首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Duck hepatitis B virus (DHBV) shares many fundamental features with human HBV. However, the DHBV core protein (DHBc), forming the nucleocapsid shell, is much larger than that of HBV (HBc) and, in contrast to HBc, there is little direct information on its structure. Here we applied an efficient expression system for recombinant DHBc particles to the biochemical analysis of a large panel of mutant DHBc proteins. By combining these data with primary sequence alignments, secondary structure prediction, and three-dimensional modeling, we propose a model for the fold of DHBc. Its major features are a HBc-like two-domain structure with an assembly domain comprising the first about 185 amino acids and a C-terminal nucleic acid binding domain (CTD), connected by a morphogenic linker region that is longer than in HBc and extends into the CTD. The assembly domain shares with HBc a framework of four major α-helices but is decorated at its tip with an extra element that contains at least one helix and that is made up only in part by the previously predicted insertion sequence. All subelements are interconnected, such that structural changes at one site are transmitted to others, resulting in an unexpected variability of particle morphologies. Key features of the model are independently supported by the accompanying epitope mapping study. These data should be valuable for functional studies on the impact of core protein structure on virus replication, and some of the mutant proteins may be particularly suitable for higher-resolution structural investigations.  相似文献   

2.

Background

Protein aggregation is linked to the onset of an increasing number of human nonneuropathic (either localized or systemic) and neurodegenerative disorders. In particular, misfolding of native α-helical structures and their self-assembly into nonnative intermolecular β-sheets has been proposed to trigger amyloid fibril formation in Alzheimer’s and Parkinson’s diseases.

Methods

Here, we use a battery of biophysical techniques to elucidate the conformational conversion of native α-helices into amyloid fibrils using an all-α FF domain as a model system.

Results

We show that under mild denaturing conditions at low pH this FF domain self-assembles into amyloid fibrils. Theoretical and experimental dissection of the secondary structure elements in this domain indicates that the helix 1 at the N-terminus has both the highest α-helical and amyloid propensities, controlling the transition between soluble and aggregated states of the protein.

Conclusions

The data illustrates the overlap between the propensity to form native α-helices and amyloid structures in protein segments.

Significance

The results presented contribute to explain why proteins cannot avoid the presence of aggregation-prone regions and indeed use stable α-helices as a strategy to neutralize such potentially deleterious stretches.  相似文献   

3.
4.
5.
PERIOD proteins are central components of the Drosophila and mammalian circadian clocks. The crystal structure of a Drosophila PERIOD (dPER) fragment comprising two PER-ARNT-SIM (PAS) domains (PAS-A and PAS-B) and two additional C-terminal α-helices (αE and αF) has revealed a homodimer mediated by intermolecular interactions of PAS-A with tryptophane 482 in PAS-B and helix αF. Here we present the crystal structure of a monomeric PAS domain fragment of dPER lacking the αF helix. Moreover, we have solved the crystal structure of a PAS domain fragment of the mouse PERIOD homologue mPER2. The mPER2 structure shows a different dimer interface than dPER, which is stabilized by interactions of the PAS-B β-sheet surface including tryptophane 419 (equivalent to Trp482dPER). We have validated and quantitatively analysed the homodimer interactions of dPER and mPER2 by site-directed mutagenesis using analytical gel filtration, analytical ultracentrifugation, and co-immunoprecipitation experiments. Furthermore we show, by yeast-two-hybrid experiments, that the PAS-B β-sheet surface of dPER mediates interactions with TIMELESS (dTIM). Our study reveals quantitative and qualitative differences between the homodimeric PAS domain interactions of dPER and its mammalian homologue mPER2. In addition, we identify the PAS-B β-sheet surface as a versatile interaction site mediating mPER2 homodimerization in the mammalian system and dPER-dTIM heterodimer formation in the Drosophila system.  相似文献   

6.
The central shaft of the catalytic core of ATP synthase, the γ subunit consists of a coiled-coil structure of N- and C-terminal α-helices, and a globular domain. The γ subunit of cyanobacterial and chloroplast ATP synthase has a unique 30–40-amino acid insertion within the globular domain. We recently prepared the insertion-removed α3β3γ complex of cyanobacterial ATP synthase (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855–865). Although the insertion is thought to be located in the periphery of the complex and far from catalytic sites, the mutant complex shows a remarkable increase in ATP hydrolysis activity due to a reduced tendency to lapse into ADP inhibition. We postulated that removal of the insertion affects the activity via a conformational change of two central α-helices in γ. To examine this hypothesis, we prepared a mutant complex that can lock the relative position of two central α-helices to each other by way of a disulfide bond formation. The mutant obtained showed a significant change in ATP hydrolysis activity caused by this restriction. The highly active locked complex was insensitive to N-dimethyldodecylamine-N-oxide, suggesting that the complex is resistant to ADP inhibition. In addition, the lock affected ϵ inhibition. In contrast, the change in activity caused by removal of the γ insertion was independent from the conformational restriction of the central axis component. These results imply that the global conformational change of the γ subunit indirectly regulates complex activity by changing both ADP inhibition and ϵ inhibition.  相似文献   

7.
CEL-III is a hemolytic lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-binding domains (domains 1 and 2) and one oligomerization domain (domain 3). After binding to the cell surface carbohydrate chains through domains 1 and 2, domain 3 self-associates to form transmembrane pores, leading to cell lysis or death, which resembles other pore-forming toxins of diverse organisms. To elucidate the pore formation mechanism of CEL-III, the crystal structure of the CEL-III oligomer was determined. The CEL-III oligomer has a heptameric structure with a long β-barrel as a transmembrane pore. This β-barrel is composed of 14 β-strands resulting from a large structural transition of α-helices accommodated in the interface between domains 1 and 2 and domain 3 in the monomeric structure, suggesting that the dissociation of these α-helices triggered their structural transition into a β-barrel. After heptamerization, domains 1 and 2 form a flat ring, in which all carbohydrate-binding sites remain bound to cell surface carbohydrate chains, stabilizing the transmembrane β-barrel in a position perpendicular to the plane of the lipid bilayer.  相似文献   

8.
Target cell lysis by complement is achieved by the assembly and insertion of the membrane attack complex (MAC) composed of glycoproteins C5b through C9. The lytic activity of shark complement involves functional analogues of mammalian C8 and C9. Mammalian C8 is composed of α, β, and γ subunits. The subunit structure of shark C8 is not known. This report describes a 2341 nucleotide sequence that translates into a polypeptide of 589 amino acid residues, orthologue to mammalian C8α and has the same modular architecture with conserved cysteines forming the peptide bond backbone. The C8γ-binding cysteine is conserved in the perforin-like domain. Hydrophobicity profile indicates the presence of hydrophobic residues essential for membrane insertion. It shares 41.1% and 47.4% identity with human and Xenopus C8α respectively. Southern blot analysis showed GcC8α exists as a single copy gene expressed in most tissues except the spleen with the liver being the main site of synthesis. Phylogenetic analysis places it in a clade with C8α orthologs and as a sister taxa to the Xenopus.  相似文献   

9.
The topology of most experimentally determined protein domains is defined by the relative arrangement of secondary structure elements, i.e. α-helices and β-strands, which make up 50–70% of the sequence. Pairing of β-strands defines the topology of β-sheets. The packing of side chains between α-helices and β-sheets defines the majority of the protein core. Often, limited experimental datasets restrain the position of secondary structure elements while lacking detail with respect to loop or side chain conformation. At the same time the regular structure and reduced flexibility of secondary structure elements make these interactions more predictable when compared to flexible loops and side chains. To determine the topology of the protein in such settings, we introduce a tailored knowledge-based energy function that evaluates arrangement of secondary structure elements only. Based on the amino acid Cβ atom coordinates within secondary structure elements, potentials for amino acid pair distance, amino acid environment, secondary structure element packing, β-strand pairing, loop length, radius of gyration, contact order and secondary structure prediction agreement are defined. Separate penalty functions exclude conformations with clashes between amino acids or secondary structure elements and loops that cannot be closed. Each individual term discriminates for native-like protein structures. The composite potential significantly enriches for native-like models in three different databases of 10,000–12,000 protein models in 80–94% of the cases. The corresponding application, “BCL::ScoreProtein,” is available at www.meilerlab.org.  相似文献   

10.
Elucidation of the structure of α-crystallin, the major protein in all vertebrate lenses, is important for understanding its role in maintaining transparency and its function in other tissues under both normal and pathological conditions. Progress toward a unified consensus concerning the tertiary and quaternary structures of α-crystallin depends, in part, on an accurate estimation of its secondary structure. For the first time, three algorithms, SELCON, K2D and CONTIN were used to analyze far ultra-violet circular dichroism (UV–CD) spectra of bovine lens α-crystallin to estimate the secondary structure and to determine the effects of temperature and concentration. Under all experimental conditions tested, the analyses show that α-crystallin contains 14% α-helix, 35% β-sheet and the remainder, random coil and turns. The results suggest that α-crystallin is best classified as a mixed protein. In addition, increased temperature and concentration of α-crystallin result in increased α-helices with a compensatory decrease in β-sheets. Such structural alterations in α-crystallin may be functionally important during terminal differentiation of the lens fiber cells that is accompanied by increased protein concentrations and its role as a chaperone-like protein.  相似文献   

11.
The tripartite motif (TRIM) protein, TRIM5α, is an endogenous factor in primates that recognizes the capsids of certain retroviruses after virus entry into the host cell. TRIM5α promotes premature uncoating of the capsid, thus blocking virus infection. Low levels of expression and tendencies to aggregate have hindered the biochemical, biophysical, and structural characterization of TRIM proteins. Here, a chimeric TRIM5α protein (TRIM5Rh-21R) with a RING domain derived from TRIM21 was expressed in baculovirus-infected insect cells and purified. Although a fraction of the TRIM5Rh-21R protein formed large aggregates, soluble fractions of the protein formed oligomers (mainly dimers), exhibited a protease-resistant core, and contained a high percentage of helical secondary structure. Cross-linking followed by negative staining and electron microscopy suggested a globular structure. The purified TRIM5Rh-21R protein displayed E3-ligase activity in vitro and also self-ubiquitylated in the presence of ubiquitin-activating and -conjugating enzymes. The purified TRIM5Rh-21R protein specifically associated with human immunodeficiency virus type 1 capsid-like complexes; a deletion within the V1 variable region of the B30.2(SPRY) domain decreased capsid binding. Thus, the TRIM5Rh-21R restriction factor can directly recognize retroviral capsid-like complexes in the absence of other mammalian proteins.  相似文献   

12.
The stability of amidase-03 structure (a cell wall hydrolase protein) from Bacillus anthracis was studied using classical molecular dynamics (MD) simulation. This protein (GenBank accession number: NP_844822) contains an amidase-03 domain which is known to exhibit the catalytic activity of N-acetylmuramoyl-L-alanine amidase (digesting MurNAc-Lalanine linkage of bacterial cell wall). The amidase-03 enzyme has stability at high temperature due to the core formed by the combination of several secondary structure elements made of β-sheets. We used root-mean-square-displacement (RMSD) of the simulated structure from its initial state to demonstrate the unfolding of the enzyme using its secondary structural elements. Results show that amidase-03 unfolds in transition state ensemble (TSE). The data suggests that α-helices unfold before β-sheets from the core during simulation.  相似文献   

13.
Invertase is an enzyme that is widely distributed among plants and microorganisms and that catalyzes the hydrolysis of the disaccharide sucrose into glucose and fructose. Despite the important physiological role of Saccharomyces invertase (SInv) and the historical relevance of this enzyme as a model in early biochemical studies, its structure had not yet been solved. We report here the crystal structure of recombinant SInv at 3.3 Å resolution showing that the enzyme folds into the catalytic β-propeller and β-sandwich domains characteristic of GH32 enzymes. However, SInv displays an unusual quaternary structure. Monomers associate in two different kinds of dimers, which are in turn assembled into an octamer, best described as a tetramer of dimers. Dimerization plays a determinant role in substrate specificity because this assembly sets steric constraints that limit the access to the active site of oligosaccharides of more than four units. Comparative analysis of GH32 enzymes showed that formation of the SInv octamer occurs through a β-sheet extension that seems unique to this enzyme. Interaction between dimers is determined by a short amino acid sequence at the beginning of the β-sandwich domain. Our results highlight the role of the non-catalytic domain in fine-tuning substrate specificity and thus supplement our knowledge of the activity of this important family of enzymes. In turn, this gives a deeper insight into the structural features that rule modularity and protein-carbohydrate recognition.  相似文献   

14.
A folding topology for the homodimeric N-terminal domain (IIA, 2 × 14 kDa) of the hydrophilic subunit (IIABman) of the mannose transporter of E. coli is proposed. The prediction is based on (i) tertiary structure prediction methods, and (ii) functional properties of site-directed mutants in correlation with NMR-derived α/β secondary structure data. The 3D structure profile suggested that the overall fold of IIA is similar to that of the unrelated protein, flavodoxin, which is an open-stranded parallel β-sheet with a strand order of 5 4 3 1 2. The 3D model of IIA, constructed using the known atomic structure of flavodoxin, is consistent with the results from site-directed mutagenesis. Recently NMR results confirmed the open parallel β-sheet with a strand order of 4 3 12 (residues 1-120) of our model whereas β-strand 5 (residues 127–130) was shown to be antiparallel to β-strand 4. The correctly predicted fold includes 90% of the monomeric subunit sequence and contains all functional sites of the IIA domain.  相似文献   

15.
The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex required for the assembly of spliceosomal small nuclear ribonucleoproteins. Deletions and mutations in the SMN1 gene are associated with spinal muscular atrophy (SMA), a devastating neurodegenerative disease that is the leading heritable cause of infant mortality. Oligomerization of SMN is required for its function, and some SMA patient mutations disrupt the ability of SMN to self-associate. Here, we investigate the oligomeric nature of the SMN·Gemin2 complexes from humans and fission yeast (hSMN·Gemin2 and ySMN·Gemin2). We find that hSMN·Gemin2 forms oligomers spanning the dimer to octamer range. The YG box oligomerization domain of SMN is both necessary and sufficient to form these oligomers. ySMN·Gemin2 exists as a dimer-tetramer equilibrium with Kd = 1.0 ± 0.9 μm. A 1.9 Å crystal structure of the ySMN YG box confirms a high level of structural conservation with the human ortholog in this important region of SMN. Disulfide cross-linking experiments indicate that SMN tetramers are formed by self-association of stable, non-dissociating dimers. Thus, SMN tetramers do not form symmetric helical bundles such as those found in glycine zipper transmembrane oligomers. The dimer-tetramer nature of SMN complexes and the dimer of dimers organization of the SMN tetramer provide an important foundation for ongoing studies to understand the mechanism of SMN-assisted small nuclear ribonucleoprotein assembly and the underlying causes of SMA.  相似文献   

16.
Disulfide bridges were introduced into Cry1Aa, a Bacillus thuringiensis lepidopteran toxin, to stabilize different protein domains including domain I α-helical regions thought to be involved in membrane integration and permeation. Bridged mutants could not form functional ion channels in lipid bilayers in the oxidized state, but upon reduction with β-mercaptoethanol, regained parental toxin channel activity. Our results show that unfolding of the protein around a hinge region linking domain I and II is a necessary step for pore formation. They also suggest that membrane insertion of the hydrophobic hairpin made of α-helices 4 and 5 in domain I plays a critical role in the formation of a functional pore.  相似文献   

17.
Sorting nexins are phox homology (PX) domain-containing proteins involved in diverse intracellular endosomal trafficking pathways. The PX domain binds to certain phosphatidylinositols and is recruited to vesicles rich in these lipids. The structure of the PX domain is highly conserved, containing a three-stranded β-sheet, followed by three α-helices. Here, we report the crystal structures of truncated human SNX11 (sorting nexin 11). The structures reveal that SNX11 contains a novel PX domain, hereby named the extended PX (PXe) domain, with two additional α-helices at the C terminus. We demonstrate that these α-helices are indispensible for the in vitro functions of SNX11. We propose that this PXe domain is present in SNX10 and is responsible for the vacuolation activity of SNX10. Thus, this novel PXe domain constitutes a structurally and functionally important PX domain subfamily.  相似文献   

18.
Inserting foreign epitopes to hepatitis B core (HBc) virus‐like particles (VLPs) could influence the molecular conformation and therefore vary the purification process. In this study, a cost‐effective purification process was developed for two chimeric HBc VLPs displaying Epstein–Barr nuclear antigens 1 (EBNA1), and hepatitis C virus (HCV) core. Both chimeric VLPs were expressed in soluble form with high production yields in Escherichia coli. Molecular dynamic (MD) simulation was employed to predict the stability of chimeric VLPs. HCV core‐HBc was found to be less stable in water environment compared with EBNA1‐HBc, indicating its higher hydrophobicity. Assisting with MD simulation, ammonium sulfate precipitation was optimized to remove host cell proteins with high target protein recovery yields. Moreover, 99% DNA impurities were removed using POROS 50 HQ chromatography. In characterization measurement, we found that inserting HCV core epitope would reduce the ratio of α‐helix of HCV core‐HBc. This could be another reason on the top of its higher hydrophobicity predicted by MD simulation, causing its less stability. Tertiary structure, transmission electron microscopy, and immunogenicity results indicate that two chimeric VLPs maintained correct VLP structure ensuring its bioactivity after being processed by the developed cost‐effective purification approach.  相似文献   

19.
20.
The three-dimensional structure of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Rhodospirillum rubrum has been determined at 2.9 Å resolution by X-ray crystallographic methods. The MIR-electron density map was substantially improved by two-fold non-crystallographic symmetry averaging. The polypeptide chains in the dimer were traced using a graphics display system with the help of the BONES option in FRODO. The dimer has approximate dimensions of 50 x 72 x 105 Å. The enzyme subunit is a typical two-domain protein. The smaller, N-terminal domain consists of 137 amino acid residues and forms a central, mixed five-stranded β-sheet with α-helices on both sides of the sheet. The larger C-terminal domain consists of 329 amino acid residues. This domain has an eight-stranded parallel α/β barrel structure as found in triosephosphate isomerase and a number of other functionally non-related proteins. The active site in Rubisco determined by difference Fourier techniques and fitting of active site residues to the electron density map, is located at the carboxy-end of the β-strands in the α/β barrel of the C-terminal domain. There are few domain–domain interactions within the subunit. The interactions at the interface between the two subunits of the dimer are tight and extensive. There are tight contacts between the two C-terminal domains, which build up the core of the molecule. There are also interactions between the N-terminal domain of one subunit and the C-terminal domain of the second subunit, close to the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号