首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Photon capture by a rhodopsin pigment molecule induces 11-cis to all-trans isomerization of its retinaldehyde chromophore. To restore light sensitivity, the all-trans-retinaldehyde must be chemically re-isomerized by an enzyme pathway called the visual cycle. Rpe65, an abundant protein in retinal pigment epithelial (RPE) cells and a homolog of beta-carotene dioxygenase, appears to play a role in this pathway. Rpe65-/- knockout mice massively accumulate all-trans-retinyl esters but lack 11-cis-retinoids and rhodopsin visual pigment in their retinas. Mutations in the human RPE65 gene cause a severe recessive blinding disease called Leber's congenital amaurosis. The function of Rpe65, however, is unknown. Here we show that Rpe65 specifically binds all-trans-retinyl palmitate but not 11-cis-retinyl palmitate by a spectral-shift assay, by co-elution during gel filtration, and by co-immunoprecipitation. Using a novel fluorescent resonance energy transfer (FRET) binding assay in liposomes, we demonstrate that Rpe65 extracts all-trans-retinyl esters from phospholipid membranes. Assays of isomerase activity reveal that Rpe65 strongly stimulates the enzymatic conversion of all-trans-retinyl palmitate to 11-cis-retinol in microsomes from bovine RPE cells. Moreover, we show that addition of Rpe65 to membranes from rpe65-/- mice, which possess no detectable isomerase activity, restores isomerase activity to wild-type levels. Rpe65 by itself, however, has no intrinsic isomerase activity. These observations suggest that Rpe65 presents retinyl esters as substrate to the isomerase for synthesis of visual chromophore. This proposed function explains the phenotype in mice and humans lacking Rpe65.  相似文献   

2.
Absorption of a photon by a vertebrate opsin pigment induces 11-cis to all-trans isomerization of its retinaldehyde chromophore. Restoration of light sensitivity to the bleached opsin requires chemical re-isomerization of the chromophore via an enzyme pathway called the visual cycle. The retinoid isomerase in this pathway is Rpe65, a membrane-associated protein in the retinal pigment epithelium (RPE) with no predicted membrane-spanning segments. It has been suggested that Rpe65 is S-palmitoylated by lecithin:retinol acyl transferase (LRAT) on Cys(231), Cys(329), and Cys(330), and that this palmitoylation is required for isomerase activity and the association of Rpe65 with membranes. Here we show that the affinity of Rpe65 for membranes is similar in wild-type and lrat(-/-) mice. The isomerase activity of Rpe65 is also similar in both strains when all-trans-retinyl palmitate is used as substrate. With all-trans-retinol substrate, isomerase activity is present in wild-type but undetectable in RPE homogenates from lrat(-/-) mice. Substitution of Cys(231), Cys(329), and Cys(330) with Ser or Ala did not affect the affinity of Rpe65 for membranes. Further, these Cys residues are not palmitoylated in Rpe65 by mass spectrometric analysis. Global inhibition of protein palmitoylation by 2-bromopalmitate did not affect the solubility or isomerase activity of Rpe65. Finally, we show that soluble and membrane-associated Rpe65 possesses similar isomerase specific activities. These results indicate that LRAT is not required for isomerase activity beyond synthesis of retinyl-ester substrate, and that the association of Rpe65 with membranes is neither dependent upon LRAT nor the result of S-palmitoylation. The affinity of Rpe65 for membranes is probably an intrinsic feature of this protein.  相似文献   

3.
4.
The isomerization of all-trans retinol (vitamin A) to 11-cis retinol in the retinal pigment epithelium (RPE) is a key step in the visual process for the regeneration of the visual pigment chromophore, 11-cis retinal. LRAT and RPE65 are recognized as the minimal isomerase catalytic components. However, regulators of this rate-limiting step are not fully identified and could account for the phenotypic variability associated with inherited retinal degeneration (RD) caused by mutations in the RPE65 gene. To identify new RPE65 partners, we screened a porcine RPE mRNA library using a yeast two-hybrid assay with full-length human RPE65. One identified clone (here named FATP1c), containing the cytosolic C-terminal sequence from the fatty acid transport protein 1 (FATP1 or SLC27A1, solute carrier family 27 member 1), was demonstrated to interact dose-dependently with the native RPE65 and with LRAT. Furthermore, these interacting proteins colocalize in the RPE. Cellular reconstitution of human interacting proteins shows that FATP1 markedly inhibits 11-cis retinol production by acting on the production of all-trans retinyl esters and the isomerase activity of RPE65. The identification of this new visual cycle inhibitory component in RPE may contribute to further understanding of retinal pathogenesis.  相似文献   

5.
Cone photoreceptors have faster light responses than rods and a higher demand for 11-cis retinal (11cRAL), the chromophore of visual pigments. RPE65 is the isomerohydrolase in the retinal pigment epithelium (RPE) that converts all-trans retinyl ester to 11-cis retinol, a key step in the visual cycle for regenerating 11cRAL. Accumulating evidence suggests that cone-dominant species express an alternative isomerase, likely in retinal Müller cells, to meet the high demand for the chromophore by cones. In the present study, we describe the identification and characterization of a novel isomerohydrolase, RPE65c, from the cone-dominant zebrafish retina. RPE65c shares 78% amino acid sequence identity with RPE-specific zebrafish RPE65a (orthologue of human RPE65) and retains all of the known key residues for the enzymatic activity of RPE65. Similar to the other RPE-specific RPE65, RPE65c was present in both the membrane and cytosolic fractions, used all-trans retinyl ester as its substrate and required iron for its enzymatic activity. However, immunohistochemistry detected RPE65c in the inner retina, including Müller cells, but not in the RPE. Furthermore, double-immunostaining of dissociated retinal cells using antibodies for RPE65c and glutamine synthetase (a Müller cell marker), showed that RPE65c co-localized with the Müller cell marker. These results suggest that RPE65c is the alternative isomerohydrolase in the intra-retinal visual cycle, providing 11cRAL to cone photoreceptors in cone-dominant species. Identification of an alternative visual cycle will contribute to the understanding of the functional differences of rod and cone photoreceptors.  相似文献   

6.
Retinyl esters represent an insoluble storage form of vitamin A and are substrates for the retinoid isomerase (Rpe65) in cells of the retinal pigment epithelium (RPE). The major retinyl-ester synthase in RPE cells is lecithin:retinol acyl-transferase (LRAT). A second palmitoyl coenzyme A-dependent retinyl-ester synthase activity has been observed in RPE homogenates but the protein responsible has not been identified. Here we show that diacylglycerol O-acyltransferase-1 (DGAT1) is expressed in multiple cells of the retina including RPE and Müller glial cells. DGAT1 catalyzes the synthesis of retinyl esters from multiple retinol isomers with similar catalytic efficiencies. Loss of DGAT1 in dgat1 -/- mice has no effect on retinal anatomy or the ultrastructure of photoreceptor outer-segments (OS) and RPE cells. Levels of visual chromophore in dgat1 -/- mice were also normal. However, the normal build-up of all-trans-retinyl esters (all-trans-RE’s) in the RPE during the first hour after a deep photobleach of visual pigments in the retina was not seen in dgat1 -/- mice. Further, total retinyl-ester synthase activity was reduced in both dgat1 -/- retina and RPE.  相似文献   

7.
13-cis Retinoic acid (13cRA), a stereoisomeric form of retinoic acid, is naturally generated in the body and is also used clinically to treat acute promyelocytic leukemia, some skin diseases and cancer. Furthermore, it has been suggested that 13cRA modulates brain neurochemical systems because increased 13cRA levels are correlated with depression and increased suicidal tendencies. However, the mechanism for the generation of endogenous 13cRA is not well understood. The present study identified and characterized a novel enzyme in zebrafish brain, 13-cis isomerohydrolase (13cIMH) (EC 5.2.1.7), which exclusively generated 13-cis retinol and can be oxidized to 13cRA. 13cIMH shares 74% amino acid sequence identity with human retinal pigment epithelium specific 65 kDa protein (RPE65), an 11-cis isomerohydrolase in the visual cycle, and retains the key residues essential for the isomerohydrolase activity of RPE65. Similar to RPE65, 13cIMH is a membrane-associated protein, requires all-trans retinyl ester as its intrinsic substrate, and its enzymatic activity is dependent on iron. The purified 13cIMH converted all-trans retinyl ester exclusively to 13-cis retinol with K(m) = 2.6 μm and k(cat) = 4.4 × 10(-4) ·s(-1) . RT-PCR, western blot analysis and immunohistochemistry detected 13cIMH expression in the brain. These results suggest that 13cIMH may play a key role in the generation of 13cRA, as well as in the modulation of neuronal functions in the brain.  相似文献   

8.
A partial characterization of the enzymatic hydrolysis of 11-cis- and all-trans-retinyl palmitate by bovine retinal pigment epithelium microsomes was carried out using a micro-radiometric method to quantitate liberated palmitic acid. Retinyl ester hydrolase (REH) activity was examined in the absence of detergent. Hydrolysis of 11-cis- and all-trans-retinyl palmitate was protein- and time-dependent. Optimal enzyme activity occurred at slightly alkaline pH (8-9). Apparent kinetic constants (Vmax and Km) for the 11-cis-REH were 2.1 nmol/min/mg protein and 66 microM, respectively. All-trans-REH demonstrated a lower maximum velocity of 0.3 nmol/min/mg protein and a slightly higher substrate affinity of 27 microM. Further characterization of 11-cis-retinyl palmitate hydrolysis involved monitoring formation of reaction products, 11-cis retinol and palmitic acid, which were found to be released in essentially a 1:1 stoichiometry. Addition of all-trans retinyl bromoacetate, a known inhibitor of lecithin:retinol acyltransferase reduced both 11-cis and all-trans-REH activities but to significantly different degrees (50 and 76%, respectively). Although the microsomal preparation exhibited LRAT activity, acyl transfer was not readily reversible as labeled palmitic acid was not transferred to added acyl acceptor compounds. These findings suggest that hydrolysis of 11-cis-retinyl palmitate by bovine retinal pigment epithelium microsomes may occur at a catalytic site distinct from that for the all-trans isomer and that this hydrolysis is not representative of a reverse transesterification reaction.  相似文献   

9.
RPE65, a protein expressed in cells of the retinal pigment epithelium of the eye, is essential for the synthesis by isomerohydrolase of 11-cis-retinal, the chromophore of rod and cone opsins. Recent work has established that RPE65 is a retinyl ester binding protein, and as all-trans-retinyl esters are the substrate for isomerohydrolase activity, the hypothesis has emerged that RPE65 serves to deliver substrate to this enzyme or complex. We bred mice with five distinct combinations of the RPE65 Leu450/Met450 variants (Leu/Leu, Met/Met, Leu/Met, Leu/-, and Met/-), measured in mice of each genotype the mole quantity of RPE65 per eye, and measured the initial rate of rhodopsin regeneration after a nearly complete bleach of rhodopsin to estimate the maximum rate of 11-cis-retinal synthesis in vivo. The quantity of RPE65 per eye ranged from 5.7 pmol (Balb/c) to 0.32 pmol (C57BL/6N x Rpe65(-)(/)(-)); the initial rate of rhodopsin regeneration was a Michaelis function of RPE65, where V(max) = 18 pmol/min per eye and K(m) = 1.7 pmol, and not dependent on the Leu450/Met450 variant. At RPE65 levels well below the K(m), the rate of production of 11-cis-retinal per RPE65 molecule was approximately 10 min(-)(1). Thus, the results imply that as a chaperone each RPE65 molecule can deliver retinyl ester to the isomerohydrolase at a rate of 10 molecules/min; should RPE65 itself be identified as the isomerase, each copy must be able to produce at least 10 molecules of 11-cis-retinal per minute.  相似文献   

10.
Visual sensation in vertebrates is triggered when light strikes retinal photoreceptor cells causing photoisomerization of the rhodopsin chromophore 11-cis-retinal to all-trans-retinal. The regeneration of preillumination conditions of the photoreceptor cells requires formation of 11-cis-retinal in the adjacent retinal pigment epithelium (RPE). Using the intrinsic fluorescence of all-trans-retinyl esters, noninvasive two-photon microscopy revealed previously uncharacterized structures (6.9 +/- 1.1 microm in length and 0.8 +/- 0.2 microm in diameter) distinct from other cellular organelles, termed the retinyl ester storage particles (RESTs), or retinosomes. These structures form autonomous all-trans-retinyl ester-rich intracellular compartments distinct from other organelles and colocalize with adipose differentiation-related protein. As demonstrated by in vivo experiments using wild-type mice, the RESTs participate in 11-cis-retinal formation. RESTs accumulate in Rpe65-/- mice incapable of carrying out the enzymatic isomerization, and correspondingly, are absent in the eyes of Lrat-/- mice deficient in retinyl ester synthesis. These results indicate that RESTs located close to the RPE plasma membrane are essential components in 11-cis-retinal production.  相似文献   

11.
Biochemical and immunological techniques were used to determine the emergence of interstitial retinol binding protein (IRBP), rhodopsin, and stored retinyl esters (all-trans and 11-cis) during retinal development in normal and rd mice. IRBP could be demonstrated at embryonic Day 17 (E17), corresponding to an early stage of inner segment development. Although all-trans retinyl esters were present earlier, 11-cis retinyl esters did not appear until postnatal Days 6-7 (P6-P7), corresponding to rod outer segment (ROS) disc formation. Rhodopsin was detected at the same developmental stage. The proportion of 11-cis retinyl esters reached a maximum of 40-50% at P15-P20. Thereafter, the proportion dropped, due to more rapid accumulation of the all-trans isomer. Rhodopsin and IRBP increased in parallel with ROS elongation up to P25, when the ROS had reached their mature lengths. The increases then continued up to P40-P50. In rd (retinal degeneration) mice, IRBP and rhodopsin were identical with the controls until P12, but then dropped as the photoreceptors degenerated. Synthesis and secretion of IRBP in vitro was less than 10% of the controls in rd retinas at P26, when only 4-5% of the photoreceptors survived. The quantities of retinyl esters (mainly stearate and palmitate in the ratio of 6:1, respectively) stored in dark-adapted mouse eyes progressively increased as the animals aged, representing 0.5 mole eq. of the rhodopsin at 8 months. Although retinyl esters (11-cis and all-trans) also accumulated in rd mouse eyes up to P12, little further increase occurred. At P93, the retinyl esters (0.01 nmole X eye-1) were only 4% of the controls at P91. A peak in the proportion of 11-cis isomer occurred at P10-P20, but it averaged only 15% of the total ester and declined to 5% at P93. These findings support the hypothesis that IRBP is synthesized by the rods and cones, and suggest that its synthesis and secretion are initiated when the photoreceptor inner segments start to differentiate. 11-cis Retinoids and rhodopsin do not appear until the outer segments start to form. It is suggested that in the rd mouse the absence of photoreceptors, perhaps coupled with lack of normal interphotoreceptor matrix, leads to a loss in the ability of the pigment epithelium to store retinyl esters.  相似文献   

12.
Gollapalli DR  Rando RR 《Biochemistry》2003,42(19):5809-5818
The identification of the critical enzyme(s) that carries out the trans to cis isomerization producing 11-cis-retinol during the operation of the visual cycle remains elusive. Confusion exists in the literature as to the exact nature of the isomerization substrate. At issue is whether it is an all-trans-retinyl ester or all-trans-retinol (vitamin A). As both putative substrates interconvert rapidly in retinal pigment epithelial membranes, the choice of substrate can be ambiguous. The two enzymes that effect interconversion of all-trans-retinol and all-trans-retinyl esters are lecithin retinol acyl transferase (LRAT) and retinyl ester hydrolase (REH). The retinyl ester or all-trans-retinol pools are radioactively labeled separately in the presence of inhibitors of LRAT and REH, effectively preventing their interconversion. Pulse-chase experiments unambiguously demonstrate that all-trans-retinyl esters, and not all-trans-retinol, are the precursors of 11-cis-retinol. When the all-trans-retinyl ester pool is radioactively labeled, the resulting 11-cis-retinol is labeled with the same specific activity as the precursor ester. The converse is true with vitamin A. These data unambiguously establish all-trans-retinyl esters as the precursors of 11-cis-retinol.  相似文献   

13.
The endergonic trans-->cis isomerization of retinoids is an essential element in rhodopsin regeneration in vertebrates. All-trans-retinyl esters, which are generated by lecithin retinol acyltransferase (LRAT), are on the isomerization pathway. The critical isomerohydrolase activity, which catalyzes the trans-->cis isomerization/hydrolysis reaction of all-trans-retinyl esters, remains to be identified. It is demonstrated here that 11-cis-retinyl bromoacetate (cRBA) is a potent and specific inactivator of the bovine retinyl pigment epithelial (RPE) isomerohydrolase activity, with a measured K(I)=0.19 microM and a pseudo-first-order rate of inactivation k(inh)=1.83 x 10(-3) s(-1). This demonstrates that the isomerization is indeed enzyme-mediated. This inactivator should facilitate the identification and study of isomerohydrolase, or at least an essential component of it. Labeling of crude RPE membranes with 3H-cRBA reveals the presence of several labeled bands that may be isomerohydrolase candidates.  相似文献   

14.
The first step in the Visual Cycle, the series of reactions that regenerate the vertebrate visual pigment rhodopsin, is the reduction of all-trans retinal to all-trans retinol, a reaction that requires NADPH. We have used the fluorescence of all-trans retinol to study this reduction in living rod photoreceptors. After the bleaching of rhodopsin, fluorescence (excitation, 360 nm; emission, 457 or 540 nm) appears in frog and wild-type mouse rod outer segments reaching a maximum in 30-60 min at room temperature. With this excitation and emission, the mitochondrial-rich ellipsoid region of the cells shows strong fluorescence as well. Fluorescence measurements at different emission wavelengths establish that the outer segment and ellipsoid signals originate from all-trans retinol and reduced pyridine nucleotides, respectively. Using outer segment fluorescence as a measure of all-trans retinol formation, we find that in frog rod photoreceptors the NADPH necessary for the reduction of all-trans retinal can be supplied by both cytoplasmic and mitochondrial metabolic pathways. Inhibition of the reduction reaction, either by retinoic acid or through suppression of metabolic activity, reduced the formation of retinol. Finally, there are no significant fluorescence changes after bleaching in the rod outer segments of Rpe65(-/-) mice, which lack 11-cis retinal.  相似文献   

15.
Jin M  Li S  Moghrabi WN  Sun H  Travis GH 《Cell》2005,122(3):449-459
The first event in light perception is absorption of a photon by an opsin pigment, which induces isomerization of its 11-cis-retinaldehyde chromophore. Restoration of light sensitivity to the bleached opsin requires chemical regeneration of 11-cis-retinaldehyde through an enzymatic pathway called the visual cycle. The isomerase, which converts an all-trans-retinyl ester to 11-cis-retinol, has never been identified. Here, we performed an unbiased cDNA expression screen to identify this isomerase. We discovered that the isomerase is a previously characterized protein called Rpe65. We confirmed our identification of the isomerase by demonstrating catalytic activity in mammalian and insect cells that express Rpe65. Mutations in the human RPE65 gene cause a blinding disease of infancy called Leber congenital amaurosis. Rpe65 with the Leber-associated C330Y and Y368H substitutions had no isomerase activity. Identification of Rpe65 as the isomerase explains the phenotypes in rpe65-/- knockout mice and in humans with Leber congenital amaurosis.  相似文献   

16.
Light-dependent production of 11-cis-retinal by the retinal pigment epithelium (RPE) and normal regeneration of rhodopsin under photic conditions involve the RPE retinal G protein-coupled receptor (RGR) opsin. This microsomal opsin is bound to all-trans-retinal which, upon illumination, isomerizes stereospecifically to the 11-cis isomer. In this paper, we investigate the synthesis of the all-trans-retinal chromophore of RGR in cultured ARPE-hRGR and freshly isolated bovine RPE cells. Exogenous all-trans-[(3)H]retinol is incorporated into intact RPE cells and converted mainly into retinyl esters and all-trans-retinal. The intracellular processing of all-trans-[(3)H]retinol results in physiological binding to RGR of a radiolabeled retinoid, identified as all-trans-[(3)H]retinal. The ARPE-hRGR cells contain a membrane-bound NADPH-dependent retinol dehydrogenase that reacts efficiently with all-trans-retinol but not the 11-cis isomer. The NADPH-dependent all-trans-retinol dehydrogenase activity in isolated RPE microsomal membranes can be linked in vitro to specific binding of the chromophore to RGR. These findings provide confirmation that RGR opsin binds the chromophore, all-trans-retinal, in the dark. A novel all-trans-retinol dehydrogenase exists in the RPE and performs a critical function in chromophore biosynthesis.  相似文献   

17.
Visual perception begins with the absorption of a photon by an opsin pigment, inducing isomerization of its 11-cis-retinaldehyde chromophore. After a brief period of activation, the resulting all-trans-retinaldehyde dissociates from the opsin apoprotein rendering it insensitive to light. Restoring light sensitivity to apo-opsin requires thermal re-isomerization of all-trans-retinaldehyde to 11-cis-retinaldehyde via an enzyme pathway called the visual cycle in retinal pigment epithelial (RPE) cells. Vertebrates can see over a 10(8)-fold range of background illumination. This implies that the visual cycle can regenerate a visual chromophore over a similarly broad range. However, nothing is known about how the visual cycle is regulated. Here we show that RPE cells, functionally or physically separated from photoreceptors, respond to light by mobilizing all-trans-retinyl esters. These retinyl esters are substrates for the retinoid isomerase and hence critical for regenerating visual chromophore. We show in knock-out mice and by RNA interference in human RPE cells that this mobilization is mediated by a protein called "RPE-retinal G protein receptor" (RGR) opsin. These data establish that RPE cells are intrinsically sensitive to light. Finally, we show that in the dark, RGR-opsin inhibits lecithin:retinol acyltransferase and all-trans-retinyl ester hydrolase in vitro and that this inhibition is released upon exposure to light. The results of this study suggest that RGR-opsin mediates light-dependent translocation of all-trans-retinyl esters from a storage pool in lipid droplets to an "isomerase pool" in membranes of the endoplasmic reticulum. This translocation permits insoluble all-trans-retinyl esters to be utilized as substrate for the synthesis of a new visual chromophore.  相似文献   

18.
We investigated the effects of two natural dietary retinoid X receptor (RXR) ligands, phytanic acid (PA) and docosahexaenoic acid (DHA), on proliferation and on the metabolism of retinol (vitamin A) in both cultured normal human prostate epithelial cells (PrECs) and PC-3 prostate carcinoma cells. PA and DHA inhibited the proliferation of the parental PC-3 cells and PC-3 cells engineered to overexpress human lecithin:retinol acyltransferase (LRAT) in both the absence and presence of retinol. A synthetic RXR-specific ligand also inhibited PC-3 cell proliferation, whereas all-trans retinoic acid (ATRA) did not. PA and DHA treatment increased the levels of retinyl esters (REs) in both PrECs and PC-3 cells and generated novel REs that eluted on reverse-phase HPLC at 54.0 and 50.5 min, respectively. Mass spectrometric analyses demonstrated that these novel REs were retinyl phytanate (54.0 min) and retinyl docosahexaenoate (50.5 min). Neither PA nor DHA increased LRAT mRNA levels in these cells. In addition, we demonstrate that retinyl phytanate was generated by LRAT in the presence of PA and retinol; however, retinyl docosahexaenoate was produced by another enzyme in the presence of DHA and retinol.  相似文献   

19.
The isomerization of all-trans-retinyl ester to 11-cis-retinol in the retinal pigment epithelium (RPE) is a critical step in the visual cycle and is essential for normal vision. Recently, we have established that protein RPE65 is the isomerohydrolase catalyzing this reaction. The present study investigated if metal ions are required for the isomerohydrolase activity of RPE65. The conversion of all-trans-[3H]retinol to 11-cis-[3H]retinol was used as the measure for isomerohydrolase activity. Metal chelators 2,2'-bipyridine and 1,10-phenanthroline both showed dose-dependent inhibitions of the isomerohydrolase activity in bovine RPE microsomes, with IC50 values of 0.5 and 0.2 mm, respectively. In the same reaction systems, however, lecithin-retinol acyltransferase (LRAT) activity was not affected by these metal chelators. The isomerohydrolase activity inhibited by the metal chelators was restored by FeSO4 but not by CuSO4, ZnCl2, or MgCl2. Moreover, addition of Fe(III) citrate or FeCl3 did not restore the activity, indicating that Fe2+ is the metal ion essential for the isomerohydrolase activity. To confirm this result in recombinant RPE65, we expressed RPE65 in a 293A cell line stably expressing LRAT. In vitro activity assay showed that both metal chelators inhibited isomerohydrolase activity of recombinant RPE65. The addition of FeSO4 restored the enzymatic activity of the recombinant RPE65. Further, two specific iron-staining methods showed that purified RPE65 contains endogenous iron. Inductively coupled plasma mass spectrometry measurements showed that bovine RPE65 binds iron ion with a stoichiometry of 0.8 +/- 0.1. These results indicate that RPE65 is an iron-dependent isomerohydrolase in the visual cycle.  相似文献   

20.
Lecithin retinol acyl transferase (LRAT) from the retinyl pigment epithelium is potently inhibited by all-trans-retinyl alpha-bromoacetate in the micromolar range. The inhibition is competitive and reversible. The retinyl pigment epithelium also contains an enzymatic activity capable of converting added all-trans-retinol into 11-cis-retinol. This isomerization is likely to require the intermediate formation of all-trans-retinyl esters, which are themselves produced by LRAT action. Here this possibility is directly tested by studying the effect of all-trans-retinyl alpha-bromoacetate on the isomerization reaction. When pigment epithelium membranes are preincubated with all-trans-retinyl alpha-bromoacetate, they form neither retinyl esters nor 11-cis-retinol from added all-trans-retinol. However, if the pigment epithelium membranes are first allowed to form all-trans-retinyl esters from all-trans-retinol before the addition of all-trans-retinyl alpha-bromoacetate, then 11-cis-retinol formation proceeds at close to the rate found in the absence of inhibitor. In addition, 11-cis-retinyl esters are not formed under these conditions, eliminating the possibility of a direct ester-ester isomerization route. Therefore, all-trans-retinyl esters are obligate intermediates in the biosynthesis of 11-cis-retinol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号