on these preclinical data we hypothesized that myeloma cells with strong adhesion - due to strong expression of adhesion molecules on the cell surface - are selected by chemotherapy in patients. To prove this hypothesis we determined the expression levels of adhesion molecules in 31 multiple myeloma patients by flow cytometry. METHODS: A 3-color stain with CD38, CD138 and antibodies against VLA-4, ICAM-1, LFA-1, and VCAM was performed. The patients were either at diagnosis (chemo-naive; n=17) or at relapse (pre-treated; n=15). Furthermore, the response to the next chemotherapy of chemo-naive patients was correlated with the expression levels of adhesion molecules. RESULTS: ICAM-1, VLA-4, and VCAM expression was higher in pre-treated patients than in chemo-naive patients and the expression levels increased with the number of chemotherapy regimens. Primarily multidrug-resistant patients had significantly higher expression levels of VLA-4 and ICAM-1 than responders. CONCLUSION: This study suggests that multiple myeloma cells expressing high levels of VLA-4 and ICAM-1 are drug resistant and that such a subpopulation of cells is selected by chemotherapy.  相似文献   

2.
The expression of the following cell adhesion molecules, their β1 and β2 integrin ligands and the cytokine tumour necrosis factor-α (TNF-α) was investigated by light and electron microscope immunohistochemistry in the liver tissue in 20 patients with colorectal and gastric cancer also presenting with liver metastases: intercellular adhesion molecule-1 (ICAM-1), vascular endothelial adhesion molecule-1 (VCAM-1), E-selectin, leucocyte function-associated antigen-1 (LFA-1), macrophage antigen-1 (Mac-1), and very late antigen-4 (VLA-4). We have found a parallel enhancement of the adhesion molecules and of TNF-α in liver sinusoids surrounding metastases. The expression of ICAM-1 was enhanced on sinusoidal cells in all zones of the acinus. VCAM-1 immune reactivity was diffuse but less intensive in the lobule. E-selectin expression was observed in sinusoidal cells attached to metastases. In tumour metastases the expression of ICAM-1, VCAM-1, and E-selectin was visible on the tumour vascular endothelium. Tumour infiltrating host cells sowing positive immunoreactivity for ICAM-1, VCAM-1, LFA-1, Mac-1, and VLA-4 were located mainly at the boundary between liver parenchyma and the metastasis. At the ultrastructural level, ICAM-1-positive immune deposits were observed on the cellular membrane and in some transport vesicles of gastric metastatic cells. Further, the expression of all adhesion molecules was confirmed to sinusoidal endothelial cells and tumour vessels. It is concluded that the enhanced expression of adhesion molecules in liver sinusoids could be a marker for the assessment of the ability of sinusoidal endothelial cells to control the recruitment of leukocytes and monocytes to the metastatic site. They could also direct the adhesion of new circulating tumour cells to sinusoidal endothelium.  相似文献   

3.
目的:研究重组人粒细胞集落刺激因子(rhG-CSF)动员对供者CD4+T细胞表面分子淋巴细胞功能相关抗原-1(LFA-1)、细胞间黏附分子-1(ICAM-1)、L-选择素(LAM-1)和人整合素-4(VLA-4)的表达及其介导的CD4+T细胞功能的影响,探讨外周血干细胞移植过程中CD4+T细胞免疫耐受机制。方法:使用三色荧光标记检测动员前及动员后第5天供者外周血LFA-1、ICAM-1、LAM-1和VLA-4的表达率,ELISA方法检测动员前后CD4+T细胞分泌IFN-γ和IL-4能力,免疫磁性分选法分离纯化CD4+T细胞,检测动员前后CD4+T细胞对基质细胞衍生因子-1α(SDF-1α)的迁移能力和对ICAM-1的黏附能力。结果:动员前后CD4+T细胞LFA-1(CD11a)和VLA-4(CD49d)表达率差异无统计学意义(P>0.01),动员前后CD4+T细胞LAM-1(CD62L)和ICAM-1(CD54)的表达率差异均有统计学意义,动员前显著高于动员后(P<0.01);动员前后CD4+T淋巴细胞向SDF-1α的迁移率差异无统计学意义(P>0.01);动员后CD4+T细胞对ICAM-1的黏附率降低(P<0.01);动员后IL-4和IFN-γ两个细胞因子在外周血血清的浓度均降低(P<0.01)。结论:rhG-CSF动员不影响CD4+T细胞LFA-1和VLA-4表达及CD4+T细胞迁移,但影响CD4+T细胞ICAM-1和LAM-1表达以及CD4+T细胞通过LFA-1对ICAM-1的黏附能力影响,并可能影响CD4+T细胞分泌细胞因子IL-4及IFN-γ的功能。  相似文献   

4.
The role of LFA-1/ICAM-1 interactions during murine T lymphocyte development.   总被引:14,自引:0,他引:14  
We have examined the expression and function of the cell adhesion molecules LFA-1 (CD11a/CD18), ICAM-1 (CD54), and ICAM-2 in murine fetal thymic ontogeny and in the adult thymus. On fetal days 14 and 15, 40 to 50% of thymocytes coexpress high levels of LFA-1 and ICAM-1, as determined by flow cytometry. By day 16, more than 90% of fetal thymocytes are LFA-1+ ICAM-1hi, and all IL-2R+ cells are located in this population. Although LFA-1 expression remains unchanged thereafter, ICAM-1 expression appears to be differentially regulated in different thymocyte subpopulations, with CD4+8+ cells being ICAM-1lo and CD4-8- thymocytes remaining ICAM-1hi. ICAM-2 surface expression is dull on both fetal and adult thymocytes. Surprisingly, the expression of ICAM-1 is differentially up-regulated on T cells having a mature phenotype in thymus and in peripheral lymphoid organs, with CD8+ T cells bearing the highest amount of surface ICAM-1. Addition of anti-ICAM-1 or anti-LFA-1 antibodies to fetal thymic organ cultures results in the impaired generation of CD4+8+ cells. These results indicate that LFA-1/ICAM-1 interactions facilitate murine thymic development and suggest that cell adhesion molecules mediate important events in T cell differentiation.  相似文献   

5.
汪菲  高春记  黄文荣  李晓红  李猛 《生物磁学》2012,(4):631-634,618
目的:研究重组人粒细胞集落刺激因子(rhG-CSF)动员对供者CD4+T细胞表面分子淋巴细胞功能相关抗原-1(LFA-1)、细胞间黏附分子-1(ICAM-1)、L-选择素(LAM-1)和人整合素-4(VLA-4)的表达及其介导的CD4+T细胞功能的影响,探讨外周血干细胞移植过程中CD4+T细胞免疫耐受机制。方法:使用三色荧光标记检测动员前及动员后第5天供者外周血LFA-1、ICAM-1、LAM-1和VLA-4的表达率,ELISA方法检测动员前后CD4+T细胞分泌IFN-γ和IL-4能力,免疫磁性分选法分离纯化CD4+T细胞,检测动员前后CD4+T细胞对基质细胞衍生因子-1α(SDF-1α)的迁移能力和对ICAM-1的黏附能力。结果:动员前后CD4+T细胞LFA-1(CD11a)和VLA-4(CD49d)表达率差异无统计学意义(P〉0.01),动员前后CD4+T细胞LAM-1(CD62L)和ICAM-1(CD54)的表达率差异均有统计学意义,动员前显著高于动员后(P〈0.01);动员前后CD4+T淋巴细胞向SDF-1α的迁移率差异无统计学意义(P〉0.01);动员后CD4+T细胞对ICAM-1的黏附率降低(P〈0.01);动员后IL-4和IFN-γ两个细胞因子在外周血血清的浓度均降低(P〈0.01)。结论:rhG-CSF动员不影响CD4+T细胞LFA-1和VLA-4表达及CD4+T细胞迁移,但影响CD4+T细胞ICAM-1和LAM-1表达以及CD4+T细胞通过LFA-1对ICAM-1的黏附能力影响,并可能影响CD4+T细胞分泌细胞因子IL-4及IFN-γ的功能。  相似文献   

6.
The VLA-4 (CD49d/CD29) integrin is the only member of the VLA family expressed by resting lymphoid cells that has been involved in cell-cell adhesive interactions. We here describe the triggering of homotypic cell aggregation of peripheral blood T lymphocytes and myelomonocytic cells by mAbs specific for certain epitopes of the human VLA alpha 4 subunit. This anti-VLA-4-induced cell adhesion is isotype and Fc independent. Similar to phorbol ester-induced homotypic adhesion, cell aggregation triggered through VLA-4 requires the presence of divalent cations, integrity of cytoskeleton and active metabolism. However, both adhesion phenomena differed at their kinetics and temperature requirements. Moreover, cell adhesion triggered through VLA-4 cannot be inhibited by cell preincubation with anti-LFA-1 alpha (CD11a), LFA-1 beta (CD18), or ICAM-1 (CD54) mAb as opposed to that mediated by phorbol esters, indicating that it is a LFA-1/ICAM-1 independent process. Antibodies specific for CD2 or LFA-3 (CD58) did not affect the VLA-4-mediated cell adhesion. The ability to inhibit this aggregation by other anti-VLA-4-specific antibodies recognizing epitopes on either the VLA alpha 4 (CD49d) or beta (CD29) chains suggests that VLA-4 is directly involved in the adhesion process. Furthermore, the simultaneous binding of a pair of aggregation-inducing mAbs specific for distinct antigenic sites on the alpha 4 chain resulted in the abrogation of cell aggregation. These results indicate that VLA-4-mediated aggregation may constitute a novel leukocyte adhesion pathway.  相似文献   

7.
The determinants of the prevalence of CD8(+) T cells in the inflamed myocardium of Trypanosoma cruzi-infected patients and experimental animals are undefined. Using C3H/He mice infected with the Colombiana strain of T. cruzi, we found that the distribution of CD4(+)/CD8(-) and CD4(-)/CD8(+) T cells in the myocardium mirrors the frequency of cells expressing the CD62L(Low)LFA-1(High)VLA-4(High) activation phenotype among CD4(+)/CD8(-) and CD4(-)/CD8(+ )peripheral blood T cells. Consistently, vascular cell adhesion molecule-1-positive endothelial cells and a fine fibronectin network surrounding VLA-4(+) mononuclear cells were found in the inflamed myocardium. Further, interferon gamma (IFN-gamma) and IFN-gamma-induced chemokines (RANTES, MIG and CRG-2/IP-10), as well as JE/MCP-1 and MIP1-alpha, were found to be the dominant cytokines expressed in situ during acute and chronic myocarditis elicited by T. cruzi. In contrast, interleukin 4 mRNA was only detected during the chronic phase. Altogether, the results indicate that the distribution of T-cell subsets in the myocardium of T. cruzi-infected mice reflects the particular profile of adhesion molecules acquired by most peripheral CD8(+) T lymphocytes and point to the possibility that multiple IFN-gamma-inducible molecules present in the inflamed tissue contribute to the establishment and maintenance of T. cruzi-induced myocarditis.  相似文献   

8.
Because both T lymphocyte and airway smooth muscle (ASM) cell activation are events fundamentally implicated in the pathobiology of asthma, this study tested the hypothesis that cooperative intercellular signaling between activated T cells and ASM cells mediates proasthmatic changes in ASM responsiveness. Contrasting the lack of effect of resting human T cells, anti-CD3-activated T cells were found to adhere to the surface of naive human ASM cells, increase ASM CD25 cell surface expression, and induce increased constrictor responsiveness to acetylcholine and impaired relaxation responsiveness to isoproterenol in isolated rabbit ASM tissues. Comparably, exposure of resting T cells to ASM cells prestimulated with IgE immune complexes reciprocally elicited T cell adhesion to ASM cells and up-regulated T cell expression of CD25. Extended studies demonstrated that: 1) ASM cells express mRNAs and proteins for the cell adhesion molecules (CAMs)/costimulatory molecules, CD40, CD40L, CD80, CD86, ICAM-1 (CD54), and LFA-1 (CD11a/CD18); 2) apart from LFA-1, ASM cell surface expression of the latter molecules is up-regulated in the presence of activated T cells; and 3) pretreatment of ASM cells and tissues with mAbs directed either against CD11a or the combination of CD40 and CD86 completely abrogated both the activated T cell-induced changes in expression of the above CAMs/costimulatory molecules in ASM cells and altered ASM tissue responsiveness. Collectively, these observations identify the presence of bi-directional cross-talk between activated T cells and ASM cells that involves coligation of specific CAMs/costimulatory molecules, and this cooperative intercellular signaling mediates the induction of proasthmatic-like changes in ASM responsiveness.  相似文献   

9.
Lymphocyte migration to inflammatory sites is an essential factor in the pathogenesis of chronic inflammation. An ensemble of adhesion receptors mediating lymphocyte-endothelial cell recognition and binding are thought to play a crucial role in this process. In the present study, we have explored the molecular basis of lymphocyte adhesion to endothelium in the synovial membrane of patients with rheumatoid arthritis. We established that the very late antigen-4 [VLA-4 (CD49d)] and the vascular cell adhesion molecule-1 (VCAM-1) are important mediators of binding to synovial endothelium of resting and, to a greater extent, of activated T lymphocytes, whereas the leukocyte-function associated antigen-1 [LFA-1 (CD11a/18)]/intercellular adhesion molecule-1 [ICAM-1 (CD54)] pathway is less important in this interaction. In contrast to its prominent role in lymphocyte interaction with endothelium in rheumatoid synovium, the VLA-4/VCAM-1 pathway does not significantly contribute to lymphocyte adhesion to peripheral lymph node high endothelial venule. Thus, the VLA-4/VCAM-1 pathway may be of primary importance in mediating lymphocyte adhesion to inflamed endothelium and in lymphocyte homing to rheumatoid synovium.  相似文献   

10.
The expression of the following cell adhesion molecules, their 1 and 2 integrin ligands and the cytokine tumour necrosis factor- (TNF-) was investigated by light and electron microscope immunohistochemistry in the liver tissue in 20 patients with colorectal and gastric cancer also presenting with liver metastases: intercellular adhesion molecule-1 (ICAM-1), vascular endothelial adhesion molecule-1 (VCAM-1), E-selectin, leucocyte function-associated antigen-1 (LFA-1), macrophage antigen-1 (Mac-1), and very late antigen-4 (VLA-4). We have found a parallel enhancement of the adhesion molecules and of TNF- in liver sinusoids surrounding metastases. The expression of ICAM-1 was enhanced on sinusoidal cells in all zones of the acinus. VCAM-1 immune reactivity was diffuse but less intensive in the lobule. E-selectin expression was observed in sinusoidal cells attached to metastases. In tumour metastases the expression of ICAM-1, VCAM-1, and E-selectin was visible on the tumour vascular endothelium. Tumour infiltrating host cells sowing positive immunoreactivity for ICAM-1, VCAM-1, LFA-1, Mac-1, and VLA-4 were located mainly at the boundary between liver parenchyma and the metastasis. At the ultrastructural level, ICAM-1-positive immune deposits were observed on the cellular membrane and in some transport vesicles of gastric metastatic cells. Further, the expression of all adhesion molecules was confirmed to sinusoidal endothelial cells and tumour vessels. It is concluded that the enhanced expression of adhesion molecules in liver sinusoids could be a marker for the assessment of the ability of sinusoidal endothelial cells to control the recruitment of leukocytes and monocytes to the metastatic site. They could also direct the adhesion of new circulating tumour cells to sinusoidal endothelium.  相似文献   

11.
In infected tissues, leukocyte recruitment is mediated by interactions between adhesion molecules, expressed on activated vascular endothelial cells, and ligands present on circulating cells. We evaluated the inflammatory response and the expression of cellular adhesion molecules (ICAM-1, VCAM-1, CD18, LFA-1 and Mac-1) in lungs of BALB/c mice infected with Paracoccidioides brasiliensis conidia. When compared with uninfected animals, infected mice had a significant increase in the inflammatory response during the first 4 days, peaking 2-3 days post-challenge, 40.3% vs. 0.0% and 41.8% vs. 0.7%, respectively. This inflammatory infiltrate was composed mainly of neutrophils and macrophages with a few eosinophils and lymphocytes. An increase in the intensity of immunofluorescence (IF) for ICAM-1 was also observed during days 1-4. ICAM-1 was present in bronchiolar epithelium, type II pneumocytes, and macrophages, as well as on vascular endothelium. The control animals presented ICAM-1 constitutively. In infected mice, VCAM-1 was only observed on vascular endothelium during the first 2 days, with some macrophages expressing this molecule throughout the study periods. CD18 and Mac-1 but not LFA-1 were expressed with a high intensity on neutrophils and macrophages present in the inflammatory infiltrate. In addition, we observed a significant decrease in Colony forming units (CFUs) after the first 2 days post-challenge. These findings suggest that during these early stages, up-regulation of ICAM-1, VCAM-1, CD18 and Mac-1 expression occurs, participating in the inflammatory process and as such, in the pathogenesis of paracoccidioidomycosis (PCM).  相似文献   

12.
To carry out their physiological responsibilities, CD4+ T lymphocytes interact with various tissues of different mechanical properties. Recent studies suggest that T cells migrate upstream on surfaces expressing intracellular adhesion molecule-1 (ICAM-1) through interaction with leukocyte function-associated antigen-1 (αLβ2) (LFA-1) integrins. LFA-1 likely behaves as a mechanosensor, and thus we hypothesized that substrate mechanics might affect the ability of LFA-1 to support upstream migration of T cells under flow. Here we measured motility of CD4+ T lymphocytes on polyacrylamide gels with predetermined stiffnesses containing ICAM-1, vascular cell adhesion molecule-1 (VCAM-1), or a 1:1 mixture of VCAM-1/ICAM-1. Under static conditions, we found that CD4+ T cells exhibit an increase in motility on ICAM-1, but not on VCAM-1 or VCAM-1/ICAM-1 mixed, surfaces as a function of matrix stiffness. The mechanosensitivity of T-cell motility on ICAM-1 is overcome when VLA-4 (very late antigen-4 [α4β1]) is ligated with soluble VCAM-1. Last, we observed that CD4+ T cells migrate upstream under flow on ICAM–1-functionalized hydrogels, independent of substrate stiffness. In summary, we show that CD4+ T cells under no flow respond to matrix stiffness through LFA-1, and that the cross-talk of VLA-4 and LFA-1 can compensate for deformable substrates. Interestingly, CD4+ T lymphocytes migrated upstream on ICAM-1 regardless of the substrate stiffness, suggesting that flow can compensate for substrate stiffness.  相似文献   

13.
Anderson ME  Siahaan TJ 《Peptides》2003,24(3):487-501
This review describes the role of modulation of intracellular adhesion molecule-1 (ICAM-1)/leukocyte function-associated antigen-1 (LFA-1) interaction in controlling autoimmune diseases or inducing immunotolerance. ICAM-1/LFA-1 interaction is essential for T-cell activation as well as for migration of T-cells to target tissues. This interaction also functions, along with Signal-1, as a co-stimulatory signal (Signal-2) for T-cell activation, which is delivered by the T-cell receptors (TCR)-major histocompatibility complex (MHC)-peptide complex. Therefore, blocking ICAM-1/LFA-1 interaction can suppress T-cell activation in autoimmune diseases and organ transplantation. Many types of inhibitors (i.e. antibodies, peptides, small molecules) have been developed to block ICAM-1/LFA-1 interactions, and some of these molecules have reached clinical trials. Peptides derived from ICAM-1 and LFA-1 sequences have been shown to inhibit T-cell adhesion and activation. In addition, these inhibitors have been useful in elucidating the mechanism of ICAM-1/LFA-1 interaction. Besides binding to LFA-1, the ICAM-1 peptide can be internalized by LFA-1 receptors into the cytoplasmic domain of T-cells. Therefore, this ICAM-1 peptide can be utilized to selectively target toxic drugs to T-cells, thus avoiding harmful side effects. Finally, bi-functional inhibitory peptide (BPI), which is made by conjugating the antigenic peptide and an LFA-1 peptide, can alter the T-cell commitment from T-helper-1 (Th1) to T-helper-2 (Th2)-like cells, suggesting that this peptide may have a role in blocking the formation of the "immunological synapse."  相似文献   

14.
Patients with the leukocyte adhesion deficiency (LAD) syndrome have a genetic defect in the common beta 2-chain (CD18) of the leukocyte integrins. This defect can result in the absence of cell surface expression of all three members of the leukocyte integrins. We investigated the capacity of T cell clones obtained from the blood of an LAD patient and of normal T cell clones to adhere to human umbilical vein endothelial cells (EC). Adhesion of the number of LAD T cells to unstimulated EC was approximately half of that of leukocyte function-associated antigen (LFA)-1+ T cells. Stimulation of EC with human rTNF-alpha resulted in an average 2- and 2.5-fold increase in adhesion of LFA-1+ and LFA-1- cells, respectively. This effect was maximal after 24 h and lasted for 48 to 72 h. The involvement of surface structures known to participate in cell adhesion (integrins, CD44) was tested by blocking studies with mAb directed against these structures. Adhesion of LFA-1+ T cells to unstimulated EC was inhibited (average inhibition of 58%) with mAb to CD11a or CD18. Considerably less inhibition of adhesion occurred with mAb to CD11a or CD18 (average inhibition, 20%) when LFA-1+ T cells were incubated with rTNF-alpha-stimulated EC. The adhesion of LFA-1- T cells to EC stimulated with rTNF-alpha, but not to unstimulated EC, was inhibited (average inhibition, 56%) by incubation with a mAb directed to very late antigen (VLA)-4 (CDw49d). In contrast to LAD T cell clones and the LFA-1+ T cell line Jurkat, mAb to VLA-4 did not inhibit adhesion of normal LFA-1+ T cell clones to EC, whether or not the EC had been stimulated with rTNF-alpha. We conclude that the adhesion molecule pair LFA-1/intercellular adhesion molecule (ICAM)-1 plays a major role in the adhesion of LFA-1+ T cell clones derived from normal individuals to unstimulated EC. Adhesion of LFA-1-T cells to TNF-alpha-stimulated EC is mediated by VLA-4/vascular cell adhesion molecule (VCAM)-1 interactions. Since we were unable to reduce significantly the adhesion of cultured normal LFA-1+ T cells to 24 h with TNF-alpha-stimulated endothelium with antibodies that block LFA-1/ICAM-1 or VLA-4/VCAM-1 interactions, and lectin adhesion molecule-1 and endothelial leukocyte adhesion molecule-1 appeared not to be implicated, other as yet undefined cell surface structures are likely to participate in T cell/EC interactions.  相似文献   

15.
CD47 plays an important but incompletely understood role in the innate and adaptive immune responses. CD47, also called integrin-associated protein, has been demonstrated to associate in cis with β1 and β3 integrins. Here we test the hypothesis that CD47 regulates adhesive functions of T-cell α4β1 (VLA-4) and αLβ2 (LFA-1) in in vivo and in vitro models of inflammation. Intravital microscopy studies reveal that CD47/ Th1 cells exhibit reduced interactions with wild-type (WT) inflamed cremaster muscle microvessels. Similarly, murine CD47/ Th1 cells, as compared with WT, showed defects in adhesion and transmigration across tumor necrosis factor-α (TNF-α)–activated murine endothelium and in adhesion to immobilized intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion protein 1 (VCAM-1) under flow conditions. Human Jurkat T-cells lacking CD47 also showed reduced adhesion to TNF-α–activated endothelium and ICAM-1 and VCAM-1. In cis interactions between Jurkat T-cell β2 integrins and CD47 were detected by fluorescence lifetime imaging microscopy. Unexpectedly, Jurkat CD47 null cells exhibited a striking defect in β1 and β2 integrin activation in response to Mn2+ or Mg2+/ethylene glycol tetraacetic acid treatment. Our results demonstrate that CD47 associates with β2 integrins and is necessary to induce high-affinity conformations of LFA-1 and VLA-4 that recognize their endothelial cell ligands and support leukocyte adhesion and transendothelial migration.  相似文献   

16.
We investigated the role of H-Ras in chemokine-induced integrin regulation in leukocytes. Stimulation of Jurkat T cells with the CXC chemokine stromal cell-derived factor-1alpha (SDF-1alpha) resulted in a rapid increase in the phosphorylation, i.e., activation of extracellular signal receptor-activated kinase (ERK) but not c-Jun NH(2)-terminal kinase or p38 kinase, and phosphorylation of Akt, reflecting phosphatidylinositol 3-kinase (PI3-K) activation. Phosphorylation of ERK in Jurkat cells was enhanced and attenuated by expression of dominant active (D12) or inactive (N17) forms of H-Ras, respectively, while N17 H-Ras abrogated SDF-1alpha-induced Akt phosphorylation. SDF-1alpha triggered a transient regulation of adhesion to intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 mediated by lymphocyte function antigen-1 (LFA-1) and very late antigen-4 (VLA-4), respectively, and a rapid increase in LFA-1 binding to soluble ICAM-1.Ig, which was inhibited by D12 but not N17 H-Ras. Both D12 and N17 H-Ras abrogated the regulation of LFA-1 but not VLA-4 avidity, and impaired LFA-1-mediated transendothelial chemotaxis but not VLA-4-dependent transmigration induced by SDF-1alpha. Analysis of the mutant Jurkat J19 clone revealed LFA-1 with constitutively high affinity and reduced ERK phosphorylation, which were partially restored by expression of active H-Ras. Inhibition of PI3-K blocked the up-regulation of Jurkat cell adhesion to ICAM-1 by SDF-1alpha, whereas inhibition of mitogen-activated protein kinase kinase impaired the subsequent down-regulation and blocking both pathways abrogated LFA-1 regulation. Our data suggest that inhibition of initial PI3-K activation by inactive H-Ras or sustained activation of an inhibitory ERK pathway by active H-Ras prevail to abolish LFA-1 regulation and transendothelial migration induced by SDF-1alpha in leukocytes, establishing a complex and bimodal involvement of H-Ras.  相似文献   

17.
Allergic processes are complex disorders in which inflammatory and immunological mechanisms are involved. Many studies indicate that the adhesion molecules are upregulated in allergic inflammation, and play a critical role in the pathogenesis of allergic inflammation. Modulation of the expression of adhesion molecules may provide a potential new target for therapeutic intervention in allergic diseases. In the present study the changes expression of adhesion molecules CD11a, CD18 (LFA-1), CD54 (ICAM-1) and L-selectin (CD62L) and VLA-4 (CD49d) were analysed by flow cytometry. Serum concentrations of soluble ICAM-1, VCAM-1 and soluble low affinity receptor for IgE concentrations sCD23 were measured by ELISA in atopic patients with mild asthma before and after treatment by disodium cromoglycate (DSCG). The most significant finding was a significant decrease of ICAM-1 expression on monocytes and CD49d on monocytes and lymphocytes as well as an increase of L-selectin expression on monocytes after treatment with DSCG, without any associated effect on CD11a and CD18. The levels of soluble ICAM-1 and VCAM-1 were not changed, only the levels of soluble CD23 that plays a regulatory role in ongoing IgE production, were decreased in asthmatic patients after the treatment with DSCG. These results suggest that DSCG diminishes cell activation.  相似文献   

18.
Our understanding why a woman's immune system does not reject her histoincompatible fetus is still very limited. Distinct insights into the mechanisms involved in pregnancy maintenance may help us to prevent pregnancy complications, e.g., miscarriages or pre-eclampsia. Immune integration and tolerance at the feto-maternal interface appear to be indispensable for successful pregnancy maintenance. Little is known about the cross talk between ICAM-1, expressed on epithelium, endothelium, and APC, and its ligand, LFA-1, at the feto-maternal interface. However, based on the role of ICAM-1/LFA-1 in allograft acceptance or rejection upon transplantation, adhesion molecules are likely to interfere with successful pregnancy outcome. In this study, we tested the hypothesis that ICAM-1/LFA-1 pathways may be involved in pregnancy rejection in murine models. By blocking ICAM-1/LFA-1-mediated intercellular adhesion events, we show that fetal immune acceptance is restored in challenged pregnancies (e.g., upon exposure to sound stress), and adoptive transfer of LFA-1 cells into pregnant mice induces rejection only in abortion-prone mouse models. ICAM-1/LFA-1 cross talk leads to increased recruitment of proinflammatory cells to the implantation site, promotes dendritic cell maturation in the decidua, and subsequently induces additional local Th1 polarization via mature dendritic cells. Furthermore, our observations clearly point out that mechanisms of fetal tolerance, e.g., indoleamine 2,3-dioxygenase expression, presence of CD4+CD25bright regulatory T cells, and synthesis of asymmetric Abs, are ICAM-1/LFA-1 dependent. Hence, our data shed light on a hierarchical network of immune integration at the feto-maternal interface, in which ICAM-1/LFA-1 cross talk is clearly a proximate mediator capable of disrupting successful pregnancy maintenance.  相似文献   

19.
Visfatin has recently been identified as a novel visceral adipokine which may be involved in obesity-related vascular disorders. However, it is not known whether visfatin directly contributes to endothelial dysfunction. Here, we investigated the effect of visfatin on vascular inflammation, a key step in a variety of vascular diseases. Visfatin induced leukocyte adhesion to endothelial cells and the aortic endothelium by induction of the cell adhesion molecules, ICAM-1 and VCAM-1. Promoter analysis revealed that visfatin-mediated induction of CAMs is mainly regulated by nuclear factor-kappaB (NF-kappaB). Visfatin stimulated IkappaBalpha phosphorylation, nuclear translocation of the p65 subunit of NF-kappaB, and NF-kappaB DNA binding activity in HMECs. Furthermore, visfatin increased ROS generation, and visfatin-induced CAMs expression and NF-kappaB activation were abrogated in the presence of the direct scavenger of ROS. Taken together, our results demonstrate that visfatin is a vascular inflammatory molecule that increases expression of the inflammatory CAMs, ICAM-1 and VCAM-1, through ROS-dependent NF-kappaB activation in endothelial cells.  相似文献   

20.
Cocaine treatment of mice with viral myocarditis significantly increases neutrophil infiltration into the myocardium and exacerbates the inflammatory response. The mechanisms of these effects are unknown; however, it may be that cocaine increases circulating catecholamines and consequently increases inflammatory cell adhesion to the coronary endothelium. Here, we examined the hypothesis that cocaine enhances inflammatory cell infiltration via catecholamine-induced upregulation of cell adhesion molecule (CAM) expression in adult BALB/c mouse hearts. Intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial leukocyte adhesion molecule-1 (E-selectin), and leukocyte adhesion molecule-1 (L-selectin) were detected by gene array analysis, RT-PCR, Western blotting, and immunohistochemical staining. CAMs were significantly upregulated in cocaine-treated mouse hearts. beta-Adrenergic stimulation with epinephrine also upregulated CAM expression, confirming the effects obtained with cocaine. Beta-adrenergic blockade with propranolol inhibited epinephrine-induced CAM expression. In hearts infused with polymorphonuclear neutrophils (PMN), an increased adhesion of PMN to the coronary endothelium was observed in cocaine-treated and epinephrine-treated mouse hearts compared with control hearts. Blocking antibodies against ICAM-1, E-selectin, and L-selectin significantly inhibited epinephrine-enhanced PMN adhesion, whereas anti-VCAM-1 had lesser effects. Our findings suggest that cocaine-induced neutrophil infiltration is mediated by beta-adrenergic stimulation through upregulation of CAM expression, which enhances PMN adhesion. Conversely, beta-adrenergic blockade with propranolol inhibits the effects of cocaine and epinephrine on CAM expression and decreases PMN adhesion to the coronary endothelium. These observations may be of significance for the development of preventative and therapeutic approaches to patients with cocaine- or catecholamine-induced myocarditis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号